## CERAMIC AND STRUCTURAL CLAYS, AND SHALES OF WHITFIELD COUNTY, GEORGIA

**BRUCE J. O'CONNOR** 





DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY

**INFORMATION CIRCULAR 73** 

Cover Photo:

Typical exposure of Conasauga Group shales (Cambrian) along the east side of Brown Rd., 1 mile southeast of Deep Spring Church and Beaverdale Rd., approximately 9 miles northeast of Dalton and approximately 3 <sup>1</sup>/<sub>3</sub> miles due south of sample location Wkr. 69-1.

#### CERAMIC AND STRUCTURAL CLAYS AND SHALES OF

#### WHITFIELD COUNTY, GEORGIA

By

#### Bruce J. O'Connor Principal Geologist

Information Circular 73

#### GEORGIA DEPARTMENT OF NATURAL RESOURCES J. Leonard Ledbetter, Commissioner

ENVIRONMENTAL PROTECTION DIVISION Harold F. Reheis, Assistant Director

GEORGIA GEOLOGIC SURVEY William H. McLemore, State Geologist

> ATLANTA, GEORGIA 1988

In memory of Dr. James W. Smith (1934-1988), who worked for the Georgia Department of Mines, Mining and Geology (c. 1966-1969) and who collected many of the northwestern Georgia clay and shale samples reported in this series of Information Circulars.

#### TABLE OF CONTENTS

| S | UB. | JE | CT |
|---|-----|----|----|
|   |     |    |    |

|           | CF |
|-----------|----|
| <b>FA</b> | GL |

| Introduction                                      | 1        |
|---------------------------------------------------|----------|
| Acknowledgements                                  | 3        |
| Location of Study Area                            | 4        |
| Explanation of Key Terms on the Ceramic Test and  |          |
| Analyses Forms                                    | 9        |
| 1. Absorption (%)                                 | 10       |
|                                                   | 10       |
| 3. App. Sp. Gr Apparent Specific Gravity          | 12       |
| 4. Bloating                                       | 13       |
| 5. Bloating Test (or Quick Firing Test)           | 13       |
| 6. Bulk Density (or Bulk Dens.)                   | 14       |
| 7. Color                                          | 14       |
|                                                   | 14       |
| 9. Compilation Map Location No                    | 15       |
|                                                   | 16       |
|                                                   | 16       |
|                                                   | 17       |
|                                                   | 17       |
|                                                   | 18       |
|                                                   | 18       |
|                                                   | 18       |
|                                                   | 19       |
|                                                   | 19       |
|                                                   | 20       |
|                                                   | 20       |
|                                                   | 20       |
|                                                   | 20       |
|                                                   | 20       |
|                                                   | 21       |
|                                                   | 21       |
|                                                   | 22       |
|                                                   | 22       |
|                                                   | 22       |
|                                                   | 22       |
|                                                   | 22       |
|                                                   | 23       |
|                                                   | 23       |
|                                                   | 24       |
|                                                   | 24<br>25 |
|                                                   | 25       |
|                                                   | 26       |
|                                                   | 26       |
|                                                   | 26       |
|                                                   |          |
| 39. Working Properties (or Workability)           | 27       |
| Commiss Tests and Analyses of Claus and Chales in |          |
| Ceramic Tests and Analyses of Clays and Shales in | 29       |
| Whitfield County, Georgia                         | 27       |
| Data Courses and Pafaranasa Citad                 | 84       |
| Data Sources and References Cited                 | 04       |

#### LIST OF ILLUSTRATIONS

# Page Figure 1 Location of Whitfield County Report Area 5 Plate 1 Clay and Shale Test Locations in Whitfield Pocket

#### LIST OF TABLES

| Table l | Summary of 20th Century Clay and Shale Mines<br>and Companies in Whitfield County, Georgia | 6  |
|---------|--------------------------------------------------------------------------------------------|----|
| Table 2 | Generalized Summary of Stratigraphic Units in<br>Whitfield County, Northwest Georgia       | 7  |
| Table 3 | Abbreviations for Terms on the Ceramic Firing<br>Test Forms                                | 11 |

#### INTRODUCTION

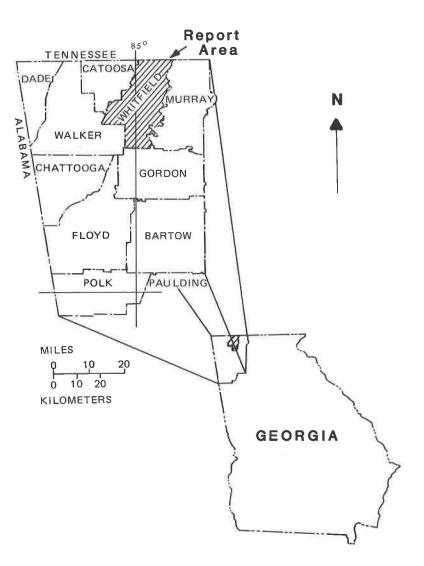
This report presents a compilation of all available published and unpublished ceramic firing tests and related analytical data on samples from Whitfield County, Georgia. It provides information on mined and/or undeveloped clays, shales and related materials; and is intended for use by geologists, engineers and members of the general public. The report should aid in the exploration for deposits of ceramic raw material with economic potential for future development. This information may also be of use to those who wish to obtain information on the potential use of particular deposits at specific locations.

Tests by the U.S. Bureau of Mines, subsequently referred to as USBM, were performed by the Norris Metallurgy Research Laboratory, Norris, Tennessee and the Tuscaloosa Research Center, Tuscaloosa, Alabama under cooperative agreements with the Georgia Geologic Survey and its predecessors (i.e., the Earth and Water Division of the Ga. Department of Natural Resources; the Department of Mines, Mining and Geology; and the Geological Survey of Georgia). Many of the firing tests were performed on samples collected by former staff members of the Georgia Geologic Survey (and its predecessors) during several uncompleted and unpublished studies. These include work by Bentley (1964), Smith (1968?) and Tadkod (1980). Additional unpublished data presented in this compilation include work by TVA (see Butts and Gildersleeve, 1948, p. 124 and 125). Published data include studies by the following authors: Veatch (1909, p. 272 to 388), Smith (1931, p. 173 to 193), and Hollenbeck and Tyrrell (1969, p. 18 to 21).

-1-

Regardless of the source, all of the ceramic firing testing data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design. They do not preclude the use of the materials in mixes (Liles and Heystek, 1977, p. 5).

The author gratefully acknowledges the help of many individuals during the preparation of this report and the work of many who contributed to the earlier, unpublished studies included here. The cooperative work of the U.S. Bureau of Mines forms the main data base of this study. During the last several years Robert D. Thomson, Chief of the Eastern Field Operations Center, Pittsburgh, Pennsylvania, was responsible for administering the funding of costs incurred by the Others in that office who helped coordinate the program were USBM. Charles T. Chislaghi and Bradford B. Williams. Since 1966 M.E. Tyrrell, H. Heystek, and A.V. Petty, Ceramic Engineers, and Kenneth J. Liles, Research Chemist, planned and supervised the test work done at the USBM Tuscaloosa Research Center in Tuscaloosa, Alabama. Prior to 1966 this test work was supervised by ceramists H. Wilson, G.S. Skinner, T.A. Klinefelter, H.P. Hamlin and M.V. Denny at the former Norris Metallurgy Research Laboratory in Norris, Tennessee. Tests by the Tennessee Valley Authority were conducted under the supervision of H.S. Rankin and M.K. Banks at the Mineral Research Laboratory on the campus of North Carolina State College, Asheville, North Carolina, using samples collected by S.D. Broadhurst. Additional tests were conducted by professors W.C. Hansard, and L. Mitchell at the Department of Ceramic Engineering, Georgia Institute of Technology, Atlanta, The majority of the unpublished tests were performed on Georgia. samples collected by former staff geologists of the Georgia Geologic Survey, predominantly by J.W. Smith, A.S. Furcron, R.D. Bentley, N.K. Olsen, D. Ray, M.A. Tadkod, and G. Peyton, assisted by C.W. Cressler of the U.S. Geological Survey. N.K. Olsen and C.W. Cressler also have


-3-

provided the author with valuable advice and suggestions regarding sample locations and past studies. The advice and encouragement of my colleagues on the staff of the Georgia Geologic Survey are greatly appreciated. However, the contents of this report and any errors of omission or commission therein are the sole responsibility of the author.

#### LOCATION OF STUDY AREA

Whitfield County is located at the northeastern corner of the Valley and Ridge province of northwest Georgia (Fig. 1). No companies are currently mining clay or shale in the county, and only a few operations have been active here in the past (Table 1). The most abundant ceramic raw materials in the county are the shales and residual clays derived from the Conasauga Group; however, other units such as the Rome Formation, the Red Mountain Formation, and the Floyd Shale, as well as residual clays of the Knox Group, are locally well developed. The general nature of these and other geologic units which occur in the county are summarized on Table 2.

-4-





#### LOCATION OF WHITFIELD COUNTY REPORT AREA

(after Cressler, and others, 1976)

Summary of 20th Century Clay and Shale Mines and Companies in Whitfield County, Georgia

Cohutta Talc Co. (1906), Dalton; micaceous clay (or Murray Co.?) Ceramic test: Wf. 45-1.

Dalton Brick & Tile Co. (1924), Dalton plant and pits: Face brick from Conasauga Group shale. Ceramic and other tests: Wf. 31S-39 and Wf. 52-1 & 2 (Smith, 1931, No. 39, p. 181; Butts and Gildersleve, 1948, No. 112; Cribb, 1953; Spalvins, 1969, p. 53; Munyan, 1957, p. 102 & 103).

Unknown ? (Pottery), 5 miles south of LaFayette, several years prior to 1909 (Veatch, 1909, p. 374).

#### NOTE:

The majority of the information for the companies listed above was taken from the Mining Directories (Circular 2, 1st to 18th editions) published by the Georgia Geologic Survey and its predecessors at irregular intervals since 1937. Some additional information came from the "Georgia Surface Mining and Land Reclamation Activities" published annually since 1969 by the Georgia Surface Mined Land Reclamation Program (Environmental Protection Division, Ga. Dept. of Natural Resources). Additional sources of information were found in the references cited at the end of each entry. Uncertainty in the dates is due to incomplete records in the Survey's files.

Generalized Summary of Stratigraphic Units in Whitfield County, Northwest Georgia

| STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES $\frac{1}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Various unnamed bodies of alluvial, colluvial and residual<br>material. Largely clay and sand, but also, locally gravel and<br>breccia.                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>* <u>Floyd Shale</u> - Approx. 100-300 ft., silt and clay with some<br/>sandstone; limestone present at base. Approximate age-equiv-<br/>alent to <u>Tuscambia Limestone</u> and <u>Monteagle Limestone</u>.</li> <li><u>Fort Payne Formation</u> (or <u>Chert</u>) - Approx. 100-200 ft., thin- to<br/>thick-bedded chert and cherty limestone. Locally includes:<br/><u>Lavender Shale Member</u> - Approx. 100 ft., shale, massive<br/>mudstone and impure limestone.</li> </ul> |
| <u>Chattanooga Shale</u> - Approx. 15-40 ft., carbonaceous, fissile<br>black shale.<br><u>Armuchee Chert</u> - Approx. 60 ft., thin- to thick-bedded chert.                                                                                                                                                                                                                                                                                                                                  |
| Red Mountain Formation (formerly Rockwood Formation) - Approx.<br>600-1200 ft., sandstone, red and green shale, with conglomer-<br>ate, limestone and local hematitic iron ore.                                                                                                                                                                                                                                                                                                              |
| <u>Chickamauga Group</u> (or Limestone) - Approx. 400 ft., dominantly<br>limestones with some dolostone and lesser shale, claystone,<br>siltstone, sandstone, and bentonite clay horizons.<br>Equivalent, in part, to the <u>Moccasin Limestone</u> and <u>Bays Forma</u> -<br>(*) <u>tion</u> and to the <u>Rockmart Slate</u> and <u>Lenoir Limestone</u> .                                                                                                                                |
| <u>Knox Group</u> - Approx. 3000-4000 ft., dominantly cherty dolo-<br>stone, minor limestone. Includes:<br><u>Longview Limestone</u> - Approx. 500 ft.;<br><u>Chepultepec Dolomite</u> - Approx. 500 ft.; and<br><u>Copper Ridge Dolomite</u> - Approx. 2000-3000 ft.                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Generalized Summary of Stratigraphic Units in Whitfield County, Northwest Georgia (continued)

| <pre>Cambrian **Conasauga Group (or Formation) - Approx. 950-5000 ft., p dominantly shale and limestone with minor sandstone; Includes: <u>Maynardville Limestone Member</u> - Approx. 1000 ft.; <u>"Middle Unit" = Rutledge Limestone</u> and <u>Rogersville Sh</u> - Approx. 1000 ft.; and <u>"Lower Unit" = Pumpkin Valley Shale</u> and <u>Honaker Dolom</u> - Approx. 1000 ft. *Rome Formation - Approx. 500-1000 ft., shale, and interb sandstone, siltstone and quartzite.</pre> | hale?<br>mite? |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|

NOTES:

- \* = Some ceramic firing tests have been made on shales or slates and clays of this unit.
- (\*) = Same as the above, but for residual clays only.
- \*\* = Numerous firing tests have been made on this unit.
- <u>1</u>/ Descriptions based on data in Butts and Gildersleeve, 1948; Chowns, 1972, 1977; Chowns and McKinney, 1980; Crawford, 1983; Cressler 1963, 1964a and b, 1970, 1974; Cressler and others, 1979; Georgia Geologic Survey, 1976.

#### EXPLANATION OF KEY TERMS ON THE CERAMIC TEST AND ANALYSES FORMS

The test data and analyses which are presented here were compiled on a set of standardized forms (Ceramic Tests and Analyses) in the most concise manner consistent with the various laboratories represented. These forms are modified in large part after those used by the Pennsylvania Geological Survey (e.g., O'Neill and Barnes, 1979, 1981).

It should be noted that, although the great majority of these tests were performed by the USBM, it was decided not to reproduce their data forms directly for several reasons. First, the USBM forms contain several entries which are not essential to this project (e.g., Date received) or do not make the most efficient use of space. Second, the USBM forms have been changed several times over the span of decades covered by the present compilation. Finally, investigators from other laboratories have reported parameters which were not measured by the USBM.

The paragraphs which follow briefly describe, in alphabetical order, the more critical entries on the forms, the nature of the information included and, where possible, the various factors and implications to be considered in their interpretation. Many of the particular comments here are based on descriptive information published in the following sources. Tests by Georgia Geologic Survey authors are described in Veatch (1909, p. 50 to 64) and in Smith (1931, p. 19 to 25), while the particulars of the USBM studies are given in Klinefelter and Hamlin (1957, especially p. 5 to 41) and in Liles and Heystek (1977, especially p. 2 to 16). The discussions which follow are not intended to be exhaustive but are merely meant to remind the reader,

-9-

and potential user, of the key aspects of the information presented. Various technical texts and reports should be consulted for more détailed information (e.g., Clews, 1969; Grimshaw, 1972; Jones and Beard, 1972; Norton, 1942; Patterson and Murray, 1983). The abbreviations used on these test forms are defined in Table 4.

#### 1. Absorption (%)

The absorption is a measure of the amount of water absorbed by open pores in the fired specimen and is given as a percentage of the specimen's dry weight. For slow firing tests, it is measured on fired specimens which have been boiled in water for 2 to 5 hours and then kept immersed in the water for up to 24 hours while cooling (Smith, 1931, p. 22; Klinefelter and Hamlin, 1957, p. 27-28; Liles and Heystek, 1977, p. 3). For the quick firing tests, however, the specimens are not boiled but only cooled and then immersed in water for 24 hours (Liles and Heystek, 1977, p. 4).

The absorption gives an indication of the amount of moisture which may be absorbed and subject to destructive freezing in outdoor structures. Less than 22% absorption is considered promising for slow-fired materials.

#### 2. Appr. Por. (%) - Apparent Porosity, Percent

The apparent porosity is a measure of the amount of open pore space in the fired sample, relative to its bulk volume, and is expressed as a percent. As in the case of absorption values, it is based on the weight and volume of the specimen which has been boiled in water for 2 to 5 hours and then kept immersed in water for several hours as it cools (Klinefelter and Hamlin, 1957, p. 27 to 28; Liles and Heystek,

-10-

Abbreviations for Terms on the Ceramic Firing Test Forms

#### ABBREVIATIONS

```
Appr. Por. = Apparent Porosity
App. Sp. Gr. = Apparent Specific Gravity
Btw. = Bartow County
°C = Degrees Celsius
Ct. = Catoosa County
Cht. = Chattooga County
Dd. = Dade County
Dist. = District
DTA = Differential Thermal Analysis
E. = East
<sup>°</sup>F = Degrees Fahrenheit
F1. = Floyd County
g/cm^3 = Grams per cubic centimeter
Gdn. = Gordon County
Lab. & No. = Laboratory (name) and number (assigned in laboratory)
Lat. = Latitude
LOI = Loss on Ignition
Long. = Longitude
1b/in^2 = Pounds per square inch
1b/ft^3 = Pounds per cubic foot
Mry. = Murray County
N_{\star} = North
NE. = Northeast
NW. = Northwest
org. = Organic
Plk. = Polk County
S. = South
SE. = Southeast
SW. = Southwest
Sec. = Section
```

Table 3.Abbreviations for Terms on the Ceramic Firing Test<br/>Forms (continued)71/2' topo. quad. = 7 and 1/2 minute topographic quadrangleTemp. = Temperature<br/>TVA = Tennessee Valley AuthorityUSBM = U.S. Bureau of Mines<br/>USGS = U.S. Geological SurveyW. = West<br/>Wkr. = Walker County<br/>Wf. = Whitfield CountyXRD = X-ray diffraction

1977, p. 3). The apparent porosity is an indication of the relative resistance to damage during freezing and thawing. Less than 20% apparent porosity is considered promising for slow-fired materials (O'Neill and Barnes, 1979, p. 14, Fig. 4).

#### 3. App. Sp. Gr. - Apparent Specific Gravity

As reported in earlier USBM studies, the apparent specific gravity is a measure of the specific gravity of that portion of the test specimen that is impervious to water. This is determined by boiling the sample in water for 2 hours and soaking it in water overnight or 24 hours (Klinefelter and Hamlin, 1957, p. 27 to 28). These data were replaced by bulk density and apparent porosity measurements after the USBM moved its laboratories from Norris, Tennessee to Tuscaloosa, Alabama in 1965.

-12-

#### 4. Bloating

Bloating is the term given to the process in which clay or shale fragments expand (commonly two or more times their original volume) during rapid firing. It results from the entrapment of gases which are released from the minerals during firing but which do not escape from the body of the host fragment due to the viscosity of the host at that temperature. Bloating is a desirable and essential property for the production of expanded lightweight aggregate where an artificial pumice or scoria is produced. Expanded lightweight aggregate has the advantages of light weight and high strength compared to conventional crushed stone aggregate. Bloating is not desirable, however, in making other structural clay products such as brick, tile and sewer pipe where the dimensional characteristics must be carefully controlled. In these cases bloating is extremely deleterious since it leads to variable and uncontrollable warping, expansion and general disruption of the fired clay body (Klinefelter and Hamlin, 1957, p. 39-41).

#### 5. Bloating Test (or Quick Firing Test)

The Bloating Test refers to the process of rapidly firing (or "burning") the raw sample in a pre-heated furnace or kiln to determine its bloating characteristics for possible use as a lightweight aggregate. Although specific details of the different laboratory methods vary, all use several fragments of the dried clay or shale placed in a refractory plaque (or "boat") which in turn is placed in the pre-heated furnace for 15 minutes (Klinefelter and Hamlin, 1957, p. 41; Liles and Heystek, 1977, p. 4).

-13-

#### 6. Bulk Density (or Bulk Dens.)

The bulk density is a measure of the overall density of the fired specimen based on its dry weight divided by its volume (including pores). Determinations are the same for slow firing and quick firing test samples, although for the latter the results are given in pounds per cubic inch as well as grams per cubic centimeter units (Klinefelter and Hamlin, 1957, p. 27 to 28 and 41; Liles and Heystek, 1977, p. 3 and 4). If quick-fired material yields a bulk density of less than 62.4 lb/ft<sup>3</sup> (or if the material floats in water), it is considered promising for lightweight aggregate (K. Liles, oral communication, 1984).

#### 7. Color

The color of the unfired material, unless otherwise stated, represents the crushed and ground clay or shale. In most cases this is given for descriptive purposes only since it is generally of no practical importance for ceramic applications (only the fired color is significant). Here only broad descriptive terms such as light-brown, cream, gray, tan, etc. are used. Fired colors are more critical and therefore more specific descriptive terms and phrases are used (Klinefelter and Hamlin, 1957, p. 18 and 19). In many cases the Munsell color is given for a precise description (see discussion below).

#### 8. Color (Munsell)

This is a system of color classification based on hue, value (or brightness) and chroma (or purity) as applied to the fired samples in this compilation. It was used by Smith (1931, p. 23-25) and by the

-14-

USBM since the early 1970's (Liles and Heystek, 1977, p. 3; Liles, oral communication, 1982). In all other cases the fired color was estimated visually.

#### 9. Compilation Map Location No.

This number or code was assigned by the author to provide a systematic designation to be used in plotting sample locations on the base maps as shown by the typical example below.

| Example:                             | Map Locn. No.                               | Wf. 31 | S- 36 a |
|--------------------------------------|---------------------------------------------|--------|---------|
| County Name - Abbrev<br>(Whitfield)  | viation                                     |        |         |
| Date (1931)                          |                                             |        |         |
| Author's last in<br>-for published o |                                             |        |         |
| Sample sequent<br># per location     | ce number (one<br>n)                        |        |         |
|                                      | used only for cases<br>n one test per locat |        |         |

The map location number Wf. 31S-36 is derived from the county name (e.g., Wf. for Whitfield County), the year the tests were performed (e.g., 31 for 1931) plus the last initial of the author for major published sources (e.g., S for Smith), followed by a sequence number assigned in chronological order or sequential order for published data. (The only exceptions to this are the tests reported in Smith, 1931, wherein the sequence number of the present report is the same as the "Map location No." of Smith.) Each map location number represents a

-15-

specific location, or area, sampled at a particular time. In cases where several separate samples were collected from a relatively restricted area, such as an individual property, such samples are designated a, b, c, etc. Different map location numbers have been assigned to samples which were collected from the same general locality, such as a pit or quarry, but which were collected by different investigators at different times.

#### 10. Cone

Standard pyrometric cones, or cones, are a pyrometric measure of firing temperature and time in the kiln. They are small, three-sided pyramids made of ceramic materials compounded in a series, so as to soften or deform in progression with increasing temperature and/or time of heating. Thus, they do not measure a specific temperature, but rather the combined effect of temperature, time, and other conditions of the firing treatment. The entire series of cones ranges from about 1112°F (600°C) to about 3632°F (2000°C) with an average interval of about 20°C between cones for a constant, slow rate of heating (Klinefelter and Hamlin, 1957, p. 29). For the past several decades the use of these cones has been limited to the Pyrometric Cone Equivalent (PCE) test (Liles and Heystek, 1977, p. 16). However, all of the ceramic firing tests reported by Veatch (1909) and Smith (1931) as well as some of the earliest USBM tests report firing conditions in terms of the standard cone numbers.

#### 11. Drying Shrinkage

The drying shrinkage is a measure of the relative amount of shrinkage (in percent) which the tempered and molded material undergoes

-16-

upon drying. Although there are a variety of ways by which this can be measured, in this report the shrinkage values represent the percent linear shrinkage based on the linear distance measured between two reference marks or lines imprinted on the plastic specimen before drying. Even though the methods have varied in detail, the drying is usually accomplished in two stages: first, by air drying at room temperature (usually for 24 hours) and second, by drying in an oven followed by cooling to room temperature in a desiccator (Klinefelter and Hamlin, 1957, p. 30-31; Liles and Heystek, 1977, p. 3). In most cases the heating was at 212°F (100°C) for 24 hours; however, studies by Smith (1931, p. 20 and 21) employed 167°F (75°C) for 5 hours followed by 230°F (110°C) for 3 hours.

#### 12. Dry Strength

The dry strength (or green strength) is a measure of the apparent strength of the clay or shale after it has been molded and dried. Unless otherwise indicated, it represents the tranverse, or crossbreaking, strength as opposed to either tensile strength or compressive strength. For the great majority of cases only the approximate dry strength is indicated as determined by visual inspection, using such terms as low, fair, good, or high (Klinefelter and Hamlin, 1957, p. 32-33; Liles and Heystek, 1977, p. 2). Smith (1931, p. 12-13) reports a quantitative measurement of this strength using the modulus of rupture (MOR) expressed in units of pounds per square inch (psi).

#### 13. Extrusion Test

More extensive tests are sometimes made on clays and shales which

-17-

show good plasticity and long firing range in the preliminary test. In the Extrusion Test several bars are formed using a de-airing extrusion machine (i.e., one which operates with a vacuum to remove all possible air pockets). These bars are fired and tested for shrinkage, strength (modulus of rupture) and water saturation coefficient (Liles and Heystek, 1977, p. 8).

#### 14. Firing Range

The term firing range indicates the temperature interval over which the material shows favorable firing characteristics. For slowfired materials such desirable qualities include: a) good strength or hardness; b) good color; c) low shrinkage; d) low absorption; and e) low porosity. For quick-fired materials these include: a) good pore structure; b) low absorption; and c) low bulk density. For slow-firing and quick-firing tests the firing range should be at least 100°F (55°C) to be considered promising (O'Neill and Barnes, 1979, p. 15-18).

#### 15. Hardness

The hardness, as measured on fired materials, indicates the resistance to abrasion or scratching. It is designated either in verbal, descriptive terms or in numerical terms using Mohs' hardness (Liles and Heystek, 1977, p. 3). It is used as an indication of the strength of the fired materials. Smith (1931), however, measured the fired strength with the modulus of rupture.

#### 16. Hardness (Mohs')

The hardness of fired specimens using the Mohs' scale of hardness

is currently used by the USBM as a numerical measure of the fired bodies' strength (Liles and Heystek, 1977, p. 3). The values correspond to the hardness of the following reference minerals:

| Mohs' Hardness No. | Reference Minerals |  |  |
|--------------------|--------------------|--|--|
| 1                  | Talc               |  |  |
| 2                  | Gypsum             |  |  |
| 3                  | Calcite            |  |  |
| 4                  | Fluorite           |  |  |
| 5                  | Apatite            |  |  |
| 6                  | Orthoclase         |  |  |
| 7                  | Quartz             |  |  |
| 8                  | Topaz              |  |  |
| 9                  | Corundum           |  |  |
| 10                 | Diamond            |  |  |

A Mohs' hardness greater than 3 is considered promising for slowfired materials.

#### 17. HC1 Effervescence

The effervescence in HCl is visually determined as none, slight or high based on the reaction of 10 ml of concentrated hydrochloric acid added to a slurry of 10 grams powdered clay or shale (minus 20 mesh) in 100 ml of water (Klinefelter and Hamlin, 1957, p. 17; Liles and Heystek, 1977, p. 4). This test gives a general indication of the amount of calcium carbonate present in the sample. An appreciable effervescence could be an indication of potential problems with lime pops and/or frothing of slow-fired ceramic products.

#### 18. Linear Shrinkage, (%)

The term linear shrinkage represents the relative shrinkage of the clay body after firing. In most cases it represents the percent total linear shrinkage from the plastic state and is based on measurements

-19-

between a pair of standard reference marks imprinted just after molding (Klinefelter and Hamlin, 1957, p. 30-32; Liles and Heystek, 1977, p. 3). (Also see the discussion under Drying Shrinkage.) Smith (1931, p. 22) gives the shrinkage relative to both the dry, or green, state (under the column headed Dry) as well as the plastic state (under the column headed Plastic). A total shrinkage of 10% or less is considered promising for slow-fired materials.

#### 19. Modulus of Rupture (MOR)

The modulus of rupture is a measure of the strength of materials (for crossbreaking or transverse strength in this compilation) based on the breakage force, the distance over which the force was applied and the width and thickness of the sample. The MOR is expressed in psi units (pounds per square inch) for the limited MOR data reported here (determined by Smith, 1931, p. 21 and 23).

20. Mohs'

See Hardness (Mohs').

#### 21. Molding Behavior

See Working Properties.

22. Munsell

See Color (Munsell).

#### 23. "MW" face brick

"MW" stands for moderate weather conditions. This is a grade of brick suitable for use under conditions where a moderate, non-uniform

-20-

degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37; ASTM Annual Book of Standards, 1974). (Also see "SW" face brick.)

#### 24. PCE - Pyrometric Cone Equivalent

The PCE test measures the relative refractoriness, or temperature resistance, of the clay or shale; it is indicated in terms of standard pyrometric cones. The value given is the number of the standard pyrometric cone which softens and sags (or falls) at the same temperature as a cone made from the clay or shale being studied. These tests are usually only made on refractory materials which show favorable potential in the preliminary slow firing tests (i.e., high absorption, low shrinkage, and light fired color). The results are usually given for the upper temperature range Cone 12 (1337°C; 2439°F) to Cone 42 (2015°C; 3659°F) where the temperature equivalents are based on a heating rate of 150°C (270°F) per hour. With increasing temperature resistance the sample is designated as either a low-duty, medium-duty, high-duty, or super-duty fire clay (Klinefelter and Hamlin, 1957, p. 29-30 and 57-58; Liles and Heystek, 1977, p. 16).

#### 25. рН

The pH is a measure of the relative acidity or alkalinity with values ranging from 0 to 14. (A pH of 7 is neutral. Values greater than this are alkaline whereas those which are less than 7 are acid.) Most of the ceramic tests by the USBM presented here show pH values as determined on the crushed and powdered raw material (in a water slurry) prior to firing (Klinefelter and Hamlin, 1957, p. 28; Liles and Heystek, 1977, p. 4).

-21-

Strongly acid or alkaline pH values may give some indication of potential problems with efflorescence and scum due to water-soluble salts in the clay. Unfortunately, no simple and direct interpretation is possible from the pH data alone. The best method for determining these salts is through direct chemical analysis as described under Soluble Salts. (Also see Solu-Br.)

#### 26. Plasticity

See Working Properties.

27. <u>Porosity, Apparent</u> See App. Por.

28. Quick Firing

See Bloating Test.

#### 29. Saturation Coefficient

The saturation coefficient is determined only for specimens which have undergone the more extensive Extrusion Test. It is determined by submerging the fired specimen in cool water for 24 hours, followed by submerging the specimen in boiling water for 5 hours. The saturation coefficient is found by dividing the percent of water absorbed after boiling into the percent of water absorbed after the 24-hour submergence (Liles and Heystek, 1977, p. 8).

#### 30. Shrinkage

See Drying Shrinkage and Linear Shrinkage.

#### 31. Slaking

See Working Properties.

#### 32. Slow Firing Test

Slow Firing Test refers to the process of firing ("burning") the dried specimen in a laboratory furnace or kiln. Although specific details of the different laboratory methods vary, all specimens are started at room temperature and are slowly heated to the desired temperature over a specific interval of time.

The majority of the slow firing tests by the USBM reported here were made using 15-minute draw trials. In this method a set of molded and dried test specimens are slowly fired in the kiln or furnace. The temperature is gradually raised to 1800°F (982°C) over a period of 3 to 4 hours (to avoid disintegration of the specimen as the chemically combined water is released) and the temperature is held constant for about 15 minutes. One specimen is removed from the kiln (a draw trial) and the temperature is raised to the next level (usually in intervals of 100°F). At each interval the temperature is again held constant for a 15-minute soak and then one specimen is withdrawn. This process is repeated until the final temperature is achieved (usually 2300 or 2400°F; 1260 or 1316°C) - see Klinefelter and Hamlin (1957, p. 19 and The disadvantage of this draw trial method is that it tends to 30). underfire the specimens, compared to the industrial process, since they are soaked for a relatively short time and quickly cooled by removal from the kiln.

Since the early 1970's the USBM has abandoned the draw trials and has adopted a method which more closely resembles the conditions of

-23-

commercial manufacture. As described by Liles and Heystek (1977, p. 2 and 3), one of the test specimens is slowly fired, over 24 hours, to 1832°F (1000°C), where it is held for a one-hour soak. The kiln is then turned off, but the specimen remains in the kiln as it slowly cools. (This gives a much closer approximation of most commercial firing processes.) This is subsequently repeated, one specimen at a time, for successive 50°C intervals usually up to 2282°F (1250°C). Unfortunately, only a relatively small part of the current data set is represented by USBM tests using this newer method.

The firing test methods used by Smith (1931, p. 21 and 22) are somewhat intermediate to the two methods described above. First, the specimens were slowly fired from 200 to 1200°F (93 to 649°C) over a period of 11 hours. The temperature was subsequently increased at a rate of 200°F per hour for approximately 4 hours followed by 100°F per hour until final temperature conditions were reached. At these later stages firing conditions were monitored using standard pyrometric cones The maximum firing temperature was determined from in the kiln. observed pyrometric cone behavior. This temperature was based on the temperature equivalent to 2 cones below the desired final cone. The kiln temperature was then held constant until the desired cone soaked Test specimens were then removed from the kiln and allowed to down. Smith's firings averaged about 17 hours in the kiln and all cool. specimens were fired to cones 06, 04, 02, 1, 3 and 5 wherever possible. No specific information is available on the methods employed by Veatch (1909) or the unpublished data from TVA or Georgia Tech.

#### 33. Solu-Br. (Solu-Bridge)

Solu-Bridge measurements were used in the 1950's and 60's by the

-24-

USBM as a measure of the soluble salts (e.g., calcium sulfate) in the unfired raw material which might cause scum and efflorescence on fired products. "The solubridge and pH readings show the higher alkali samples. Solubridge determinations give the water soluble part of the alkalis and readings above 1.5 indicate fairly high soluble salt content. Clays containing high alkalies have rather short maturing temperatures and requires closer firing control. The alkalies also influence the color and lower the vetrification temperature." (H.P. Hamlin, written communication, 1957). In this method the pulverized clay or shale is boiled in water, left to stand overnight, and filtered. The content of soluble salts in the solution is then measured using the Solu-Bridge instrument readings applied to suitable calibration tables (Klinefelter and Hamlin, 1957, p. 28-29). These data are no longer collected because consistent and meaningful results are difficult to achieve.

#### 34. Soluble Salts

Excessive water-soluble salts can cause problems with efflorescence or scum on fired clay products. (More than 3 to 4% calcium sulfate, and 1/2% magnesium or alkali sulfates are considered excessive.)

The most accurate determinative method is to boil the finely powdered sample in distilled water for 1/2 to 1 hour and let it soak overnight. The decanted solution is then analyzed for the soluble salts using standard chemical methods. The Solu-Bridge readings may also be used as a general measure of the soluble salts (Klinefelter and Hamlin, 1957, p. 28).

#### 35. Strength

See Dry Strength and Modulus of Rupture.

-25-

#### 36. "SW" face brick

"SW" stands for severe weather conditions. This is a grade of brick suitable for use under conditions where a high degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37, and the ASTM Annual Book of Standards, 1974). (Also see "MW" face brick.)

#### 37. Temp. °F (°C)

The temperature at which the material was fired (both slow and quick firing tests) is given in Fahrenheit (°F) followed by the Celsius (°C) conversion in parentheses. In cases where only pyrometric cone values are available, the approximate temperature is given on the form and is based on the table of temperature equivalents in Norton (1942, p. 756, Table 128) or in Veatch (1909, p. 57).

#### 38. Water of Plasticity (%)

This is a measure of the amount of water (as weight percent relative to the dry material) required to temper the pulverized raw clay or shale into a plastic, workable consistency. This is not a precise measurement, being dependent upon the experience of the technician, the type of equipment used and the plasticity criteria. In most cases it represents the amount of water necessary for the material to be extruded into briquettes from a laboratory hydraulic ram press. In general, high water of plasticity values tends to correlate with a greater degree of workability, higher plasticity and finer grain size. Unfortunately, high values also correlate with a greater degree of shrinkage, warping and cracking of the material upon drying. (See Klinefelter and Hamlin, 1957, p. 20-22; Liles and Heystek, 1977, p. 2.)

-26-

#### 39. Working Properties (or Workability)

This area of working properties includes comments on the slaking, plasticity, and molding, or extruding behavior of the tempered material (Klinefelter and Hamlin, 1957, p. 5, 19-22 and 33-34). The term slaking refers to the disintegration of the dry material when immersed in water. It may range in time from less than a minute to weeks, but generally in the present report it is given only a relative designation such as rapid, slow, or with difficulty. Plasticity likewise is designated in a comparative manner in order of decreasing plasticity: plastic, fat (or sticky), semiplastic, short (or lean), semiflint and flint. Molding behavior is referred to as good, fair, or poor and is a general designation for the ease with which the material can be molded into test bars or briquettes.

These working properties are very imprecise and strongly dependent upon the judgement and experience of the operator. They do, however, give a general indication of how the material might respond to handling in the industrial process.



### Ceramic Tests and Analyses of Clays and Shales

in Whitfield County, Georgia\*

<sup>\*</sup> The data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design.

#### CERAMIC TESTS AND ANALYSES

| Material                       | Shale (                                                                                                   | Conasauga).      |                        | Compilation Ma  | up Location No  | . <u>Wf.09V-1</u>   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|------------------------|-----------------|-----------------|---------------------|
| County                         | Whitfie                                                                                                   | 1d.              |                        | Sample Number   | -               | _                   |
| Raw Proper                     | Raw Properties: Lab & No. Ga. Survey.                                                                     |                  |                        |                 |                 |                     |
| Date Repor                     | ted                                                                                                       | 9.               | Ceramist               | O. Veatch, Ga.  | Survey.         |                     |
| Water of P                     | lasticity                                                                                                 |                  | _% Working Pro         | perties Poor    | plasticity.     |                     |
|                                | Color <u>Gray or</u> Drying Shrinkage <u>3.7</u> % Dry Strength <u>(tensile) 44 psi.</u><br>yellow-green. |                  |                        |                 |                 | 44 psi.             |
| Slow Firin                     | g Tests:                                                                                                  |                  |                        |                 |                 |                     |
| Approx.<br>Temp.<br>°F<br>(°C) | Color                                                                                                     | Hardness         | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other<br>data:      |
| 1958<br>(1070)<br>(Cone 04)    | Red                                                                                                       | Good<br>hardness | 0.9                    | -               | -               | -                   |
| 2066<br>(1130)<br>(Cone 01)    | Dark<br>red                                                                                               | Vitrified        | 5.2                    | -               | -               | -                   |
| 2138<br>(1170)<br>(Cone 2)     | Dark<br>red                                                                                               | -                | Slight<br>swelling     | -               |                 | -                   |
| 2210<br>(1210)<br>(Cone 4)     | -                                                                                                         | -                | ŭ                      | -               | -               | Viscous<br>(fused?) |

Remarks / Other Tests <u>Possibly useful</u> for making brick although the plasticity and tensil strength are low and it apparently fuses at a relatively low temperature (test data only given by Veatch, 1909, p. 402 without comments).

Preliminary Bloating (Quick Firing) Tests: Not determined.\*

\*Remarks Test results on this shale at Cone 2 and 4 above suggest that it may have potential for expanded lightweight aggregate manufacture.

locn. no. Wf.09V-1 , cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size \_\_\_\_ Retention Time \_\_\_\_

# Chemical & Mineralogical Data:

| Chemical Analysis Not determined.                                                        | Mineralogy           | volume %           |
|------------------------------------------------------------------------------------------|----------------------|--------------------|
| Oxide Weight %<br>SiO <sub>2</sub>                                                       | Mineral              | volume %           |
| TiO <sub>2</sub>                                                                         | Quartz               |                    |
| A1203                                                                                    | Feldspar             |                    |
| Fe203<br>Fe0                                                                             | Carbonate            | none.              |
| FeŐ                                                                                      | Mica                 |                    |
| MnO                                                                                      | Chlorite-            |                    |
| MgO                                                                                      | vermiculite          |                    |
| CaO                                                                                      | Montmorillonite      |                    |
| Na <sub>2</sub> 0                                                                        | Others               |                    |
| K <sub>2</sub> 0                                                                         | Carbonaceous         | none.              |
| $P_2 0_5$<br>S (total)                                                                   | matter               |                    |
|                                                                                          | Total                |                    |
| C (org)                                                                                  |                      |                    |
| <sup>CO</sup> 2                                                                          |                      |                    |
| H20 <sup>-</sup>                                                                         |                      |                    |
| $H_{20}^{+}$                                                                             |                      |                    |
| Ignition                                                                                 |                      |                    |
|                                                                                          |                      |                    |
| Total                                                                                    |                      |                    |
| Analyst                                                                                  | O. Veatch.           |                    |
|                                                                                          |                      |                    |
| Date                                                                                     | c. 1909.             |                    |
|                                                                                          |                      |                    |
| Method                                                                                   | HC1 and visual exa   | amination?         |
| Sample Location Data:                                                                    |                      |                    |
|                                                                                          |                      |                    |
| County Whitfield. Land Lot,                                                              | Sec, Dist.           | •                  |
|                                                                                          |                      |                    |
| 7 1/2' topo quad. Dalton S. (Cntr.) . L                                                  | at, Lor              | 1g                 |
| Field No, Collected by                                                                   | O. Veatch Da         | ate c. 1909        |
| , , , , , , , , , , , , , , , , , , , ,                                                  |                      |                    |
| Sample Method Grab (?). Weath                                                            | ering/alteration Unv | veathered.         |
|                                                                                          |                      |                    |
| Structural Attitude                                                                      |                      |                    |
|                                                                                          |                      |                    |
| Stratigraphic Assignment <u>Conasauga Group (</u>                                        | Cambrian).           |                    |
| Sample Departments Comments Comments                                                     | nuclethand success   | low-areas this     |
| Sample Description & Comments Sample of u                                                |                      |                    |
| bedded, hard, siliceous shale which weathe<br>shale) and finally into red and yellow cla |                      |                    |
| of the Conasauga River near Tilton (Veatch                                               | 1000 p (02)          | Aposules on Diulis |
| or the obhasadga kivel heat fifton (veatch                                               | , 1907, p. 4027.     |                    |
| Compiled by B. J. O'Connor Da                                                            | te 6-27-88           |                    |
|                                                                                          |                      |                    |

| Material                                                        | Clay, r                                             | esidual (Con | asauga).               | Compilation M   | ap Location     | No. <u>Wf.09V-2</u>                   |  |
|-----------------------------------------------------------------|-----------------------------------------------------|--------------|------------------------|-----------------|-----------------|---------------------------------------|--|
| County                                                          | Whitfie                                             | 1d.          |                        | Sample Number   |                 |                                       |  |
| Raw Prope                                                       | rties:                                              |              | Lab & No.              | Ga. Survey, #   | 115.            |                                       |  |
| Date Repo                                                       | Date Reported 1909. Ceramist O. Veatch, Ga. Survey. |              |                        |                 |                 |                                       |  |
| Water of Plasticity% Working Properties <u>Good plasticity.</u> |                                                     |              |                        |                 |                 |                                       |  |
| Color                                                           |                                                     | _ Drying Shr | inkage7.1              | % Dry Stre      | ngth (tensil    | e) 100 psi.                           |  |
| Slow Firin                                                      | ng Tests:                                           |              |                        |                 |                 |                                       |  |
| Approx.<br>Temp.<br>°F<br>(°C)                                  | Color                                               | Hardness     | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other<br>data:                        |  |
| 2210<br>(1210)<br>(Cone 4)                                      | Buff                                                | Vitrified    |                        | -               | ine i           | _                                     |  |
| 2606<br>(1430)<br>(Cone 15)                                     | -                                                   |              | -                      | -               | -               | Warped badly;<br>slightly<br>viscous. |  |
| 2714<br>(1490)<br>(Cone 18)                                     | 0 <b></b> 0                                         | -            | -                      | -               | -               | Partly melted.                        |  |

Remarks / Other Tests This clay is probably suitable for stoneware and terra cotta mixtures (Veatch, 1909, p. 403).

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. <u>Wf.09V-2</u>, cont.

.

| Crushing Characteristics (unfired material)                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Particle Size Retention Time                                                                                                                                                                                                                                                                                                |
| Chemical & Mineralogical Data:                                                                                                                                                                                                                                                                                              |
| Chemical AnalysisMineralogy:Not determined.OxideWeight %Mineralvolume %                                                                                                                                                                                                                                                     |
| SiO2       75.38         TiO2       0.91       Quartz         Al2O3       15.47       Feldspar                                                                                                                                                                                                                              |
| Fe <sub>2</sub> O <sub>3</sub> (total) 1.37 Carbonate<br>FeO - Mica                                                                                                                                                                                                                                                         |
| MnOtraceChlorite-MgO0.29vermiculiteCaO0.29Montmorillonite                                                                                                                                                                                                                                                                   |
| Na20         0.30         Others $K_20$ 1.73 $P_20_5$ 0.00                                                                                                                                                                                                                                                                  |
| S (total) trace Total<br>C (org)<br>CO <sub>2</sub> -                                                                                                                                                                                                                                                                       |
| H <sub>2</sub> 0 <sup>-</sup> 0.48<br>H <sub>2</sub> 0 <sup>+</sup> -<br>Ignition                                                                                                                                                                                                                                           |
| loss <u>4.20</u><br>Total <u>100.42</u>                                                                                                                                                                                                                                                                                     |
| Analyst E. Everhart, Ga. Survey (in Veatch, 1909, p. 403 and Appendix B, No. 115, p. 416-417).                                                                                                                                                                                                                              |
| Date c. 1909.                                                                                                                                                                                                                                                                                                               |
| Method Standard "wet"                                                                                                                                                                                                                                                                                                       |
| Sample Location Data:                                                                                                                                                                                                                                                                                                       |
| County Whitfield. Land Lot, Sec, Dist                                                                                                                                                                                                                                                                                       |
| 7 1/2' topo quad. Dalton S. (N.1/2) . Lat, Long                                                                                                                                                                                                                                                                             |
| Field No, Collected by <u>O. Veatch.</u> Date <u>c. 1909.</u>                                                                                                                                                                                                                                                               |
| Sample Method <u>Grab (?)</u> . Weathering/alteration <u>Residual clay from</u><br>shale.                                                                                                                                                                                                                                   |
| Structural Attitude                                                                                                                                                                                                                                                                                                         |
| Stratigraphic Assignment Recent (to Eocene?) clay from Conasauga Group (Cambrian).                                                                                                                                                                                                                                          |
| Sample Description & Comments Sample of plastic clay from the Sanders property 3<br>mi. SE. of Dalton. In this region the Conasauga shale weathers into red and yellow<br>residual clay, but exposures of weathered shale in gullies and small streams show a<br>bluish or bluish-gray colored clay (Veatch, 1909, p. 403). |
| Compiled byB. J. O'Connor Date6-27-88                                                                                                                                                                                                                                                                                       |

Ŷ

| MaterialShale, hard to soft                                                                   | Compilation Map Location No. <u>Wf.31S-36</u> |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------|
| County Whitfield.                                                                             | Sample Number                                 |
| Raw Properties: Lab & No.                                                                     | Ga. Tech., #36.                               |
| Date Reported 1931. Ceramist                                                                  | R. W. Smith. Ga. Survey.                      |
| Water of Plasticity <u>25.1</u> % Working Pros<br>slaking; fairly good molding; (column edges |                                               |
| Color Brown. Drying Shrinkage 3.5                                                             | % Dry Strength (MOR) 137.4 psi.               |
| Remarks Drying Behavior: Test bars all sl                                                     | ightly warped.                                |
| Slow Firing Tests:                                                                            |                                               |

| Approx.<br>Temp.<br>°F<br>(°C) | Color**<br>(Munsell)                 | Hardness<br>(MOR,<br>psi.) | Linear<br>Shrinkage, %<br>dry (plastic) | Absorption<br>% | Appr. Por<br>% | • Other<br>data:<br>Warpage           |
|--------------------------------|--------------------------------------|----------------------------|-----------------------------------------|-----------------|----------------|---------------------------------------|
| 1840<br>(1005)                 | Dark salmon<br>(1YR-5/6)             | 1378                       | 3.9 (7.2)                               | 19.8            | æ              | Very slight                           |
| 1920<br>(1050)                 | Light red<br>(10R-5/5)               | 1218                       | 4.4 (7.3)                               | 19.3            | -              | *Very slight                          |
| 2000<br>(1095)                 | Medium red<br>(10R-4/5)              | 1588                       | 3.7 (7.4)                               | 15.9            | -              | Slight                                |
| 2060<br>(1125)                 | Good red<br>(10R-4/4)                | 1802                       | 6.6 (9.8)                               | 13.5            | -              | Some                                  |
| 2090<br>(1145)                 | Good choc-<br>olate-red<br>(10R-4/3) | 1871                       | 6.4 (9.8)                               | 11.0            | -              | Some                                  |
| 2160<br>(1180)                 | Dark choc-<br>olate<br>(10R-3/3)     | 3153                       | 8.3 (11.6)                              | 3.0             | -              | Considerable,<br>vitreous<br>surface. |

\*Traces of a yellowish-white scum which is probably not detrimental.

Remarks / Other Tests Firing range - Cone 1 to 3 (commercial kiln = Cone 02 to 2). This shale is suitable for making building brick. The firing range is somewhat short, but the fired colors over that range are good (Smith, 1931, p. 177).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*\*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Particle Size 16 mesh. Retention Time Approx. 17 hours.

# Chemical & Mineralogical Data:

| Chemical Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is                                                                                                               | Mineralogy: Not determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weight %                                                                                                         | Mineral volume %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.08                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.09                                                                                                             | Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.40                                                                                                            | Feldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fe <sub>2</sub> 0 <sub>3</sub> (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.14                                                                                                             | Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FeŌ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                | Mica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                | Chlorite-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MgO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                             | vermiculite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.20                                                                                                             | Montmorillonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Na <sub>2</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace                                                                                                            | Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| к <sub>2</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.31                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $P_{2}^{-}0_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.19                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C (org.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| co <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H <sub>2</sub> 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * (* = analy                                                                                                     | ysis recalculated on an $H_20^-$ - free basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $H_2^-0^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - by Sr                                                                                                          | nith, 1931, p. 176.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ignition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.39                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.00*                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analyst E. Ever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hart. Ga. Survey.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D . 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date <u>c. 1930.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | energy of the second  |
| Method Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "wet".                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| County Whitfie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ld. Land Lots 205 and 2                                                                                          | 206. Sec. <u>3</u> , Dist. <u>11</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7 1/21 topo qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Cohutta $(SW 1/4)$ I                                                                                           | I ong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| / 1/2 topo qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d. <u>Cohutta (SW 1/4)</u> , La                                                                                  | , Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Field No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Collected by                                                                                                   | R. W. Smith. Date c. 1930.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sample Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grab samples. Weathe                                                                                             | ering/alteration Weathered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Structural Atti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tude Beds strike N.30°E. and                                                                                     | 1 dip 20 to 25 SE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 1 1 1 (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | ne and shale (Ordovician, Munyan, 1951)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Formation and/or Tellico Sa                                                                                    | andstone? Mapped as Holston Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| by Cressler (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /4).                                                                                                             | and the second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | the Duckett property (old D.W. Barry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 11 to Praters Mill road. Hard, greenish-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | to flat pieces not flakes) from cuts in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | Also samples of softer shale from a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A second s | n a field near the southern of                                                                                   | end of the property (Smith, 1931, p. 174-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 177).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second | in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Compiled by B. J. O'Connor

Date 6-27-88

| Materia                        | 1 <u>Soft sha</u>                                                                                                                              | le and clay                 |               | Compilation Ma | ap Location No  | wf.31S-37                 |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|----------------|-----------------|---------------------------|--|--|
| County                         | Whitfiel                                                                                                                                       | d.                          |               | Sample Number  |                 |                           |  |  |
| Raw Pro                        | perties:                                                                                                                                       |                             | Lab & No.     | Ga. Tech., #3  | 7.              |                           |  |  |
| Date Re                        | ported 1931                                                                                                                                    | •                           | Ceramist      | R. W. Smith, ( | Ga. Survey.     |                           |  |  |
| Water o                        | Water of Plasticity 27.6 % Working Properties Fairly good plasticity; a bit<br>"short" and mealy; fairly rapid slaking; good molding behavior. |                             |               |                |                 |                           |  |  |
| Color _                        | Light brown.                                                                                                                                   | Drying Shi                  | inkage 4      | .6 % Dry Stre  | ngth (MOR) 11   | 7.2 psi.                  |  |  |
| Remarks                        | Drying Beha                                                                                                                                    | vior: All                   | test bars som | ewhat warped.  |                 |                           |  |  |
| Slow Fi                        | ring Tests:                                                                                                                                    |                             |               |                |                 |                           |  |  |
| Approx.<br>Temp.<br>°F<br>(°C) | Color*<br>(Munsell)                                                                                                                            | Hardness<br>(MOR,<br>psi'.) |               |                | Appr. Por.<br>% | Other<br>data:<br>Warpage |  |  |
| 1840<br>(1005)                 | Light<br>salmon<br>(5YR-6/7)                                                                                                                   | 423                         | 1.6 (6.4)     | 23.1           | -               | Some                      |  |  |
| 1920<br>(1050)                 | Medium<br>salmon<br>(4YR-6/7)                                                                                                                  | 705                         | 3.0 (7.0)     | 19.9           | -               | Slight                    |  |  |
| 2000<br>(1095)                 | Salmon<br>(4YR-6/8)                                                                                                                            | 552                         | 2.7 (7.3)     | 20.2           | -               | Some                      |  |  |
| 2060<br>(1125)                 | Light red<br>(2YR-5/6)                                                                                                                         | 867                         | 4.3 (8.8)     | 18.1           | -               | Some                      |  |  |
| 2090<br>(1145)                 | Good red<br>(10R-5/5)                                                                                                                          | 1090                        | 4.7 (8.7)     | 16.1           | -               | Some                      |  |  |
| 2160<br>(1180)                 | Deep red<br>(1YR-5/5)                                                                                                                          | 1137                        | 5.8 (10.5)    | 15.8           | -               | Considerable              |  |  |

Remarks / Other Tests Firing Range = Cone 3-7 and higher (commerical kiln = Cone 2 to 7). This material may possibly be suitable for making building brick; however, the high porosity and low strength (MOR) may limit it to making common brick only (Smith, 1931, p. 181).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*Note: Munsell color notations "5YR" and "10R" correspond respectively to the original notations "YR" and "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh. Retention Time Approx. 17 hours.

| Chemical & Mine               | eralogical Data:            |                            |                                                                                                                  |
|-------------------------------|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|
| Chemical Analys               | sis                         | Mineralogy:                | Not determined.                                                                                                  |
| Oxide                         | Weight %                    | Mineral                    | volume %                                                                                                         |
| SiO <sub>2</sub>              | 61.26                       | THE U                      | vor dine 75                                                                                                      |
| TiO <sub>2</sub>              | 0.54                        | Quartz                     |                                                                                                                  |
| A1203                         | 22.50                       | Feldspar                   |                                                                                                                  |
| $Fe_20_3$ (total)             | 7.43                        | Carbonate                  |                                                                                                                  |
| FeO                           | -                           | Mica                       |                                                                                                                  |
| MnO                           | -                           | Chlorite-                  |                                                                                                                  |
| MgO                           | 0.63                        | vermiculit                 | 2                                                                                                                |
| CaO                           | trace                       | Montmorillon               |                                                                                                                  |
| Na <sub>2</sub> 0             | 0.15                        | Others                     |                                                                                                                  |
|                               | 1.23                        | others                     |                                                                                                                  |
| K <sub>2</sub> 0              | 0.19                        |                            |                                                                                                                  |
| P <sub>2</sub> 0 <sub>5</sub> |                             | Tetal                      |                                                                                                                  |
| SO3                           | trace                       | Total                      |                                                                                                                  |
| C (org)                       | -                           |                            |                                                                                                                  |
| co <sub>2</sub>               | -                           |                            |                                                                                                                  |
| H20-                          | * (*                        |                            | ated on an $H_2O^-$ -free basis                                                                                  |
| H <sub>2</sub> 0 <sup>+</sup> | -                           | by Smith, 1931, p          | . 180.)                                                                                                          |
| Ignition                      |                             |                            |                                                                                                                  |
| loss                          | 6.15                        |                            |                                                                                                                  |
| Total                         | 100.08*                     |                            |                                                                                                                  |
| Analyst E. Eve                | erhart, Ga. Survey.         |                            |                                                                                                                  |
| Date <u>c. 1930</u> .         | •                           |                            | _                                                                                                                |
|                               |                             |                            |                                                                                                                  |
| Method Standar                | rd "wet".                   |                            |                                                                                                                  |
| Sample Location               | n Data:                     |                            |                                                                                                                  |
| County Whitfie                | eld. Land Lot               | 279 , Sec. <u>3</u>        | _, Dist. <u>12</u>                                                                                               |
| 7 1/2' topó qua               | ad. Dalton S. (N. edg       | e) Lat                     | , Long                                                                                                           |
| Field No                      | , Colle                     | cted by <u>R. W.Smith.</u> | Date <u>c. 1930.</u>                                                                                             |
| Sample Method _               | Grab samples.               | Weathering/alterat:        | ion Weathered.                                                                                                   |
| Structural Atti               | itude                       |                            |                                                                                                                  |
| Stratigraphic A               | Assignment <u>Conasauga</u> | Group (Cambrian).          | and the second |
|                               |                             |                            | irab, flaky shale (some                                                                                          |
|                               | y) alternating with la      |                            |                                                                                                                  |
|                               |                             |                            | ed road and field outcrops                                                                                       |
|                               |                             |                            | Bend Rd. just E. of the                                                                                          |
| Antioch Church                | Rd. junction, 1 mi. E       | . of the Southern and      | I L & N RR. (Note that this                                                                                      |
|                               | her SE. than shown on       |                            |                                                                                                                  |
| Compiled by B.                | I O'Connor                  | Date 6-27-88               |                                                                                                                  |
| comprised by Da               |                             | -37-                       |                                                                                                                  |

| Materia                                                                                                                                                                   | And the second s | oft to semi<br>ga Group.)  | -hard         | Compilation Ma  | p Location No   | . <u>Wf.31S-38</u>        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|-----------------|-----------------|---------------------------|--|
| County                                                                                                                                                                    | Whitfiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d.                         |               | Sample Number   |                 |                           |  |
| Raw Pro                                                                                                                                                                   | perties:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Lab & No.     | Ga. Tech., #38  |                 |                           |  |
| Date Re                                                                                                                                                                   | ported1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                          | Ceramist      | R. W. Smith, G  | a. Survey.      |                           |  |
|                                                                                                                                                                           | Water of Plasticity 23.2 % Working Properties Poor plasticity ("short" and grainy; slow slaking; poor molding behavior (clay column tends to tear on edges).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |               |                 |                 |                           |  |
| Color Brown. Drying Shrinkage 3.2 % Dry Strength (MOR) 135.3 psi.                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |                 |                 |                           |  |
| Remarks                                                                                                                                                                   | Drying Beh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | avior: Tes                 | t bars all sh | ow some warpage | •               |                           |  |
| Slow Fi                                                                                                                                                                   | ring Tests:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |               |                 |                 |                           |  |
| Approx.<br>Temp.<br>°F<br>(°C)                                                                                                                                            | Color*<br>(Munsell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hardness<br>(MOR,<br>psi.) | Shrinkage, %  |                 | Appr. Por.<br>% | Other<br>data:<br>Warpage |  |
| 1840<br>(1005)                                                                                                                                                            | Light<br>salmon<br>(3YR-6/6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 670                        | 2.9 (6.3)     | 18.5            | -               | Some                      |  |
| 1920<br>(1050)                                                                                                                                                            | Medium<br>salmon<br>(1YR-6/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 966                        | 3.1 (6.1)     | 16.5            | -               | Some                      |  |
| 2000<br>(1095)                                                                                                                                                            | Salmon<br>(2YR-6/6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                       | 3.3 (6.5)     | 16.0            | -               | Slight                    |  |
| 2060<br>(1125)                                                                                                                                                            | Light red<br>(1YR-5/5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1462                       | 5.9 (8.8)     | 12.9            | æ               | Slight                    |  |
| 2090<br>(1145)                                                                                                                                                            | Good red<br>(10R-5/5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1507                       | 6.3 (9.0)     | 11.6            | -               | Considerable              |  |
| 2160<br>(1180)                                                                                                                                                            | Deep red<br>(10R-5/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1861                       | 6.3 (9.2)     | 11.0            | -               | Considerable              |  |
| Remarks / Other Tests Firing Range = Cone 1 to 6 and higher (commercial kiln = Cone<br>01 to 6). This shale is suitable for making building bricks (Smith, 1931, p. 179). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |                 |                 |                           |  |
| Prelimi                                                                                                                                                                   | nary Bloatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g (Quick Fi                | ring) Tests:  | Not determine   | d.              |                           |  |

\*Note: Munsell color notation "10R" correponds to the original notation "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

| Chemical Analy                         |                   | Mineralogy: Not determined.                                 |
|----------------------------------------|-------------------|-------------------------------------------------------------|
| Oxide                                  | Weight %          | Mineral volume %                                            |
| SiO <sub>2</sub>                       | 59.26             | 0 site                                                      |
| TiO <sub>2</sub>                       | 1.11              | Quartz                                                      |
| A1203                                  | 21.29             | Feldspar                                                    |
| Fe <sub>2</sub> 0 <sub>3</sub> (total) | 7.28              | Carbonate                                                   |
| FeO                                    | -                 | Mica                                                        |
| MnO                                    | -                 | Chlorite-                                                   |
| MgO                                    | 0.06              | vermiculite                                                 |
| CaO                                    | 0.00              | Montmorillonite                                             |
| Na <sub>2</sub> 0                      | 1.23              | Others                                                      |
| K20                                    | 0.70              |                                                             |
| P205                                   | 0.47              |                                                             |
| S03                                    | 1.22              | Total                                                       |
| C (org)                                | -                 |                                                             |
| co <sub>2</sub>                        | -                 |                                                             |
| H <sub>2</sub> 0-                      | *                 | (* = analysis recalculated on an $H_20^-$ -free basis       |
| $H_20^+$                               |                   | by Smith, 1931, p. 178.)                                    |
| Ignition                               |                   |                                                             |
| loss                                   | 7.37              |                                                             |
| Total                                  | 99.99*            |                                                             |
| Analyst E. Evo                         | erhart, Ga.       | Survey.                                                     |
| Date c. 1930.                          |                   |                                                             |
| Method Standa                          | rd "wet".         |                                                             |
| Sample Location                        |                   |                                                             |
|                                        |                   | and tak som of 0/0 (and 0) Disk 10                          |
| county whitile                         |                   | Land Lot cor. of 242, Sec. <u>3</u> , Dist. <u>12</u> .     |
|                                        |                   | <u>252 and 253,</u>                                         |
| 7 1/2' topo qua                        | ad. Dalton        | N. (SE 1/4) . Lat, Long                                     |
| Field No.                              |                   | , Collected by R. W. Smith. Date c. 1930.                   |
| Sample Method                          | Grab sample       | Weathering/alteration Weathered.                            |
| Structural Att                         | itude <u>Beds</u> | strike "nearly due north", dip 75 to 80° east.              |
| Stratigraphic                          | Assignment        | Conasauga Group (Cambrian) by Cressler (1974, Pl.2).        |
|                                        |                   | a lack of similarity with typical Conasauga or Rome         |
| Formation of th                        |                   | s a fack of similarity with typical conasadga of Rome       |
| Formation of th                        | ins region,       |                                                             |
| Sample Descript                        | tion & Comme      | ents Samples from road cut (about 100 ft. long) on the      |
| West and Thomas                        | s properties      | s (N. and S., respectively) 2 1/2 mi. E. of Dalton at the   |
| fork of the Til                        | bs Bridge         | coad and the Piney Grove road, about 2 mi. NE. of the       |
|                                        |                   | le cut exposes soft to semi-hard, brownish to greenish      |
| drab-colored st                        | ale ranging       | g from waxy to "short", sandy and blocky to slabby fractur- |
| ing. Shale is                          | interlaver        | ed with some very thin sandstone or chert beds and several  |
|                                        |                   | clay (Smith, 1931, p. 177 to 179).                          |
| Chief Stab OL 1                        | Saowie Standy     |                                                             |
|                                        |                   |                                                             |

Compiled by B. J. O'Connor Date 6-27-88

| Material   | Shale, semi  | -hard (Con | asauga).         | Compilati  | ion Map Locat | ion No. <u>Wf.315-39</u>                 |
|------------|--------------|------------|------------------|------------|---------------|------------------------------------------|
| County     | Whitfield.   |            | -                | Sample Nu  | umber         |                                          |
| Raw Proper | ties:        |            | Lab & No.        | Ga. Tech   | ., #39.       |                                          |
| Date Repor | ted 1931.    |            | Ceramist         | R. W. Sm:  | ith, Ga. Surv | ey.                                      |
| Water of P | lasticity    | 25.5 %     | Working Pro      | operties _ |               | ity; fairly rapid<br>ding behavior good. |
| Color Yell | owish-brown  | Drying Sh  | rinkage <u>6</u> | .5 % Dry   |               | R) 400.5 psi.                            |
| Remarks D  | rying behavi | or: good.  |                  |            |               |                                          |
| Slow Firin | g Tests:     |            |                  |            |               |                                          |
| Approx.    | Color* Ha    | rdness     | Linear           | Absorpt    | tion Appr.    | Por. Other                               |

| Temp.<br>°F<br>(°C) | (Munsell)               | (MOR,<br>psi.) | Shrinkage, %<br>dry (plastic) | %    | %  | data:<br>Warpage |
|---------------------|-------------------------|----------------|-------------------------------|------|----|------------------|
| 1840<br>(1005)      | Light red<br>(2YR-5/6)  | 1398           | 3.0 (9.9)                     | 14.5 | -  | Slight           |
| 1920<br>(1050)      | Fair red<br>(10R-4/5)   | 1757           | 4.0 (10.0)                    | 11.7 | -  | Slight           |
| 2000<br>(1095)      | Medium red<br>(10R-4/4) | 2208           | 4.7 (10.6)                    | 8.8  | -  | Slight           |
| 2060<br>(1125)      | Good red<br>(10R-4/3)   | 2281           | 6.1 (12.2)                    | 9.0  | -  | Slight           |
| 2090<br>(1145)      | Good red<br>(10R-3/5)   | 2527           | 5.7 (11.6)                    | 6.6  | -  | Considerable     |
| 2160<br>(1180)      | Deep red<br>(8R-3/3)    | 3112           | 7.3 (13.4)                    | 5.0  | ₹. | Some             |

Remarks / Other Tests Firing Range = Cone 03 to 5 (commercial kiln = Cone 04 to 4). Sample is of several unfired brick from the Dalton Brick and Tile Company plant (made from the nearby shale pit) which makes common and face brick fired to about 1950°F (1066°C) (Smith, 1931, p. 183).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh \_\_ Retention Time \_ Approx. 17 hours.

Chemical & Mineralogical Data:

| Chemical Anal     | lysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mineralogy: Not determined.                              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Oxide             | Weight %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mineral volume %                                         |
| SiO2              | 69.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
| TiO               | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quartz                                                   |
| A1203             | 14.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Feldspar                                                 |
| $Fe_20_3$ (total) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbonate                                                |
| Fe0               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mica                                                     |
| MnO               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorite-                                                |
| MgO               | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vermiculite                                              |
| -                 | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Montmorillonite                                          |
| Ca0               | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Na <sub>2</sub> 0 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Others                                                   |
| K <sub>2</sub> 0  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| P205              | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| S (total)         | trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total                                                    |
| C (org)           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
| C02               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
| H <sub>2</sub> 0- | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (* = analysis recalculated on an $H_20^-$ -free basis    |
| H <sub>2</sub> 0+ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | by Smith, 1931, p. 182.)                                 |
| Ignition          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| 1085              | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Total             | 99.97*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| Analyst E. H      | Everhart, Ga. Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rvey.                                                    |
|                   | and the second sec |                                                          |
| Date c. 1930      | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| Method Stand      | lard "wet"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |
| Hechod Drand      | ard wet i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |
| Sample Locati     | on Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| Sample Locali     | UII Data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |
| County White      | tiold Ian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l Lot, Sec, Dist                                         |
| county white      | Lan Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Lot, Sec, Dist                                         |
| 7 1/21 +000 0     | und Dolton C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
| / 1/2 copo q      | luad. Daiton 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (NW 1/4). Lat, Long                                      |
| n: 11 N.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gallastal bar D. M. Gaith Data a 1020                    |
| Field No.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , Collected by <u>R W. Smith</u> . Date <u>c. 1930</u> . |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| Sample Method     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Weathering/alteration Variably weathered.             |
|                   | unfired brick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
| Structural At     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.10°E., dip "nearly vertical". Somewhat contorted and   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arious dips in places.                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nasauga Group (Cambrian) though quite different in ap-   |
| pearance from     | n the shales at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the West and Thomas properties (Smith, 1931, p. 177).    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
| Sample Descri     | ption & Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s Sample of several green and dried brick from shale     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | colored shale weathering into thin, flat pieces and      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ow shale ridge 1/8 mi. due E. of the Dalton Brick and    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on the E. side of the L & N RR, 3 mi. S. of Dalton       |
|                   | p. 181 to 183)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |
|                   | P. 101 10 100/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |
| Compiled by       | B. J. O'Connor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date 6-27-88                                             |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |

 Material
 Shale and clay (Conasauga).
 Compilation Map Location No. Wf.31S-40

 County
 Whitfield.
 Sample Number

 Raw Properties:
 Lab & No.
 Ga. Tech., #40.

 Date Reported
 1931.
 Ceramist
 R. W. Smith, Ga. Survey.

 Water of Plasticity
 29.2
 % Working Properties Fair plasticity (trifle "short" and mealy); a little slow slaking; fair molding (clay column edges tend to tear).

 Color
 Brown.
 Drying Shrinkage
 7.0
 % Dry Strength (MOR) 180.6 psi.

 Remarks
 Drying behavior:
 all test bars slightly warped.

Slow Firing Tests:

| Approx.<br>Temp.<br>°F<br>(°C) | Color*<br>(Munsell)            | Hardness<br>(MOR,<br>psi.) | Linear<br>Shrinkage, %<br>dry (plastic) | Absorption<br>% | Appr. Por.<br>% | Other<br>data:<br>Warpage |
|--------------------------------|--------------------------------|----------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|
| 1840<br>(1005)                 | Salmon<br>(3YR-5/6)            | 931                        | 4.5 (11.1)                              | 16.4            | -               | Slight                    |
| 1920<br>(1050)                 | Deep salmon<br>(10R-5/5)       | 1030                       | 5.0 (11.7)                              | 14.6            | -               | Slight                    |
| 2000<br>(1095)                 | Light red<br>(10R-5/4)         | 1493                       | 7.2 (13.6)                              | 10.7            | -               | Considerable              |
| 2060<br>(1125)                 | Medium red<br>(10R-5/4)        | 1531                       | 7.6 (13.9)                              | 10.1            | -               | Slight                    |
| 2090<br>(1145)                 | Good red<br>(10R-4/4)          | 1520                       | 7.4 (13.9)                              | 8.9             | -               | Considerable              |
| 2160<br>(1180)                 | Chocolate-<br>red<br>(10R-3/5) | 1927                       | 8.5 (15.0)                              | 7.0             | -               | Some                      |

Remarks / Other Tests Firing Range = Cone 02 to 6 (commercial kiln = Cone 03 to 5). This sample is suitable for making building brick (and possibly structural tile, sewer pipe and roofing tile). The shrinkage is a little high, but this could probably be reduced by blending with less weathered material (Smith, 1931, p. 186).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

| Chemical Analys   | sis                          | Mineralogy              | : Not determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxide             | Weight %                     | Mineral                 | volume %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 56.86                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TiO <sub>2</sub>  | 1.11                         | Quartz                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A1203             | 24.10                        | Feldspar                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Fe_20_3$ (total) | 7.20                         | Carbonate               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FeO               |                              | Mica                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MnO               | -                            | Chlorite-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MgO               | 0.06                         | vermicul                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CaO               | 0.00                         | Montmoril1              | onite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Na <sub>2</sub> 0 | 1.22                         | Others                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| K <sub>2</sub> 0  | 0.70                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P205              | 0.47                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| so3               | 1.21                         | Total                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C (org)           | -                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| co <sub>2</sub>   | -                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H <sub>2</sub> 0  | * (*                         | = analysis recalc       | ulated on an H <sub>2</sub> 0 <sup>-</sup> -free basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H <sub>2</sub> 0+ | -                            | by Smith, 1931,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ignition          |                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| loss              | 7.38                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total             | 100.31*                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyst E. Eve    | erhart, Ga. Survey.          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date c. 1930.     |                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Method Standar    | d "wet".                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample Location   | Data:                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| County Whitfiel   | d. Land Lot 9                | , Sec. <u>3</u>         | , Dist. <u>13</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 1/2' topo qua   | d. Dalton S. (NW 1/4)        | Lat                     | , Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Field No.         | , Collec                     | ted by <u>R. W. Smi</u> | th. Date <u>c. 1930.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample Method     | Grab samples.                | Weathering/alter        | ation Variably weathered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Structural Atti   | tude <u>Strike</u> "a little | east of north",         | dip nearly vertical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stratigraphic A   | ssignment <u>Conasauga</u> G | roup (Cambrian) s       | hale and Recent (?) clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Descript   | ion & Comments Sample        | s of soft to semi       | -hard, brownish-drab and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                              |                         | y, but some layers are sandy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                              |                         | layers of sandy brown clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                              |                         | hick. Taken from cuts on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |                              |                         | oad across a low ridge paral-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                              |                         | and 1/2 mile S. of the Dalton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                              |                         | d adjacent Camp property) as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | ith (1931, p. 183 to 1       |                         | Jucone samp proporej/ ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 10700 pt 200 00 1            |                         | and the second sec |

Compiled by B. J. O'Connor Date 6-28-88

| Material Shale and clay                               |                                                                                                      |             | Compilation M | lap Locatio     | n No. <u>Wf.31S-41</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| County                                                | Whitfield                                                                                            | •           |               | Sample Number   | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |
| Raw Proper                                            | rties:                                                                                               |             | Lab & No      | Ga. Tech., #4   | 41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| Date Reported 1931. Ceramist R. W. Smith, Ga. Survey. |                                                                                                      |             |               | •,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Water of 1                                            | Water of Plasticity 33.9 % Working Properties Good plasticity; rapid slaking; good molding behavior. |             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Color Lig                                             | ght brown.                                                                                           | Drying Shri | nkage7.       | 5 % Dry Stre    | and the second sec | the second se |
| Remarks 1                                             | Remarks Drying behavior: test bars all somewhat warped.                                              |             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| Slow Firin                                            | Slow Firing Tests:                                                                                   |             |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
| 11                                                    | Color*<br>(Munsell)                                                                                  | (MOR,       |               | Absorption<br>% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r. Other<br>data:<br>Warpage                                                                                    |

1840 Salmon 1051 5.1 (12.5) 17.0 Some -(3YR - 6/8)(1005)5.2 (12.6) 16.2 1920 Deep salmon 1011 Some (1050)(2YR - 5/6)7.6 (14.8) Considerable 2000 Light red 1377 10.5 (1095)(10R-4/5)Medium red 9.7 (16.6) Considerable 2060 1490 9.2 (1125)(1YR - 4/5)2090 Good red 8.7 (15.4) 9.3 Considerable 1460 (10R-4/4)(1145)2160 9.3 (15.9) 8.1 Chocolate-1647 Some (1180)red (10R-4/3)

Remarks / Other Tests Firing Range = Cone 02 to 6 (commercial kiln = Cone 03 to 5). Material is suitable for making building brick and possibly structural tile. The drying and firing shrinkages are a little high, but this would probably be improved by blending with a harder, less plastic shale (Smith, 1931, p. 188).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh Retention Time Approx. 17 hours.

# Chemical & Mineralogical Data:

| Chemical Analys                         | is                            | Mineralogy: ]                               | Not determined.                                    |
|-----------------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------------|
| Oxide                                   | Weight %                      | Mineral                                     | volume %                                           |
| SiO <sub>2</sub>                        | 57.52                         |                                             |                                                    |
| TiO <sub>2</sub>                        | 1.13                          | Quartz                                      |                                                    |
| A1203                                   | 20.99                         | Feldspar                                    |                                                    |
| Fe <sub>2</sub> 0 <sub>3</sub> (total)  | 8.79                          | Carbonate                                   |                                                    |
| FeO                                     | -                             | Mica                                        |                                                    |
| MnO                                     | 0.00                          | Chlorite-                                   |                                                    |
| MgO                                     | 0.15                          | vermiculite                                 |                                                    |
| CaO                                     | 0.00                          | Montmorilloni                               |                                                    |
| Na <sub>2</sub> 0                       | 1.51                          | Others                                      |                                                    |
|                                         | 0.96                          | ochers                                      |                                                    |
| K <sub>2</sub> 0                        |                               |                                             |                                                    |
| $P_20_5$ (1.1.1.1.)                     | 0.38                          | m - + - 1                                   |                                                    |
| SO <sub>3</sub> (total)                 | trace                         | Total                                       | and the second second second second                |
| C (org)                                 | -                             |                                             |                                                    |
| CO <sub>2</sub>                         | -                             |                                             |                                                    |
| H <sub>2</sub> 0-                       | * (* =                        |                                             | ed on an H <sub>2</sub> O <sup>-</sup> -free basis |
| H <sub>2</sub> 0 <sup>+</sup>           | -                             | by Smith, 1931, p.                          | 187.)                                              |
| Ignition                                |                               |                                             |                                                    |
| loss                                    | 8.47                          |                                             |                                                    |
| Total                                   | 99.90*                        |                                             |                                                    |
| Analyst <u>E. Ever</u><br>Date c. 1930. | hart, Ga. Survey.             |                                             |                                                    |
| Date C. 1950.                           |                               |                                             |                                                    |
| Method Standar                          | d "wet".                      | 8                                           |                                                    |
| Sample Location                         | Data:                         |                                             |                                                    |
| County                                  | eld. Land Lot 28              | , Sec. <u>3</u>                             | Dist. <u>13</u> .                                  |
| 7 1/2' topo qua                         | d. <u>Dalton S. (NW. 1/4)</u> | Lat                                         | _, Long                                            |
| Field No                                | , Collect                     | ed by <u>R. W. Smith</u>                    | Date                                               |
| Sample Method _                         | Grab samples.                 | Weathering/alteratio                        | n <u>Residual and colluvial</u><br>clay.           |
| Structural Atti                         | tude                          |                                             |                                                    |
| Stratigraphic A                         | ssignment <u>Recent(?)</u> co | lluvial and residual<br>ian Conasauga Group |                                                    |
| Sample Descript                         | ion & Comments Stifly p       |                                             |                                                    |
|                                         | y with a little very so       |                                             |                                                    |
|                                         |                               |                                             | ent. Deposit exposed in RR                         |
|                                         | and several hundred ft        |                                             |                                                    |
|                                         | junction of the L & N a       |                                             |                                                    |
| (Smith, 1931, p                         |                               | ing souchern KK TINES                       | H mr. S. Or Darlon                                 |
| (Smith, 1951, p                         | . 100 LO 100/.                | 1                                           |                                                    |
|                                         |                               |                                             |                                                    |

Compiled by B. J. O'Connor Date 6-27-88

| Materia                                               | l Shale, so                    | oft (Conasa    | uga).                         | Compilation Ma                  | ap Location No | . <u>Wf.31S-42</u> |
|-------------------------------------------------------|--------------------------------|----------------|-------------------------------|---------------------------------|----------------|--------------------|
| County                                                | Whitfield                      | 1.             |                               | Sample Number                   |                | -                  |
| Raw Pro                                               | perties:                       |                | Lab & No.                     | Ga. Tech., #42                  | 2.             |                    |
| Date Reported 1931. Ceramist R. W. Smith, Ga. Survey. |                                |                |                               |                                 |                |                    |
| Water of                                              | f Plasticity                   | 29.3           | % Working Pro                 | operties Fairly                 | y good plastic | ity (slightly      |
| Color _                                               | Brown.                         | Drying Shr     | inkage 5.4                    | irly rapid sla<br>4 % Dry Stren | ngth (MOR) 11  | 5.8 psi.           |
| Remarks                                               | Drying Beha                    | avior: test    | t bars all son                | newhat warped.                  |                |                    |
| Slow Fin                                              | ring Tests:                    |                |                               |                                 |                |                    |
| Approx.                                               | Color*                         |                |                               | Absorption                      |                | Other              |
| Temp.<br>°F<br>(°C)                                   | (Munsell)                      | (MOR,<br>psi.) | Shrinkage, %<br>dry (plastic) |                                 | %              | data:<br>Warpage   |
| 1840<br>(1005)                                        | Light<br>salmon<br>(3YR-6/7)   | 823            | 3.6 (8.2)                     | 19.1                            |                | Some               |
| 1920<br>(1050)                                        | Medium<br>salmon<br>(2YR-6/6)  | 787            | 4.3 (9.2)                     | 16.8                            | -              | Slight             |
| 2000<br>(1095)                                        | Salmon<br>(1YR-5/6)            | 1144           | 6.1 (11.3)                    | 13.9                            | -              | Some               |
| 2060<br>(1125)                                        | Medium red<br>(10R-5/5)        | 1324           | 7.0 (12.0)                    | 12.5                            | -              | Some               |
| 2090<br>(1145)                                        | Good red<br>(10R-4/5)          | 1533           | 7.4 (12.3)                    | 10.0                            | -              | Some               |
| 2160<br>(1180)                                        | Chocolate-<br>red<br>(10R-4/4) | 1563           | 8.0 (13.2)                    | 9.5                             | -              | Considerable       |
| D                                                     | / 011                          |                | D                             | 01 / / /                        |                | 0                  |

Remarks / Other Tests Firing Range = Cone 01 to 6 (commercial kiln = Cone 02 to 5). Shale is suitable for making building brick and possibly structrural tile. The shrinkage is somewhat high, but this could probably be lowered by blending with some harder and less weathered shale (Smith, 1931, p. 189).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh Retention Time Approx. 17 hours.

# Chemical & Mineralogical Data:

| Chemical Analy                 | sis                           | Mineralogy: Not determined.                                       |
|--------------------------------|-------------------------------|-------------------------------------------------------------------|
| Oxide                          | Weight %                      | Mineral volume %                                                  |
| Si02                           | 55.62                         |                                                                   |
| TiO <sub>2</sub>               | 0.93                          | Quartz                                                            |
| A1203                          | 25.44                         | Feldspar                                                          |
| $Fe_20_3$ (total)              | 7.44                          | Carbonate                                                         |
| FeŐ                            | -                             | Mica                                                              |
| MnO                            | -                             | Chlorite-                                                         |
| MgO                            | 0.10                          | vermiculite                                                       |
| CaO                            | 0.00                          | Montmorillonite                                                   |
| Na <sub>2</sub> 0              | 1.00                          | Others                                                            |
| κ <sub>2</sub> ō               | 1.03                          |                                                                   |
| P205                           | 0.12                          |                                                                   |
| S (total)                      | 0.00                          | Total                                                             |
| C (org)                        | -                             |                                                                   |
| CO <sub>2</sub>                | _                             |                                                                   |
| H <sub>2</sub> 0-              | * (* = anal                   | ysis recalculated on an H <sub>2</sub> 0 <sup>-</sup> -free basis |
| H <sub>2</sub> <sup>2</sup> 0+ |                               | Smith, 1931, p. 188.)                                             |
| Ignition                       |                               |                                                                   |
| loss                           | 8.32                          |                                                                   |
| Total                          | 100.00*                       |                                                                   |
|                                |                               |                                                                   |
| Analyst E. Ev                  | erhart, Ga. Survey.           |                                                                   |
| Date <u>c. 1930</u> .          |                               |                                                                   |
| Date                           |                               |                                                                   |
| Method <u>Standa</u>           | rd "wet".                     |                                                                   |
| Sample Locatio                 | n Data:                       |                                                                   |
|                                |                               |                                                                   |
| County Whitfi                  | eld. Land Lot <u>80</u> ,     | Sec. <u>3</u> , Dist. <u>13</u> .                                 |
| 7 1/2' topo qu                 | ad. Dalton S. (W. side) . I   | at, Long                                                          |
| Field No.                      | . Collected by                | R. W. Smith. Date c. 1930.                                        |
|                                |                               |                                                                   |
| Sample Method .                | Grab samples. Weath           | ering/alteration                                                  |
| Structural Att                 | itudeBeds strike N. 6°E.,     | dip 75°E.                                                         |
| Stratigraphic                  | Assignment Conasauga Group    | (Cambrian).                                                       |
|                                |                               |                                                                   |
|                                |                               | b colored shale ranging from soft and                             |
|                                |                               | black streaks. Shale is interbedded                               |
|                                |                               | tic bluish-gray clay and a few layers of                          |
|                                |                               | ck). Samples from a road cut about 300                            |
|                                |                               | on the Martin property just SE. of the                            |
| Southern RR cr                 | ossing about 1 mi. S. of Phel | ps station (Smith, 1931, p. 188 to 189).                          |
| Compiled by B                  | . J. O'Connor Da              | ate 10-21-81                                                      |

 Material
 Shale and clay, weathered.
 Compilation Map Location No. Wf.31S-43

 County
 Whitfield.
 Sample Number

 Raw Properties:
 Lab & No.
 Ga. Tech., #43.

 Date Reported
 1931.
 Ceramist
 R. W. Smith, Ga. Survey.

 Water of Plasticity
 32.1 % Working Properties
 Rather poor plasticity ("short" and mealy); a little slow slaking; fair molding (column edges tend to tear slightly).

 Color
 Light brown.
 Drying Shrinkage
 5.2 % Dry Strength (MOR) 135.2 psi.

 Remarks
 Drying behavior: slight warpage.
 Slow Firing Tests:

| Approx.<br>Temp.<br>°F<br>(°C) | Color*<br>(Munsell)           | Hardness<br>(MOR,<br>psi.) | Linear<br>Shrinkage, %<br>dry (plastic) | Absorption<br>% | Appr. Por.<br>% | Other<br>data:<br>Warpage |
|--------------------------------|-------------------------------|----------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|
| 1840<br>(1005)                 | Light<br>salmon<br>(3YR-6/7)  | 541                        | 3.4 (8.2)                               | 22.2            | -               | Slight                    |
| 1920<br>(1050)                 | Medium<br>salmon<br>(3YR-5/6) | 488                        | 3.7 (8.3)                               | 19.8            | -               | Slight                    |
| 2000<br>(1094)                 | Salmon<br>(2YR-5/6)           | 739                        | 4.7 (9.5)                               | 17.8            | -               | Considerable              |
| 2060<br>(1125)                 | Light red<br>(1YR-5/5)        | 893                        | 6.2 (10.7)                              | 15.8            | -               | Slight                    |
| 2090<br>(1145)                 | Good red<br>(10R-4/5)         | 1505                       | 7.0 (12.0)                              | 12.9            | Æ               | Some                      |
| 2160<br>(1180)                 | Deep red<br>(10R-4/4)         | 1636                       | 8.0 (14.0)                              | 12.4            |                 | Some                      |

Remarks / Other Tests Firing Range = Cone 1 to 5 and higher (commercial kiln = Cone Ol to 5). This material is suitable for making building brick; however the absorption is rather high and the fired strength (MOR) is low for the best quality face brick. It would best be used in a mixture with a more plastic shale or clay such as that from the Martin property at Wf.31S-42 (Smith, 1931, p. 193).

Preliminary Bloating (Quick Firing) Tests: Not determined.

\*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Particle Size \_\_16 mesh \_\_ Retention Time \_ Approx. 17 hours.

Chemical & Mineralogical Data:

| Chemical Analysis                           | Mineralogy: Not determined.                                       |
|---------------------------------------------|-------------------------------------------------------------------|
| Oxide Weight %                              | Mineral volume %                                                  |
| sio <sub>2</sub> 57.16                      |                                                                   |
| TiO <sub>2</sub> 0.73                       | Quartz                                                            |
| A1 <sub>2</sub> 0 <sub>3</sub> 23.94        | Feldspar                                                          |
| $Fe_{2}0_{3}$ (total) 8.11                  | Carbonate                                                         |
| Fe0 -                                       | Mica                                                              |
| MnO –                                       | Chlorite-                                                         |
| MgO 0.03                                    | vermiculite                                                       |
| CaO 0.08                                    | Montmorillonite                                                   |
| Na <sub>2</sub> 0 0.74                      | Others                                                            |
| к <sub>2</sub> б 1.56                       |                                                                   |
| P <sub>2</sub> 0 <sub>5</sub> 0.10          |                                                                   |
| sõ <sub>3</sub> 0.04                        | Total                                                             |
| C (org) -                                   |                                                                   |
| CO <sub>2</sub> -                           |                                                                   |
|                                             | ysis recalculated on an H <sub>2</sub> 0 <sup>-</sup> -free basis |
|                                             |                                                                   |
|                                             | mith, 1931, p. 192.)                                              |
| Ignition                                    |                                                                   |
| $\frac{10}{20}$                             |                                                                   |
| Total 99.99*                                |                                                                   |
| Analyst E. Everhart, Ga. Survey.            |                                                                   |
| Date <u>c. 1930.</u>                        |                                                                   |
|                                             | 1                                                                 |
| Method Standard "wet".                      |                                                                   |
| Sample Location Data:                       |                                                                   |
| County Whitfield. Land Lot 187,             | Sec. <u>3</u> , Dist. <u>13</u> .                                 |
| 7 1/2' topo quad. Dalton S. (SW cor.) . L   | at, Long                                                          |
| Field No, Collected by                      | R. W. Smith. Date c. 1930.                                        |
| Sample Method <u>Grab samples</u> . Weath   | ering/alterationWeathered                                         |
| Structural AttitudeBeds strike N.15°E. (a   | pprox. parallel to RR), dip 60-70°E.                              |
| Stratigraphic Assignment Mississippian Floy |                                                                   |
| Hayes unpub. ms.), but mapped as Cambrian C | onasauga Group by Cressler (1974, P1.2).                          |
|                                             |                                                                   |
| Sample Description & Comments Soft, brown,  |                                                                   |
| shale (grading into clay in places) from bo |                                                                   |
| to 25 ft. deep and about 1000 ft. long just |                                                                   |
| of the RR is owned by Masters and Stone, re |                                                                   |
| about 1 3/4 mi. N. of the Gordon County lin | e (Smith, 1931, p. 190 to 193).                                   |
|                                             |                                                                   |
| **Smith states that these cuts are "so diff |                                                                   |
| even the residual clays from the Conasauga  | formation" (1931, p. 190).                                        |

Compiled by B. J. O'Connor Date 6-27-88

| Materia                        | 1 Shale.                                                                                                                                                                |               |                        | Compilation Ma      | p Location No   | D. <u>Wf.43-1</u> |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|---------------------|-----------------|-------------------|
| County                         | Whitfie                                                                                                                                                                 | 1d.           |                        | Sample Number       | -               |                   |
| Raw Prop                       | perties:                                                                                                                                                                |               | Lab & No.              | Hansard, #WK1       |                 |                   |
| Date Re                        | ported 8-12                                                                                                                                                             | -43.          | Ceramist               | W. C. Hansard.      |                 |                   |
|                                | ater of Plasticity % Working Properties <u>Good plasticity (waxy); no</u><br><u>appreciable coarse grit.</u><br>Color <u>Drab gray.</u> Drying Shrinkage % Dry Strength |               |                        |                     |                 |                   |
| Remarks                        | Excellent                                                                                                                                                               | tiles form    | ed in steel d          | ies of hand pre     | ess. No dryín   | ng warpage.       |
| Slow Fi:                       | ring Tests:                                                                                                                                                             |               |                        |                     |                 |                   |
| Approx.<br>Temp.<br>°F<br>(°C) | Color                                                                                                                                                                   | Hardness      | Linear<br>Shrinkage, % | Absorption<br>%     | Appr. Por.<br>% | Other<br>data:    |
| 1900                           | Dark                                                                                                                                                                    | Very          | 21                     | Very low            | -               |                   |
| (1038)<br>(Cone<br>05)         | chocolate<br>brown                                                                                                                                                      | hard*         |                        | or zero             |                 | £.                |
| 2000<br>(1093)                 | Dark<br>chocolate                                                                                                                                                       | Very<br>hard* | 24                     | Very low<br>or zero | -               | -                 |

\*Cannot be cut with a knife.

brown

(Cone

02)

Remarks / Other Tests Fired tiles show a smooth, hard texture and very little warpage. High iron content, low maturing temperature and high shrinkage limit its use unless blended with a low shrinkage, low iron clay.

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. Wf.43-1 , cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size \_\_\_\_ Retention Time 8 hours.

Chemical & Mineralogical Data:: Not determined.

| Chemical Analys    | ie                                                            | Mineralogy                        |                     |
|--------------------|---------------------------------------------------------------|-----------------------------------|---------------------|
| Oxide              | Weight %                                                      | Mineral                           | volume %            |
| SiO <sub>2</sub>   |                                                               |                                   |                     |
| TiO <sub>2</sub>   |                                                               | Quartz                            |                     |
| A1203              |                                                               | Feldspar                          |                     |
| Fe203              |                                                               | Carbonate                         |                     |
| FeO                |                                                               | Mica                              |                     |
| MnO                |                                                               | Chlorite-                         |                     |
| MgO                |                                                               | vermiculite                       |                     |
| CaO                |                                                               | Montmorillonite                   |                     |
| Na <sub>2</sub> O  |                                                               | Others                            |                     |
| κ <sub>2</sub> ΰ   |                                                               |                                   |                     |
| P205               |                                                               |                                   |                     |
| S (total)          |                                                               | Total                             |                     |
| C (org)            |                                                               |                                   |                     |
| CO2                |                                                               |                                   |                     |
| H20-               |                                                               |                                   |                     |
| $H_2^20^+$         |                                                               |                                   |                     |
| Ignition           |                                                               |                                   |                     |
| 1088               |                                                               |                                   |                     |
| Total              |                                                               |                                   |                     |
|                    |                                                               |                                   |                     |
| Analyst            |                                                               |                                   |                     |
| Data               |                                                               |                                   |                     |
| Date               |                                                               | and a second second second second |                     |
| Method             |                                                               |                                   |                     |
|                    |                                                               |                                   | ()                  |
| Sample Location    | Data:                                                         |                                   |                     |
| County Whitfie     | ld. Land Lot                                                  | . Sec. Dis                        | t.                  |
|                    |                                                               | ,, ,                              |                     |
| 7 1/2' topo qua    | d                                                             | Lat, I                            | ong'                |
| Field No           | , Collected                                                   | by L. H. Kinard.                  | Date c. May 1942.   |
|                    |                                                               |                                   |                     |
| Sample Method      | Grab(?). Wea                                                  | thering/alteration                | -                   |
| Structural Atti    | tude                                                          |                                   |                     |
| Stratigraphic A    | ssignment                                                     |                                   | 3                   |
| Comple Description | ing & Operation Official and                                  | - free wines 1                    | is mindials or      |
| (mailed from Ch    | ion & Comments <u>Clay sampl</u><br>atsworth 5-30-40). No fur | ther data available               | in whittield county |
| Amarica TIOM ON    | acoworch 5-50-40/. No ful                                     | ther uses available.              |                     |
| Compiled by B      | . J. O'Connor                                                 | Date 6-27-88                      |                     |

| Materia                                 | 1 <u>Clay.</u>     |               |                         | Compilation Ma         | p Location No   | . <u>Wf.44-1</u> |
|-----------------------------------------|--------------------|---------------|-------------------------|------------------------|-----------------|------------------|
| County                                  | Whitfield          | d             |                         | Sample Number          | _               |                  |
| Raw Pro                                 | perties:           |               | Lab & No.               | USBM, Norris,          | Tn.; #M-201.    |                  |
| Date Re                                 | ported <u>11-2</u> | 2-44.         | Ceramist                | H. Wilson, USE         | SM.             |                  |
| Water o                                 | f Plasticity       | -             | _% Working Pr           | operties <u>Good p</u> | lastic workat   | oility.          |
| Color _                                 | Light.             | Drying Shr    | inkage                  | % Dry Stree            | ngth            | <u>1</u>         |
| Slow Fi                                 | ring Tests:        |               |                         |                        |                 |                  |
| Approx.<br>Temp.<br>°F<br>(°C)          | Color              | Hardness      | Linear<br>Shrinkage, %  | Absorption<br>%        | Appr. Por.<br>% | Other<br>data:   |
| 2280<br>(1249)<br>(Cone<br>9)           | Light<br>buff*     | Steel<br>hard | 6                       | _                      | porous          | -                |
| 2867<br>(1575)<br>(Cone<br>20 to<br>23) | -                  | -             | melted to<br>brown slag | -                      | -               | P.C.E.           |

\* numerous dark iron specks formed on surface between Cones 6 & 9.

Remarks / Other Tests Too much iron for a white kaolin, too refractory for stoneware or terra cotta, but P.C.E. not high enough for good refractory clay. Properties may be improved by washing or it may be used in blends with other clays. Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. <u>Wf.44-1</u>, cont.

| Crushing Characteristics (unfired material)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Particle Size Most are less Retention Time<br>than 100 mesh.                                               | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chemical & Mineralogical Data: Not determi                                                                 | ined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chemical Analysis<br>Oxide Weight %                                                                        | Mineralogy<br>Mineral volume %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Si0 <sub>2</sub>                                                                                           | Millerat Volume %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TiO <sub>2</sub>                                                                                           | Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A1203                                                                                                      | Feldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fe203                                                                                                      | Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FeO                                                                                                        | Mica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MnO<br>MgO                                                                                                 | Chlorite-<br>vermiculite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CaO                                                                                                        | Montmorillonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Na <sub>2</sub> 0                                                                                          | Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| к <sub>2</sub> б                                                                                           | Kaolinite Considerable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P <sub>2</sub> 0 <sub>5</sub>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| S (total)                                                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C (org)<br>CO <sub>2</sub>                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H <sub>2</sub> 0 <sup>-</sup>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H <sub>2</sub> 0+                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ignition                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| loss                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analyst                                                                                                    | H. Wilson, USBM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date                                                                                                       | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Method                                                                                                     | Inferred from firing<br>characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Location Data:                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| County Whitfield. Land Lot,                                                                                | Sec, Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7 1/2' topo quadCohutta (?) I                                                                              | , Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Field No, Collected by                                                                                     | C. P. Worthy. Date 1944.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Method <u>Grab (?).</u> Weath                                                                       | ering/alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Structural Attitude                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stratigraphic Assignment                                                                                   | an and a second s |
| Sample Description & Comments <u>Clay sample</u><br>Exact location unspecified, but probably is<br>county. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Compiled by B. J. O'Connor Da                                                                              | te <u>1-25-82</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Materi              | al Shale (Co                                 | onasauga)           |               | Compilation Ma                                     | p Location N    | 0. <u>Wf.46-1</u>                                                                                               |
|---------------------|----------------------------------------------|---------------------|---------------|----------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| County              | Whitfield                                    | 1.                  |               | Sample Number                                      | 4.              |                                                                                                                 |
|                     | operties:<br>eported <u>10-8</u> .           | -46.                |               | N.C. State Col<br>Asheville, N.C<br>M. K. Banks, T | C.; TVA #100.   | the second se |
| Water               | of Plasticity                                |                     | _% Working Pr | operties                                           |                 |                                                                                                                 |
|                     | Light gray-<br>green to tan.<br>iring Tests: |                     |               | % Dry Stree                                        | ngth            |                                                                                                                 |
| Temp.<br>°F<br>(°C) | Color<br>(Munsell)                           | Hardness<br>(Mohs') |               | Absorption<br>%                                    | Appr. Por.<br>% | Other<br>data:                                                                                                  |
|                     |                                              |                     |               |                                                    |                 |                                                                                                                 |

| Prelimin            | ary Bloating (  | Quick Firing) Test                                   | s: Negative.   |                                                                                                                |
|---------------------|-----------------|------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|
| Temp.<br>°F<br>(°C) | Absorption<br>% | Bulk Density<br>g/cm <sup>3</sup> lb/ft <sup>3</sup> | Pore Structure |                                                                                                                |
| 2350<br>(1288)      | -               |                                                      | n              | No Marine and Annual Annua |
| 2400<br>(1316)      | -               |                                                      | -              |                                                                                                                |
| 2450<br>(1343)      | -               |                                                      | -              |                                                                                                                |

Remarks Not usable, by itself, for expanded light weight aggregate manufacture.

locn. no. Wf.46-1 , cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size \_-8 mesh. Retention Time 30 min. (in muffle furnace).

# Chemical & Mineralogical Data: Not determined.

| Chemical Analysis                                                                        | Mineralogy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Oxide Weight %                                                                           | Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | volume %                           |
| sio <sub>2</sub>                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| TiO <sub>2</sub>                                                                         | Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| A1203                                                                                    | Feldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| Fe <sub>2</sub> 0 <sub>3</sub>                                                           | Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| FeO                                                                                      | Mica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| MnO                                                                                      | Chlorite-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| MgO                                                                                      | vermiculite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| CaO                                                                                      | Montmorillonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Na <sub>2</sub> 0                                                                        | Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| к <sub>2</sub> 0                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| P205                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| S (total)                                                                                | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
| C (org)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| CO <sub>2</sub>                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| H <sub>2</sub> ō-                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| H <sub>2</sub> 0 <sup>+</sup>                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Ignition                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| loss                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Total                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Analyst                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Date                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Method                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Sample Location Data:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| County Whitfield. Land Lot,                                                              | Sec. , Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| 7 1/2' topo quad. Dalton N. (cntr.) . L                                                  | at Lor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng.                                |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Field No. 4. , Collected by                                                              | S. D. Broadhurst (TV/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A), Date 1946?                     |
| , , , , , , , , , , , , , , , , , , , ,                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Sample Method Grab (?). Weath                                                            | ering/alteration -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
| bampie neenoa orab (.).                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second state of the second |
| Structural Attitude -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| Stratigraphic Assignment Conasauga Group (                                               | Cambrian)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| Stratigraphic Assignment Conasadga Group (                                               | Cambrian).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Sample Description & Comments Interim repo                                               | at on tosts from N C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Possarah Lab wia U                 |
| Sample Description & comments interim repo                                               | ht on lests from N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Research Lab Via h.                |
| S. Rankin (TVA, 10-22-46). Sample is a lig<br>eastern outcrop belt of Conasauga Group. T | his comple is relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shale typical of the               |
| eastern outcrop beit of conasauga Group.                                                 | Timesterne is felative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ery fresh, pure                    |
| shale, weathering rapidly into small flakes                                              | . Limescone occurs al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E Daltap 1 1/2 $=$                 |
| E. but none was noted near the area sampled                                              | which is o mi. NE. Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Daiton, 1 1/2 ml.                |
| E. of Ga. Hwy. 71.                                                                       | a series and the series of the |                                    |
| Compiled by P. J. Oleanan De                                                             | 6-29-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| Compiled by B. J. O'Connor Da                                                            | te 6-28-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |

| Material Shale (Conasauga).        |           |                              | Compilation Mag       | p Location No                                                  | Wf.46-2             |                                                    |
|------------------------------------|-----------|------------------------------|-----------------------|----------------------------------------------------------------|---------------------|----------------------------------------------------|
| County                             | Whitfield | •                            | -                     | Sample Number                                                  | 5.                  | _                                                  |
| Raw Proper<br>Date Repor           | ted 10-8  |                              | Ceramist _            | M.C. State Col<br>Asheville, N.C<br>M. K. Banks, T<br>operties | .; TVA #101.<br>VA. | THE OWNER WATCHING TO AN ADDRESS OF TAXABLE PARTY. |
| Color Gray<br>to b<br>Slow Firin   | rown.     | Drying Shrin<br>Not determin |                       | % Dry Stren                                                    | gth                 |                                                    |
| Temp.<br><sup>°</sup> F (1<br>(°C) | A 1       |                              | Linear<br>hrinkage, % |                                                                | Appr. Por.<br>%     | Other<br>data:                                     |

| Prelimina      | ary Bloating (  | Quick Firing) Tests:                 | Negative.                                                                                                      |
|----------------|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Temp.<br>°F    | Absorption<br>% | Bulk Density                         | Pore Structure                                                                                                 |
| (°c)           | 70              | g/cm <sup>3</sup> lb/ft <sup>3</sup> |                                                                                                                |
| 2350<br>(1288) | -               | -                                    | ine in the second s |
| 2400<br>(1316) | -               | -                                    | Vitrified only (too refractory).                                                                               |
| 2450<br>(1343) | -               |                                      |                                                                                                                |

Remarks Not usable, by itself, for expanded light weight aggregate manufacture.

Crushing Characteristics (unfired material) -

Particle Size \_\_\_\_\_\_ Retention Time \_\_\_\_\_\_ 30 min. (in muffle furnace).

## Chemical & Mineralogical Data:

| Chemical                    | Analysis  | 3                                                      | Mineralogy: Not determined.                        |
|-----------------------------|-----------|--------------------------------------------------------|----------------------------------------------------|
| Oxide                       | #1 ₩      | leight % #2                                            | Mineral volume %                                   |
| Si02                        | 61.80     | 57.64                                                  |                                                    |
| TiO2                        |           | trace                                                  | Quartz                                             |
| 2 3                         | 20.20     | 9.22                                                   | Feldspar                                           |
|                             | 6.60      | 4.38                                                   | Carbonate                                          |
| FeO                         | 0.00      | 0.00                                                   | Mica                                               |
| MnO                         | -         |                                                        | Chlorite-                                          |
| MgO                         | 1.78      | 0.91                                                   | vermiculite                                        |
| Ca0                         | 2.64      | 14.24                                                  | Montmorillonite                                    |
| Na <sub>2</sub> 0           | -         | -                                                      | Others                                             |
| K20                         | 0.33      | 0.85                                                   |                                                    |
| P205                        |           | -                                                      |                                                    |
| S03                         | trace     | trace                                                  | Total                                              |
| C (or                       | rg) -     | -                                                      |                                                    |
| co <sub>2</sub>             | -         | -                                                      |                                                    |
| H <sub>2</sub> 0            | 0.45      | 0.70                                                   |                                                    |
| $H_2^-0^+$                  | -         | : <del></del> :                                        |                                                    |
| Ignition                    |           |                                                        |                                                    |
| loss                        | 6.00      | 12.02                                                  |                                                    |
| Total                       | 99.80     | 99.96                                                  |                                                    |
| Analyst ]<br>Date <u>11</u> |           | ner, Ga. Survey. (<br>#1: 1ab #8473;<br>#2: 1ab #8474: |                                                    |
| Method                      | Standard  | "wet".                                                 |                                                    |
| Sample Lo                   | ocation D | Data:                                                  |                                                    |
| County _                    | Whitfield | Land Lot                                               | , Sec, Dist                                        |
| 7 1/2' to                   | opo quad. | Dalton S. (NW. 1/                                      | (4) Lat, Long                                      |
| Field No.                   | 5         | , Coll                                                 | ected by S. D. Broadhurst (TVA) 1946?              |
| Sample Me                   | ethod Gr  | ab (?).                                                | Weathering/alteration                              |
| Structura                   | al Attitu | ude                                                    |                                                    |
| Stratigra                   | aphic Ass | ignment <u>Conasauga</u>                               | a Group (Cambrian).                                |
| Sample Da                   | escriptio | on & Comments Int                                      | erim report on tests from N.C. Research Lab via    |
|                             |           |                                                        | ble of fresh, blocky but soft, gray-green to brown |
|                             |           |                                                        | Tile Company pit, 3 mi. S. of Dalton, E. of South- |
|                             |           |                                                        | 48, map location no. 112; also see Wf.31S-39).     |
| orn nu ()                   | acco and  |                                                        | is, map robusion not its, allo bee mitte 574       |
| Compiled                    | by B.     | J. O'Connor                                            | Date 2-26-82                                       |

| Material Shale (Conasauga).         | Compilation Map Location No. <u>Wf.46-3</u>                   |
|-------------------------------------|---------------------------------------------------------------|
| CountyWhitfield.                    | Sample Number6                                                |
|                                     | N.C. State College Research Lab<br>Asheville, N.C.; TVA #102. |
| Date Reported 10-8-46. Ceramist     | M. K. Banks, TVA.                                             |
| Water of Plasticity% Working        | Properties                                                    |
| Color Brown to Drying Shrinkage     | - % Dry Strength                                              |
| Slow Firing Tests: Not determined.0 |                                                               |
|                                     | Absorption Appr. Por. Other<br>,%% % data:                    |

•

| Temp.<br>°F<br>(°C) | Absorption<br>% | Bulk Density<br>g/cm <sup>3</sup> lb/ft <sup>3</sup> | Pore Structure                     |     |
|---------------------|-----------------|------------------------------------------------------|------------------------------------|-----|
| 2350<br>(1288)      | en 175          | -                                                    |                                    |     |
| 2400<br>(1316)      | -               | -                                                    | Vitrified only (too refractory).   |     |
| 2450<br>(1343)      | -               | -                                                    | -                                  |     |
| lemarks             | Not usable, by  | y itself, for expande                                | d light weight aggregate manufactu | re. |

locn. no. Wf.46-3 , cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size <u>-8 mesh.</u> Retention Time <u>30 min. (in muffle furance).</u>

# Chemical & Mineralogical Data: Not determined.

| Chemical Analysis                           | Mineralogy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Oxide Weight %                              | Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | volume %            |
| sio <sub>2</sub>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| TiO <sub>2</sub>                            | Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| A1203                                       | Feldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| Fe <sub>2</sub> 0 <sub>3</sub>              | Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| FeŌ                                         | Mica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| MnO                                         | Chlorite-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| MgO                                         | vermiculite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| CaO                                         | Montmorillonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Na <sub>2</sub> 0                           | Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| к <sub>2</sub> б                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| P205                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| S (total)                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| C (org)                                     | IOCUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| CO <sub>2</sub>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| H <sub>2</sub> 0 <sup>-</sup>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| H <sub>2</sub> 0 <sup>+</sup>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Ignition                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| loss                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Total                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Analyst                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Date                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Method                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Sample Location Data:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| County Whitfield. Land Lot,                 | Sec. , Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                 |
|                                             | All and a second |                     |
| 7 1/2' topo quad. Dalton S. (SW. 1/4) . La  | at, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng                  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Field No, Collected by                      | S. D. Broadhurst (TV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A) Date 1946?       |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Sample Method Grab (?). Weathe              | ering/alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Structural Attitude                         | the standard of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Stratigraphic Assignment Conasauga Group (  | Cambrian).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Sample Description & Comments Interim rep   | ort on tests from N.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . Research Lab via  |
| H. S. Rankin (TVA, 10-22-46). Sample of gr  | ay-green to brown sha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | le from road cut on |
| U.S. Hwy. 41 about 7 mi. S. of Dalton. Sand |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                             | rge tonnages of easil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| occur in the area. (This is in the same out |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| the second the second the second of         | tersp sole do bumpie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 112110 207        |
| Compiled by B. J. O'Connor Dat              | te 2-26-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |

| Material                     | Shale, sandy.                               |              |                        | Compilation Map Location No. Wf.57-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
|------------------------------|---------------------------------------------|--------------|------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| County -                     | Whitfield                                   | 1.           | _                      | Sample Number                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| Raw Propert                  | ties:                                       |              | Lab & No               | USBM, Norris,                        | ſn.; ∦843.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |
| Date Report                  | ted 9-9-5                                   | 57.          | _ Ceramist _           | H. P. Hamlin;                        | JSBM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
| Water of P                   | lasticity                                   | 272          | Working Pro            | operties Slight<br>working           | and the supervised on the supervised of the supe | short                                         |
| Color Brow                   | wn-red.                                     | Drying Shrin | ikage 3                | % Dry Streng                         | Statement in succession of the |                                               |
| Slow Firing                  | g Tests:                                    | Drying defec | ts: None.              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| Temp.<br>°F<br>(°C)          | Color                                       | Hardness     | Linear<br>Shrinkage, % | Absorption<br>%                      | Appr. Por.<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other<br>data:                                |
| 1800-2100<br>(982-<br>1149)  | Dark red-<br>buff to<br>dark red-<br>brown. |              | -                      | -                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                             |
| 2200-2300<br>(1204-<br>1269) | brown to<br>brown-bla                       | _<br>ack     | -                      | -                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Expansion<br>begins at<br>2200°F<br>(1204°C). |

Remarks / Other Tests This shale might be suitable for making common brick and tile, but extrusion tests would be necessary to confirm this.

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. Wf.57-1 , cont. Crushing Characteristics (unfired material) -Particle Size - Retention Time -Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy Oxide Weight % Mineral volume % Si02 TiO<sub>2</sub> Ouartz A1203 Feldspar Carbonate Fe203 FeŌ Mica MnO Chlorite-MgO vermiculite CaO Montmorillonite Others Na<sub>2</sub>0 K20 P205 (total) S Total С (org) C02 H<sub>2</sub>0- $H_{2}^{-}0^{+}$ Ignition 1088 Total Analyst Date Method Sample Location Data: County Whitfield. Land Lot \_\_\_\_\_, Sec. \_\_\_\_, Dist. \_\_\_\_. 7 1/2' topo quad. Tunnel Hill (?). . Lat. \_\_\_\_\_, Long. \_\_\_\_. Field No. \_\_\_\_, Collected by C. I. Wood. Date 1957. Sample Method Grab (?). Weathering/alteration -Structural Attitude -Stratigraphic Assignment -Sample Description & Comments Sample of brown-red shale submitted by Mr. Carl I. Wood, Rocky Face, Whitfield Co., Ga. (Exact location unspecified, but probably is from Wood's property in Whitfield Co.). Compiled by B. J. O'Connor Date 1-25-82

| Material .      | Shale (Ro  | me).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Compilation Map Location No. <u>Wf.64-1</u>                     |
|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| County          | Whitfield  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Number <u>No. 27</u>                                     |
| Raw Proper      | ties:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab & No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USBM, Norris, Tenn.; No. 1553-Y                                 |
| Date Repor      |            | -64<br>ed 1967)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second se | M.V. Denny, USBM (Revised by M.E.<br>Tyrrell, Tuscaloosa, Ala.) |
| Water of P      | lasticity  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Working Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | operties Long working, smooth, plastic,                         |
| Color <u>Bu</u> | ff         | The party of the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division is not the local division in which the local division in whi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) pH=6.50 (Not effervescent with HC1)<br>% Dry Strength Good.   |
| Remarks Dr      | ving Chara | cteristi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .cs: Fair - slig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | htly rough surface. (No defects.)                               |

#### Slow Firing Tests:

4

| Temp.<br>°F<br>(°C) | Color                             | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens,<br>gm/cc |
|---------------------|-----------------------------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Red-tan                           | Soft<br>(2)         | 4.5(4.0)               | 25.0            | 40.8            | 1.63                               |
| 1900<br>(1038)      | Red-tan                           | Fair hard<br>(3)    | 5.0                    | 20.9            | 35.9            | 1.72                               |
| 2000<br>(1093)      | Light<br>red-brown<br>(Red-brown) | Hard<br>(4)         | 9.0                    | 16.9            | 30.9            | 1.83                               |
| 2100<br>(1149)      | Red-brown                         | Hard<br>(4)         | 9.0                    | 13.3            | 25.7            | 1.93                               |
| 2200<br>(1204)      | Chocolate                         | Very hard<br>(5)    | 9.0                    | 10.3            | 20.5            | 1.99                               |
| 2300<br>(1260)      | Black-<br>brown<br>(Dark brown    | Steel hard<br>(6)   | 10.0                   | 5.4             | 11.6            | 2.14                               |

Remarks / Other Tests Fair color, absorption a little high. (Should fire to "MW" face brick specifications at about 2150°F, 1177°C). Potential Use: Brick. (Face brick).

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wf.64-1 , cont.

Crushing Characteristics (unfired material) -

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

| Chemical Analys                                                |                                   | Mineralogy               | 1 9/                 |
|----------------------------------------------------------------|-----------------------------------|--------------------------|----------------------|
| Oxide<br>SiO <sub>2</sub>                                      | Weight %                          | Mineral                  | volume %             |
| TiO <sub>2</sub>                                               |                                   | Quartz                   |                      |
| $TiO_2^2$<br>$Al_2O_3$                                         |                                   | Feldspar                 |                      |
| Fe <sub>2</sub> 03                                             |                                   | Carbonate                |                      |
| FeŌ                                                            |                                   | Mica                     |                      |
| MnO                                                            |                                   | Chlorite-<br>vermiculite |                      |
| MgO<br>CaO                                                     |                                   | Montmorillonite          |                      |
| Na <sub>2</sub> 0                                              |                                   | Others                   |                      |
| κ <sub>2</sub> δ                                               |                                   |                          |                      |
| P205                                                           |                                   |                          |                      |
| S (total)                                                      |                                   | Total                    |                      |
| C (org)                                                        |                                   |                          |                      |
| CO <sub>2</sub>                                                |                                   |                          |                      |
| H <sub>2</sub> 0 <sup>-</sup><br>H <sub>2</sub> 0 <sup>+</sup> |                                   |                          |                      |
| Ignition                                                       |                                   |                          |                      |
| loss                                                           |                                   |                          |                      |
| Total                                                          |                                   |                          |                      |
| Analyst                                                        |                                   |                          |                      |
| Date                                                           |                                   |                          |                      |
|                                                                |                                   |                          |                      |
| Method                                                         |                                   |                          |                      |
| Sample Location                                                | Data:                             |                          |                      |
| County                                                         | ld Land Lot,                      | Sec, Dist                | ··                   |
| 7 1/2' topo qua                                                | d                                 | Lat, Lo                  | ong                  |
| Field No. 2                                                    | 7, Collected b                    | y J.W. Smith? I          | Date <u>c.1963</u> . |
| Sample Method                                                  | Grab (?). Weat                    | hering/alteration        |                      |
| Structural Atti                                                | tude                              |                          |                      |
| Stratigraphic A                                                | ssignment <u>Rome Formation (</u> | Cambrian).               |                      |
| Sample Descript                                                | ion & Comments <u>No further</u>  | data available.          |                      |
|                                                                | T 010                             |                          |                      |
| compiled by B.                                                 | J. O'Connor D                     | ate 0-/-0/               |                      |

| Material        | Shale (Rome).                        |              | Compilation Map Location No. <u>Wf.64-2</u>                                       |
|-----------------|--------------------------------------|--------------|-----------------------------------------------------------------------------------|
| County          | Whitfield.                           |              | Sample Number No. 28                                                              |
| Raw Proper      | ties:                                | Lab & No.    | USBM, Norris, Tenn.; No. 1553-Z                                                   |
| Date Repor      | rted <u>4-8-64</u><br>(revised 1967) | -            | M.V. Denny, USBM (revised by M.E.<br>Tyrrell, Tuscaloosa, Ala.)                   |
| Water of H      | Plasticity 24.6                      | % Working Pr | operties Long working, smooth, plastic,<br>5.95(6.0) (Not effervescent with HCl.) |
| Color <u>Re</u> |                                      |              | % Dry Strength Good. (Low.)                                                       |
| Remarks Di      | ying Characteristics:                | Fair, wavey  | surface. (No defects).                                                            |

Slow Firing Tests:

| Temp.<br>°F<br>(°C)                                                                   | Color                             | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------------------------------------------------------------------------|-----------------------------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)                                                                         | Red-tan                           | Fair hard<br>(3)    | 4.0                    | 25.6            | 41.2            | 1.61                               |
| 1900<br>(1038)                                                                        | Red-tan                           | Hard<br>(4)         | 5.0                    | 22.4            | 38.1            | 1.70                               |
| 2000<br>(1093)                                                                        | Light<br>red-brown<br>(Red-brown) | Hard<br>(4)         | 6.5(6.0)               | 18.6            | 33.3            | 1.79                               |
| 2100<br>(1149)                                                                        | Red-brown                         | Very hard<br>(5)    | 10.0                   | 15.7            | 29.4            | 1.87                               |
| 2200<br>(1204)                                                                        | Red-brown                         | Very hard<br>(5)    | 10.0                   | 13.3            | 26.1            | 1.96                               |
| 2300<br>(1260)                                                                        | Dark<br>red-brown<br>(Red-brown)  | Steel hard<br>(6)   | 10.0                   | 8.1             | 17.0            | 2.10                               |
| Remarks / Other Tests <u>Poor color, cracks on heating, absorption a little high,</u> |                                   |                     |                        |                 |                 |                                    |

surface craze. (Should fire to "MW" face brick specifications at about 2100°F, 1149°C.) Potential Use: None. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wf.64-2 , cont. Crushing Characteristics (unfired material) -Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy Weight % Oxide Mineral volume % Si02 TiO<sub>2</sub> Quartz  $A1_2\overline{0}_3$ Feldspar Fe203 Carbonate FeO Mica Chlorite-MnO MgO vermiculite Montmorillonite Ca0 Na<sub>2</sub>0 Others K<sub>2</sub>0 P205 S (total) **Total** С (org) C02 H20- $H_{2}^{-}0^{+}$ Ignition loss Total Analyst \_\_\_\_\_ Date Method Sample Location Data: County Whitfield. Land Lot \_\_\_\_\_, Sec. \_\_\_\_, Dist. \_\_\_\_. 7 1/2' topo quad. \_\_\_\_\_. Lat. \_\_\_\_, Long. \_\_\_\_. Field No. 28 \_\_\_\_\_, Collected by J.W. Smith? Date c.1963. Sample Method Grab (?). Weathering/alteration \_\_\_\_\_ Structural Attitude -\_\_\_\_\_ Stratigraphic Assignment Rome Formation (Cambrian). Sample Description & Comments No further data available. Compiled by B. J. O'Connor Date 8-7-87

-65-

MaterialClay (residuum).Compilation Map Location No.Wf.64-3CountyWhitfield.Sample Number No. 29Raw Properties:Lab & No.USBM, Norris, Tenn.; No. 1554-ADate Reported5-8-64<br/>(revised 1967)Ceramist<br/>Tyrrell, Tuscaloosa, Ala.).Water of Plasticity35.1<br/>fatty. (Moderate plasticity.)% Working Properties Long working, smooth, plastic,<br/>fatty.GolorBuff.Drying Shrinkage5.0<br/>Sold Working.Remarks Drying Characteristics;Slight crazing.(No defects).

#### Slow Firing Tests:

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Light<br>brown | Fair hard<br>(3)    | 9.0                    | 18.2            | 32.4            | 1.78                               |
| 1900<br>(1038)      | Light<br>brown | Hard<br>(4)         | 12.5                   | 12.5            | 25.5            | 2.04                               |
| 2000<br>(1093)      | Brown          | Very hard<br>(5)    | 19.0                   | 1.3             | 3.3             | 2.54                               |
| 2100<br>(1149)      | Red-brown      | Very hard<br>(5)    | 20.0                   | 0.5             | 1.3             | 2.58                               |
| 2200<br>(1204)      | Dark<br>brown  | Steel hard<br>(6)   | 19.0<br>(Expanded)     | 0.4             | -               | -                                  |
| 2300<br>(1260)      | Dark<br>brown  | Steel hard<br>(6)   | 19.0                   | 0.2             | -               | -                                  |

Remarks / Other Tests Fair color, shrinkage too high. (High firing shrinkage. Abrupt vitrification.) Potential use: None. (Not suitable for use as the principal component in vitreous clay products.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por.and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. \_\_\_\_\_\_\_, cont.

Crushing Characteristics (unfired material) -

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C).

Chemical & Mineralogical Data: Not determined.

| Chemical Analysis<br>Oxide Weight %                                                                               | Mineralogy<br>Mineral volume %                                                                   |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $SiO_2$<br>$TiO_2$<br>$A1_2O_3$<br>$Fe_2O_3$<br>FeO<br>MnO<br>MgO<br>CaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O | Quartz<br>Feldspar<br>Carbonate<br>Mica<br>Chlorite-<br>vermiculite<br>Montmorillonite<br>Others |
| $P_{2}O_{5}$<br>S (total)<br>C (org)<br>$CO_{2}$<br>$H_{2}O^{-}$<br>$H_{2}O^{+}$<br>Ignition                      | Total                                                                                            |
| loss<br>Total                                                                                                     |                                                                                                  |
| Analyst                                                                                                           |                                                                                                  |
| Date                                                                                                              |                                                                                                  |
| Method                                                                                                            |                                                                                                  |
| Sample Location Data:                                                                                             |                                                                                                  |
| County Whitfield. Land Lot                                                                                        | , Sec, Dist                                                                                      |
| 7 1/2' topo quad                                                                                                  | Lat, Long                                                                                        |
| Field No, Coll                                                                                                    | ected by Date Date                                                                               |
| Sample Method _Grab (?)                                                                                           | Weathering/alteration _ Residuum                                                                 |
| Structural Attitude                                                                                               |                                                                                                  |
| Stratigraphic Assignment Upper Ord                                                                                | ovician (?)                                                                                      |
| Sample Description & Comments <u>No f</u>                                                                         | urther data available.                                                                           |
|                                                                                                                   |                                                                                                  |
| Compiled by B. J. O'Connor                                                                                        | Date 8-7-87                                                                                      |

| Material _Shale (Conasauga).           |            | Compilation Map Location No. Wf.64-4                                              |
|----------------------------------------|------------|-----------------------------------------------------------------------------------|
| CountyWhitfield.                       | -          | Sample Number No. 31                                                              |
| Raw Properties:                        | Lab & No.  | USBM, Norris, Tenn.; No. 1554-C                                                   |
| Date Reported 5-8-64<br>(revised 1967) |            | M.V. Denny, USBM (revised by M.E.<br>Tyrrell, Tuscaloosa, Ala.)                   |
| Water of Plasticity 31.8 %             | Working Pr | operties Long working, smooth, plastic,<br>5.65(5.7) (Not effervescent with HCl.) |
|                                        |            | % Dry Strength _Good. (Fair.)                                                     |
| Remarks Drying Characteristics:        | Good, very | slight scum. (No defects.)                                                        |

#### Slow Firing Tests:

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Light<br>brown | Fair hard<br>(3)    | 5.5(5.0)               | 24.2            | 40.9            | 1.69                               |
| 1900<br>(1038)      | Light<br>brown | Hard<br>(4)         | 8.5(8.0)               | 20.8            | 37.6            | 1.81                               |
| 2000<br>(1093)      | Brown          | Very hard<br>(5)    | 13.0                   | 12.2            | 25.6            | 2.10                               |
| 2100<br>(1149)      | Brown          | Very hard<br>(5)    | 15.0                   | 8.2             | 18.4            | 2.24                               |
| 2200<br>(1204)      | Chocolate      | Steel hard<br>(6)   | 15.0                   | 5.5             | 12.7            | 2.30                               |
| 2300<br>(1260)      | Chocolate      | Steel hard<br>(6)   | 15.0                   | 4.5             | 10.5            | 2.34                               |

Remarks / Other Tests High absorption, high shrinkage, good color. (Should fire to "SW" face brick specifications at about 2100°F, 1149°C.) Potential use: Brick and tile, if quartz added to reduce shrinkage. (Face brick, sewer pipe).

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wf.64-4 , cont. Crushing Characteristics (unfired material) -Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy Oxide Weight % Mineral volume % Si02 TiO<sub>2</sub> Quartz A1203 Feldspar Fe203 Carbonate FeŌ Mica MnO Chlorite-MgO vermiculite CaO Montmorillonite Na<sub>2</sub>0 Others  $K_2\bar{0}$ P205 S (total) Total С (org) C02 H20- $H_{2}^{-}0^{+}$ Ignition loss Total Analyst Date Method Sample Location Data: County Whitfield. Land Lot \_\_\_\_\_, Sec. \_\_\_\_, Dist. \_\_\_\_. 7 1/2' topo quad. \_\_\_\_\_. Lat. \_\_\_\_, Long. \_\_\_\_. Field No. 31 , Collected by J.W. Smith? Date c.1963. Sample Method Grab (?). Weathering/alteration \_\_\_\_\_ Structural Attitude -Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments No further data available. Compiled by B. J. O'Connor Date 8-7-87

-69-

| Material Shale (Con               | asauga).              | Compilation Map Location No                                       |
|-----------------------------------|-----------------------|-------------------------------------------------------------------|
| County Whitfield.                 |                       | Sample Number No. 82                                              |
| Raw Properties:                   | Lab & No.             | USBM, Norris, Tenn.; No. 1556-A                                   |
| Date Reported 6-26-64<br>(revised | 4 Ceramist            | M.V. Denny, USBM (revised by M.E.<br>Tyrrell, Tuscaloosa, Ala.)   |
| Water of Plasticity               |                       | operties Moderate plasticity.<br>pH=6.3 Not effervescent with HCl |
| Color Tan. Dry                    | ying Shrinkage5.0     |                                                                   |
| Remarks Drying Charact            | eristics: No defects. |                                                                   |

## Slow Firing Tests:

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Light<br>brown | 2                   | 5.0                    | 21.2            | 35.8            | 1.69                               |
| 1900<br>(1038)      | Light<br>brown | 3                   | 9.0                    | 14.4            | 26.9            | 1.87                               |
| 2000<br>(1093)      | Brown          | 4                   | 10.0                   | 10.3            | 20.8            | 2.02                               |
| 2100<br>(1149)      | Chocolate      | 5                   | 12.0                   | 3.8             | 8.6             | 2.27                               |
| 2200<br>(1204)      | Chocolate      | 5                   | 12.0                   | 2.4             | 5.5             | 2.30                               |
| 2300<br>(1260)      | -              | ÷                   | Expanded               | ä               | -               | ÷                                  |

Remarks / Other Tests Should fire to "MW" face brick specifications at about 1950°F (1066°C). Potential use: Face brick.

locn. no. \_\_\_\_\_\_\_, cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C).

Chemical & Mineralogical Data: Not determined.

| Chemical Analysis<br>Oxide Weight %<br>SiO <sub>2</sub>                | Mineralogy<br>Mineral                                                                  | volume %            |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|
|                                                                        | Quartz<br>Feldspar<br>Carbonate<br>Mica<br>Chlorite-<br>vermiculite<br>Montmorillonite |                     |
| Na <sub>2</sub> 0<br>K <sub>2</sub> 0<br>P <sub>2</sub> 0 <sub>5</sub> | Others                                                                                 |                     |
| S (total)<br>C (org)<br>CO <sub>2</sub><br>H <sub>2</sub> O            | Total                                                                                  |                     |
| H <sub>2</sub> 0 <sup>+</sup><br>Ignition<br>loss<br>Total             |                                                                                        |                     |
| Analyst                                                                |                                                                                        |                     |
| Date                                                                   |                                                                                        |                     |
| Method                                                                 |                                                                                        |                     |
| Sample Location Data:                                                  |                                                                                        |                     |
| County Whitfield. Land Lot,                                            | Sec, Dist                                                                              | ••                  |
| 7 1/2' topo quad La                                                    | at, Lor                                                                                | ng                  |
| Field No. 82 , Collected by                                            | J.W. Smith? D                                                                          | ate <u>c.1963</u> . |
| Sample Method <u>Grab (?)</u> . Weathe                                 | ering/alteration                                                                       |                     |
| Structural Attitude                                                    |                                                                                        |                     |
| Stratigraphic Assignment <u>Conasauga Group</u> (                      | Cambrian).                                                                             |                     |
| Sample Description & Comments <u>No further da</u>                     | ata available.                                                                         |                     |
|                                                                        |                                                                                        |                     |
| Compiled by <u>B. J. O'Connor</u> Dat                                  | te <u>8-7-87</u>                                                                       | _                   |

| Material        | Shale (Conasauga).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | Compilation Map Location No. Wf.64-6                            |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|
| County          | Whitfield.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Sample Number <u>No. 83</u>                                     |
| Raw Proper      | ties: J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lab & No    | USBM, Norris, Tenn.; No. 1556-B                                 |
| Date Repor      | ted <u>6-26-64</u> (<br>(revised 1967)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | M.V. Denny, USBM (revised by M.E.<br>Tyrrell, Tuscaloosa, Ala.) |
| Water of P      | and the second se | Vorking Pro | perties Moderate plasticity.                                    |
| Color <u>Ta</u> | n. Drying Shrinka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | pH=5.4 Not effervescent with HCl.<br>% Dry Strength Fair.       |
| Remarks Dr      | ying Characteristics: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | defects.    |                                                                 |

### Slow Firing Tests:

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Light<br>brown | 3                   | 9.0                    | 20.8            | 35.8            | 1.72                               |
| 1900<br>(1038)      | Light<br>brown | 4                   | 10.0                   | 19.6            | 35.5            | 1.81                               |
| 2000<br>(1093)      | Brown          | 5                   | 14.0                   | 17.0            | 30.8            | 1.81                               |
| 2100<br>(1149)      | Dark<br>brown  | 5                   | 15.0                   | 10.7            | 21.6            | 2.02                               |
| 2200<br>(1204)      | Dark<br>brown  | 6                   | 15.0                   | 10.0            | 20.2            | 2.02                               |
| 2300<br>(1260)      | Chocolate      | 6                   | 15.0                   | 6.7             | 14.1            | 2.10                               |

Remarks / Other Tests High firing shrinkage. Should fire to "MW" face brick specifications at about 2050°F (1121°C). Potential use: Face brick.

locn. no. Wf.64-6 , cont.

Crushing Characteristics (unfired material) -

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C).

Chemical & Mineralogical Data: Not determined.

| Chemical Analysis<br>Oxide Weight %<br>SiO <sub>2</sub>                                                     | Mineralogy<br>Mineral                                               | volume %          |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|
| TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Fe <sub>2</sub> O <sub>3</sub><br>FeO -<br>MnO<br>MgO | Quartz<br>Feldspar<br>Carbonate<br>Mica<br>Chlorite-<br>vermiculite |                   |
| $ \begin{array}{c} \text{Ca0} \\ \text{Na}_20 \\ \text{K}_20 \\ \text{P}_20_5 \\ \end{array} $              | Montmorillonite<br>Others                                           |                   |
| S (total)<br>C (org)<br>CO <sub>2</sub><br>H <sub>2</sub> O <sup>-</sup><br>H <sub>2</sub> O <sup>+</sup>   | Total                                                               |                   |
| Ignition<br>loss<br>Total                                                                                   |                                                                     |                   |
| Analyst                                                                                                     |                                                                     |                   |
| Date                                                                                                        |                                                                     |                   |
| Method                                                                                                      |                                                                     |                   |
| Sample Location Data:                                                                                       |                                                                     |                   |
| County Whitfield. Land Lot,                                                                                 | Sec, Dist.                                                          | •                 |
| 7 1/2' topo quad La                                                                                         | at, Lon                                                             | g                 |
| Field No. 83 , Collected by                                                                                 | J.W. Smith? Da                                                      | te <u>c.1963.</u> |
| Sample Method Grab (?). Weathe                                                                              | ering/alteration                                                    |                   |
| Structural Attitude                                                                                         |                                                                     |                   |
| Stratigraphic Assignment <u>Conasauga Group ((</u>                                                          | Cambrian).                                                          |                   |
| Sample Description & Comments <u>No further da</u>                                                          | ata available.                                                      |                   |
|                                                                                                             |                                                                     |                   |
| Compiled by B. J. O'Connor Dat                                                                              | e 8-7-87                                                            |                   |

-73-

| Material   | Shale (Conasauga).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | Compilation Map Location No. <u>Wf.64-7</u>                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|
| County     | Whitfield.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _           | Sample Number No. 84                                            |
| Raw Proper | ties:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab & No.   | USBM, Norris, Tenn.; No. 1556-C                                 |
| Date Repor | ted <u>6-26-64</u><br>(revised 1967)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | M.V. Denny, USBM (revised by M.E.<br>Tyrrell, Tuscaloosa, Ala.) |
| Water of P | and the second se |             | operties Low plasticity. pH=7.1.                                |
| ColorGr    | ay Drying Shrinl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kage 4.0    | Not effervescent with HCl.<br>% Dry Strength Low.               |
| Remarks Dr | ying Characteristics: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No defects. |                                                                 |

## Slow Firing Tests:

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Light<br>brown | 3                   | 5.0                    | 16.3            | 29.7            | 1.82                               |
| 1900<br>(1038)      | Brown          | 4                   | 6.0                    | 11.9            | 23.2            | 1.95                               |
| 2000<br>(1093)      | Dark<br>brown  | 5                   | 9.5                    | 8.3             | 17.3            | 2.03                               |
| 2100<br>(1149)      | Chocolate      | 5                   | 10.0                   | 2.3             | 5.2             | 2.24                               |
| 2200<br>(1204)      | -              | -                   | Expanded               | ×               | -               | -                                  |

Remarks / Other Tests Should fire to "MW" face brick specifications at about 1900°F (1037°C). Potential use: Face brick.

locn. no. <u>Wf.64-7</u>, cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

| Chemical Analysis                                                                                                                                                       | Mineralogy                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Oxide Weight %<br>SiO2<br>TiO2<br>Al2O3<br>Fe2O3<br>Fe0<br>Mn0<br>Mg0<br>Ca0<br>Na2O<br>K20                                                                             | Mineral volume %<br>Quartz<br>Feldspar<br>Carbonate<br>Mica<br>Chlorite-<br>vermiculite<br>Montmorillonite<br>Others |
| P <sub>2</sub> 0 <sub>5</sub><br>S (total)<br>C (org)<br>CO <sub>2</sub><br>H <sub>2</sub> O <sup>-</sup><br>H <sub>2</sub> O <sup>+</sup><br>Ignition<br>loss<br>Total | Total                                                                                                                |
| Analyst                                                                                                                                                                 |                                                                                                                      |
| Date                                                                                                                                                                    |                                                                                                                      |
| Sample Location Data:                                                                                                                                                   |                                                                                                                      |
| County Whitfield. Land Lot                                                                                                                                              | , Sec, Dist                                                                                                          |
| 7 1/2' topo quad                                                                                                                                                        | , Lat, Long                                                                                                          |
| Field No, Col                                                                                                                                                           | lected by J.W. Smith? Date c.1963.                                                                                   |
| Sample Method _Grab (?)                                                                                                                                                 | Weathering/alteration                                                                                                |
| Structural Attitude                                                                                                                                                     |                                                                                                                      |
| Stratigraphic Assignment <u>Conasaug</u>                                                                                                                                | a Group (Cambrian).                                                                                                  |
| Sample Description & Comments <u>No</u>                                                                                                                                 | further data available.                                                                                              |
|                                                                                                                                                                         |                                                                                                                      |

Compiled by B. J. O'Connor Date 8-7-87

| Material <u>Clay</u> .             |           | Compilation Map Location No. <u>Wf.67-1</u>              |
|------------------------------------|-----------|----------------------------------------------------------|
| CountyWhitfield.                   |           | Sample Number <u>No. 147</u>                             |
| Raw Properties: La                 | ab & No   | USBM, Tuscaloosa, Al.; G-9-10                            |
| Date Reported <u>1-11-67</u> Ce    | eramist _ | M.E. Tyrrell, USBM.                                      |
| Water of Plasticity% Wo            |           | perties Low plasticity.                                  |
| Color Yellow. Drying Shrinkag      | ge 0.0    | pH=5.9 Not effervescent with HCl.<br>% Dry Strength Low. |
| Remarks Drying Characteristics: No | defects.  |                                                          |

#### Slow Firing Tests:

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Tan            | 2                   | 0.0                    | 28.8            | 42.9            | 1.49                               |
| 1900<br>(1038)      | Tan            | 2                   | 0.0                    | 28.7            | 43.1            | 1.50                               |
| 2000<br>(1093)      | Tan            | 3                   | 5.0                    | 25.0            | 39.5            | 1.58                               |
| 2100<br>(1149)      | Light<br>brown | 4                   | 5.0                    | 23.1            | 37.7            | 1.63                               |
| 2200<br>(1204)      | Red<br>brown   | 4                   | 10.0                   | 16.0            | 29.3            | 1.83                               |
| 2300<br>(1260)      | Dark<br>brown  | 5                   | 10.0                   | 8.9             | 17.7            | 1.99                               |

Remarks / Other Tests Low green strength; high maturing temperature. Potential use: Not suitable for use as the principal component in vitreous clay products.

locn. no. Wf.67-1, cont.

Crushing Characteristics (unfired material) -

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy Oxide Weight % Mineral volume % si02 Tio<sub>2</sub> Quartz A1203 Feldspar Fe203 Carbonate FeŌ Mica Chlorite-MnO MgO vermiculite CaO Montmorillonite Na<sub>2</sub>0 Others K<sub>2</sub>0 P205 (total) S Total С (org) C02 H20- $H_{2}0^{+}$ Ignition loss Total Analyst \_\_\_\_\_ Date Method Sample Location Data: County Whitfield. Land Lot \_\_\_\_\_, Sec. \_\_\_\_\_, Dist. \_\_\_\_. 7 1/2' topo quad. \_\_\_\_\_. Lat. \_\_\_\_\_, Long. \_\_\_\_. Field No. 147 , Collected by J.W. Smith? Date c.1966. Sample Method Grab (?). Weathering/alteration -Structural Attitude -Stratigraphic Assignment -Sample Description & Comments No further data available.

Compiled by B. J. O'Connor Date 8-7-87

| Material Clay.                   | Compilation Map Location No. Wf.67-2    |
|----------------------------------|-----------------------------------------|
| County                           | Sample Number No. 153                   |
| Raw Properties: Lab              | b & No. USBM, Tuscaloosa, Al.; G-9-15   |
| Date Reported <u>1-11-67</u> Cer | ramistM.E. Tyrrell, USBM.               |
| Water of Plasticity% Wor         | rking Properties Low plasticity.        |
| Color Drying Shrinkage           | e 2.5 PH=6.1 Not effervescent with HC1. |
| Remarks No drying defects.       |                                         |

Slow Firing Tests:

 $i_{ij}$ 

5

| Temp.<br>°F<br>(°C) | Color          | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other data:<br>Bulk Dens.<br>gm/cc |
|---------------------|----------------|---------------------|------------------------|-----------------|-----------------|------------------------------------|
| 1800<br>(982)       | Tan            | 3                   | 5.0                    | 18.2            | 31.9            | 1.75                               |
| 1900<br>(1038)      | Tan            | 4                   | 10.0                   | 11.5            | 22.3            | 1.94                               |
| 2000<br>(1093)      | Light<br>brown | 5                   | 12.5                   | 7.7             | 15.7            | 2.04                               |
| 2100<br>(1149)      | ana<br>Ta      | -                   | Expanded               | -               | -               | -                                  |

Remarks / Other Tests Poor color; abrupt vitrification.

locn. no. Wf.67-2 , cont.

Crushing Characteristics (unfired material) \_\_\_\_\_

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C).

Chemical & Mineralogical Data: Not determined.

| Chemical Analysis                          | Mineralogy                          |                                                                                                                  |
|--------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Oxide Weight %                             | Mineral                             | volume %                                                                                                         |
| SiO <sub>2</sub>                           | Quarte                              | -                                                                                                                |
| TiO_<br>Al_O                               | Quartz<br>Feldspar                  |                                                                                                                  |
| $A1_2\bar{0}_3$                            | Carbonate                           |                                                                                                                  |
| Fe <sub>2</sub> 0 <sub>3</sub><br>FeO      | Mica                                |                                                                                                                  |
| MnO                                        | Chlorite-                           |                                                                                                                  |
|                                            | vermiculite                         |                                                                                                                  |
| MgO<br>CaO                                 | Montmorillonite                     |                                                                                                                  |
| Na <sub>2</sub> 0                          | Others                              |                                                                                                                  |
| 2                                          | others                              |                                                                                                                  |
| K <sub>2</sub> 0<br>Po0-                   |                                     |                                                                                                                  |
| $P_2 O_5$<br>S (total)                     | Tota1                               |                                                                                                                  |
| C (org)                                    | IULAI                               |                                                                                                                  |
| CO <sub>2</sub>                            |                                     |                                                                                                                  |
| н <sub>2</sub> 0-                          |                                     |                                                                                                                  |
| H <sub>2</sub> 0+                          |                                     |                                                                                                                  |
| Ignition                                   |                                     |                                                                                                                  |
| loss                                       |                                     |                                                                                                                  |
| Total                                      |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
| Analyst                                    |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
| Date                                       |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
| Method                                     |                                     |                                                                                                                  |
| On the Instantion Determined               |                                     |                                                                                                                  |
| Sample Location Data:                      |                                     |                                                                                                                  |
| County Whitfield. Land Lot ,               | Sec                                 | Dist                                                                                                             |
| Mand Lot,                                  | bee,                                |                                                                                                                  |
| 7 1/2' topo quad L                         | at.                                 | Long.                                                                                                            |
|                                            |                                     | <u> </u>                                                                                                         |
| Field No. 153 , Collected by               | J.W. Smith?                         | Date c.1966.                                                                                                     |
|                                            |                                     |                                                                                                                  |
| Sample Method Grab (?). Weath              | ering/alteration                    | -                                                                                                                |
|                                            |                                     |                                                                                                                  |
| Structural Attitude                        | and the second second second second | and the state of the  |
| Stratigraphic Assignment                   |                                     |                                                                                                                  |
| beruergruphile hoorgimene                  |                                     | and the second |
| Sample Description & Comments No further d | ata available.                      |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
| Compiled by B. J. O'Connor Da              | te <u>8-7-87</u>                    |                                                                                                                  |
|                                            |                                     |                                                                                                                  |
|                                            |                                     |                                                                                                                  |

| Material Shale (Conasauga). |           |              | Compilation Map Location No. Wf.69-1 |                 |               |                |
|-----------------------------|-----------|--------------|--------------------------------------|-----------------|---------------|----------------|
| County _                    | Whitfie   | Ld.          | -                                    | Sample Number _ | WHIT-1.       | _              |
| Raw Propert                 | ies:      |              | Lab & No.                            | USBM, Tuscaloos | a,AL.; #WHIT- | -1             |
| Date Report                 | ed Marcl  | n 1969.      | Ceramist _                           | M. E. Tyrrell,  | USBM.         | 1              |
| Water of Pl                 | lasticity | 14.4%        | Working Pro                          | operties        | A             |                |
| Color Light                 | gray.     | Drying Shrin | kage <u>1.0</u>                      | % Dry Streng    | ;th           |                |
| Slow Firing                 | g Tests:  |              |                                      |                 |               |                |
| Temp.<br>°F                 | Color     |              |                                      | Absorption<br>% |               | Other<br>data: |

| (°C)           |            |     | 0,  |      |   |      |  |
|----------------|------------|-----|-----|------|---|------|--|
| 1900<br>(1038) | Dark brown | 4.0 | 3.8 | 15.9 | - | -    |  |
| 2000<br>(1093) | Dark brown | 5.0 | 3.8 | 15.3 | - | 1.79 |  |
| 2100<br>(1149) | Dark brown | 5.5 | 4.0 | 10.0 | - | -    |  |
| 2200<br>(1204) | Dark brown | 6.0 | 2.0 | 14.2 | - |      |  |

Remarks / Other Tests Hollenbeck and Tyrrell (1969, p. 21).

locn. no. <u>Wf.69-1</u>, cont.

ŝ

| Crushing Characteristics (unfired material)                                                                                                                                          | )                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Particle Size 20 mesh. Retention Time                                                                                                                                                |                                                                                                  |
| Chemical & Mineralogical Data: Not deter                                                                                                                                             | mined.                                                                                           |
| Chemical Analysis<br>Oxide Weight %                                                                                                                                                  | Mineralogy<br>Mineral volume %                                                                   |
| SiO <sub>2</sub><br>TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Fe <sub>2</sub> O <sub>3</sub><br>FeO<br>MnO<br>MgO<br>CaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O        | Quartz<br>Feldspar<br>Carbonate<br>Mica<br>Chlorite-<br>vermiculite<br>Montmorillonite<br>Others |
| $P_{2}O_{5}$<br>S (total)<br>C (org)<br>$CO_{2}$<br>$H_{2}O^{-}$                                                                                                                     | Total                                                                                            |
| H <sub>2</sub> 0 <sup>+</sup><br>Ignition<br>loss<br>Total                                                                                                                           |                                                                                                  |
| Analyst                                                                                                                                                                              |                                                                                                  |
| Date                                                                                                                                                                                 |                                                                                                  |
| Method                                                                                                                                                                               |                                                                                                  |
| Sample Location Data:                                                                                                                                                                |                                                                                                  |
| County Whitfield. Land Lot,                                                                                                                                                          | Sec, Dist                                                                                        |
| 7 1/2' topo quad. Beaverdale (SW. 1/4). 1                                                                                                                                            | Lat, Long                                                                                        |
| Field No, Collected by                                                                                                                                                               | y R. P. Hollenbeck Date 1967.                                                                    |
| Sample Method <u>Channel (?).</u> Weath                                                                                                                                              | nering/alteration Slightly weathered.                                                            |
| Structural Attitude                                                                                                                                                                  |                                                                                                  |
| Stratigraphic Assignment Conasauga Group (                                                                                                                                           | (Cambrian).                                                                                      |
| Sample Description & Comments Light green<br>10 feet exposed) and overlain by soil. Sam<br>side of Ga. Highway 2, 5.1 mi. W. of inters<br>1.2 mi. W. of the Murray Co. line (Hollent | npled from upper 5 foot road cut on N.<br>section with Ga. Highway 225, and about                |
| Compiled by B. J. O'Connor Da                                                                                                                                                        | ate 6-28-88                                                                                      |

| Material _  | Shale (Conasauga).     |                | Compilation Map Location No. <u>Wf.69-2</u> |
|-------------|------------------------|----------------|---------------------------------------------|
| County _    | Whitfield.             | -              | Sample Number <u>WHIT-2.</u>                |
| Raw Propert | ies:                   | Lab & No.      | USBM, Tuscaloosa, AL.; #WHIT-1              |
| Date Report | ed March 1969          | Ceramist       | M. E. Tyrrell, USBM.                        |
| Water of Pl | asticity <u>18.0</u> % | Working Pro    | operties                                    |
| Color Ligh  | t gray. Drying Shrin   | kage <u>3.</u> | 6% Dry Strength                             |
| Slow Firing | Tests:                 |                |                                             |
|             |                        |                |                                             |

| Temp.<br>°F<br>(°C) | Color     | Hardness<br>(Mohs') | Linear<br>Shrinkage, % | Absorption<br>% | Appr. Por.<br>% | Other<br>data: |
|---------------------|-----------|---------------------|------------------------|-----------------|-----------------|----------------|
| 1900<br>(1038)      | Pink      | 3.0                 | 5.5                    | 19.0            |                 |                |
| 2000<br>(1093)      | Pink      | 3.0                 | 5.5                    | 17.7            | -               | 1.68           |
| 2100<br>(1149)      | Red-brown | 4.0                 | 8.0                    | 14.6            | ; <b>**</b>     | 1.85           |
| 2200<br>(1204)      | Red-brown | 5.5                 | 8.2                    | 12.5            | -               | 1.90           |

Remarks / Other Tests Hollenbeck and Tyrrell (1969, p. 21).

locn. no. <u>Wf.69-2</u>, cont.

| Crushing Characteristics (unfired material)                                                                                                                           | -                                                                                                                         |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------|
| Particle Size <u>-20 mesh.</u> Retention Time                                                                                                                         |                                                                                                                           |                     |
| Chemical & Mineralogical Data: Not determi                                                                                                                            | ned.                                                                                                                      |                     |
| Chemical Analysis<br>Oxide Weight %<br>SiO <sub>2</sub><br>TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>FeO<br>MnO<br>MgO<br>CaO<br>Na <sub>2</sub> O<br>KeO | Mineralogy<br>Mineral<br>Quartz<br>Feldspar<br>Carbonate<br>Mica<br>Chlorite-<br>vermiculite<br>Montmorillonite<br>Others | volume %            |
| K20<br>P205<br>S (total)<br>C (org)<br>CO2<br>H20 <sup>-</sup><br>H20 <sup>+</sup><br>Ignition<br>loss<br>Total                                                       | Total                                                                                                                     |                     |
| Analyst                                                                                                                                                               | <u></u>                                                                                                                   |                     |
| Date                                                                                                                                                                  |                                                                                                                           |                     |
| Method                                                                                                                                                                |                                                                                                                           |                     |
| Sample Location Data:                                                                                                                                                 |                                                                                                                           |                     |
| County Whitfield. Land Lot,                                                                                                                                           | Sec, Dist                                                                                                                 | ·                   |
| 7 1/2' topo quadCohutta (SE. 1/4) L                                                                                                                                   | at, Lo                                                                                                                    | ng                  |
| Field No, Collected by                                                                                                                                                | R. P. Hollenbeck. D.                                                                                                      | ate <u>1967.</u>    |
| Sample Method Channel (?). Weath                                                                                                                                      | ering/alteration <u>Slig</u>                                                                                              | htly weathered.     |
| Structural Attitude                                                                                                                                                   |                                                                                                                           |                     |
| Stratigraphic Assignment <u>Conasauga Group</u>                                                                                                                       | (Cambrian).                                                                                                               |                     |
| Sample Description & Comments Light greeni<br>6 feet exposed) and overlain by soil. Road<br>E. of intersection with Ga. Hwy. 71 (Holle                                | cut on north side of                                                                                                      | Ga. Hwy. 2, 1.9 mi. |
| Compiled by B. J. O'Connor Da                                                                                                                                         | te <u>6-28-88</u>                                                                                                         | _                   |

#### DATA SOURCES AND REFERENCES CITED

- American Society for Testing and Materials, 1974 Annual Book of ASTM Standards:
  - C4-62 (Reapproved 1970) Standard specification for clay drain tile, Part 16, p. 1-7.
  - C13-69 (Replaced by C700-74) Specifications for standard strength clay sewer pipe, Part 16, p. 409-413.
  - C24-72 Pyrometric cone equivalent (PCE) of refractory materials, Part 17, p. 9-14.
  - C27-70 Classification of fireclay and high-alumina refractory brick, Part 17, p. 15-17.
  - C43-70 Standard definitions of terms relating to structural clay products, Part 16, p. 33-35.
  - C62-69 Standard specification for building brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
  - C216-71 Standard specification for facing brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
  - C410-60 (Reapproved 1972) Standard specification for industrial floor brick, Part 115, p. 217-218.
  - C479-72 Standard specification for vitrified clay liner plates, Part 16, p. 283-284.
  - C330-69 Specification for lightweight aggregates for structural concrete, Part 14, p. 229-232.
  - C315-56 (Reapproved 1972) Standard specification for clay flue linings, Part 16, p. 169-171.
- American Society for Testing and Materials, 1974 Annual Book of ASTM Standards: Part 16, Chemical-resistant nonmetallic materials; clay and concrete pipe and tile; masonry mortars and units; asbestos-cement products.
- Butts, C., and Gildersleeve, B., 1948, Geology and Mineral Resources of the Paleozoic Area in Northwest Georgia: Georgia Department of Mines, Mining and Geology Bulletin 54, 176 p.
- Chowns, T. M., editor, 1972, Sedimentary Environments in the Paleozoic Rocks of Northwest Georgia: Georgia Geological Survey Guidebook 11, 102 p.
- , editor, 1977, Stratigraphy and Economic Geology of Cambrian and Ordovician Rocks in Bartow and Polk Counties, Georgia: Georgia Geological Survey Guidebook 17, 21 p.
- Chowns, T.M., and McKinney, F.M., 1980, Depositional Facies in Middle- Upper Ordovician and Silurian Rocks of Alabama and Georgia: in Frey, R.W., ed., Excursions in Southeastern Geology, vol. 2, Field Trip No. 16, p. 323-348, American Geological Institute, Falls Church, VA.

- Clews, F. H., 1969, <u>Heavy Clay Technology</u>: 2nd ed., Academic Press, New York, N.Y., 481 p.
- Crawford, T.J., 1983, Pennsylvanian Outliers in Georgia: <u>in</u> Chowns, T.M., ed., "Geology of Paleozoic Rocks in the Vicinity of Rome, Georgia" 18th Annual Field Trip, Georgia Geological Society, p. 30-41.
- Cressler, C. W., 1963, Geology and Ground-water Resources of Catoosa County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 28, 19 p.

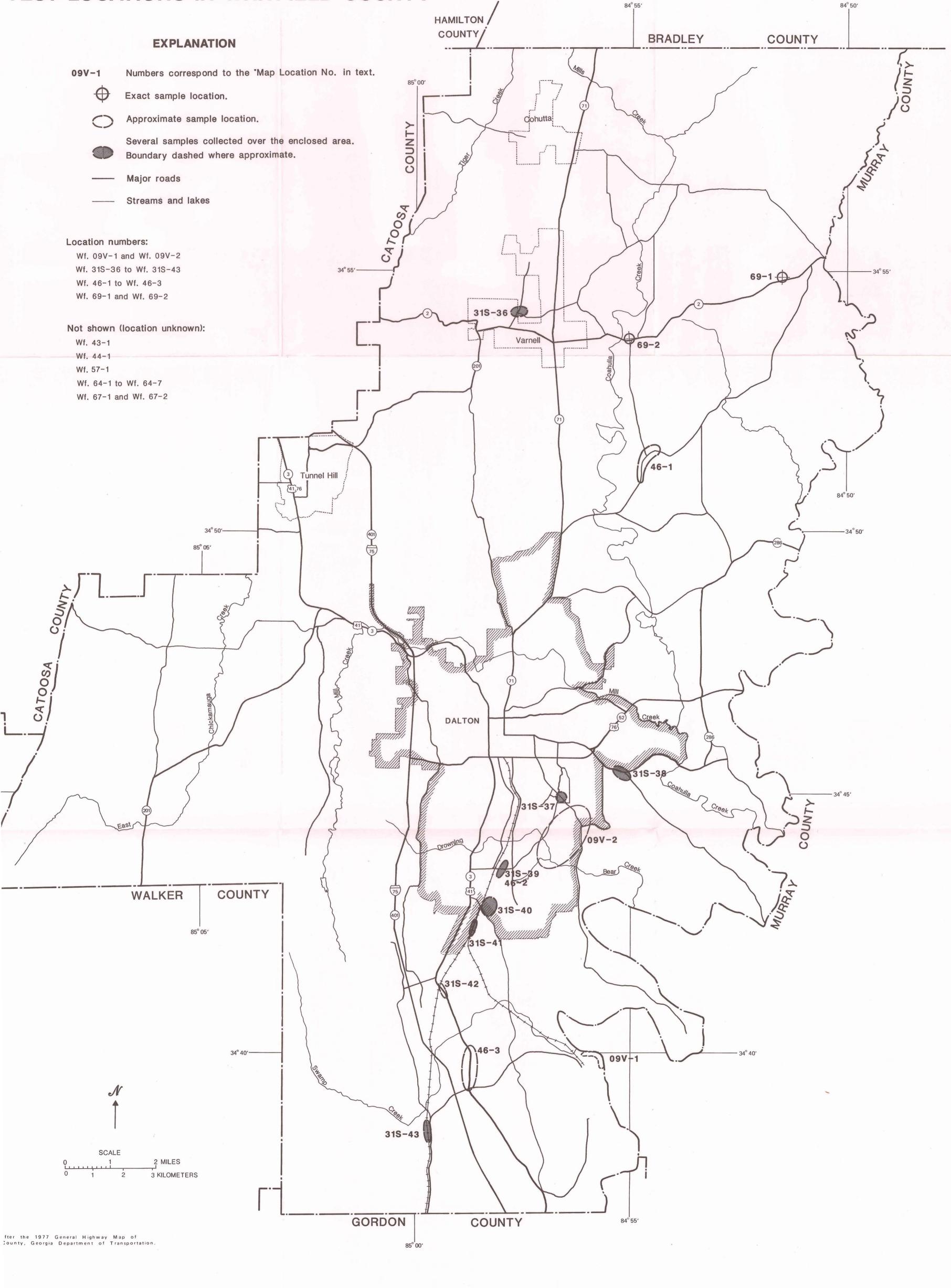
, 1964a, Geology and Ground-water Resources of the Paleozoic Rock Area, Chattooga County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 27, 14 p.

- \_\_\_\_\_, 1964b, Geology and Ground-water Resources of Walker County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 29, 15 p.
- , 1970, Geology and Ground-water Resources of Floyd and Polk Counties, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 39, 95 p.
- , 1974, Geology and Ground-water Resources of Gordon, Whitfield and Murray Counties, Georgia: Georgia Geological Survey Information Circular 47, 56 p.
- Cressler, C. W., Franklin, M. A., and Hester, W. G., 1976, Availability of Water Supplies in Northwest Georgia: Georgia Geological Survey Bulletin 91, 140 p.
- Cressler, C. W., Blanchard, H. E., Jr., and Hester, W. G., 1979, Geohydrology of Bartow, Cherokee, and Forsyth Counties, Georgia: Georgia Geologic Survey Information Circular 50, 45 p.

Georgia Geological Survey, 1976, Geologic Map of Georgia: Georgia Geological Survey, scale 1:500,000.

- Grimshaw, R. W., 1972, <u>The Chemistry and Physics of Clays and Other</u> <u>Ceramic Raw Materials</u>: 4th ed., rev., Wiley-Interscience, New York, N.Y., 1024 p.
- Hollenbeck, R.P., and Tyrrell, M.E., 1969, Raw materials for lightweight aggregate in Appalachian Region, Alabama and Georgia: U.S. Bureau of Mines RI-7244, 21 p.
- Jones, T. J., and Beard, M. T., 1972, Ceramics: Industrial Processing and Testing: Iowa State University Press, Ames, Iowa, 213 p.

- Kelly, K. L. and Judd, D. B., Color. Universal Language and Dictionary of Names: U.S. Dept. of Commerce, NBS Special Publication 440, 158 p.
- Kline, S. W. and O'Connor, B. J., editors, 1981, Mining Directory of Georgia, 18th. ed.: Georgia Geologic Survey Circular 2, 49 p.
- Klinefelter, T. A., and Hamlin, H. P., 1957, Syllabus of Clay Testing: U.S. Bureau of Mines Bulletin 565, 67 p.
- Liles, K. J., and Heystek, H., 1977, The Bureau of Mines Test Program for Clay and Ceramic Raw Materials: U.S. Bureau of Mines IC-8729, 28 p.
- Norton, F. H., 1942, <u>Refractories</u>: 2nd ed., McGraw-Hill Book Co., N.Y., 798 p.
- O'Neill, B. J., Jr., and Barnes, J. H., 1979, Properties and Uses of Shales and Clays, Southwestern Pennsylvania: Pennsylvania Geological Survey Mineral Resources Report 77, 689 p.


, 1981, Properties and Uses of Shales and Clays, South-central Pennsylvania: Pennsylvania Geological Survey Mineral Resource Report 79, 201 p.

- Patterson, S. H., and Murray, H. H., 1983, Clays: in Lefond, S. J., and others, eds., Industrial Minerals and Rocks; 5th ed., American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, p. 585-651.
- Smith, J. W., 1968?, Tests for Clay Products in Northwest Georgia; unpublished manuscript, 47 p. (brief summary <u>in</u>: 1967 Annual Report of the Department of Mines, Mining, and Geology, 1968, p. 17-19).
- Smith, R. W., 1931, Shales and Brick Clays of Georgia: Georgia Geological Survey Bulletin 45, 348 p.
- Spencer, J.W.W., 1893, The Paleozoic Group; The Geology of Ten Counties of Northwestern Georgia: Georgia Geological Survey, 406 p.
- Veatch, O., 1909, Second Report on the Clay Deposits of Georgia: Georgia Geological Survey Bulletin 18, 453 p.
- Watson, T. L., 1904, A Preliminary Report on the Bauxite Deposits of Georgia: Georgia Survey Bulletin 11, 169 p.
- White, W. S., Denson, N.M., Dunlap, J.C. and Overstreet, E.F., 1966, Bauxite Deposits of Northwest Georgia: U.S. Geological Survey Bulletin 1199-M, 42 p.

# CLAY AND SHALE TEST LOCATIONS IN WHITFIELD COUNTY

TENNESSEE

Plate

