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Cover: Line art showing some of the complexities that one can encounter in crystalline rock aquifers.
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HYDROGEOLOGIC DATA FROM SELECTED SITES IN
THE PIEDMONT AND BLUE RIDGE -PROVINCES,
GEORGIA

David A. Brackett, William M. Steele, Thomas J. Schmitt,
Robert L. Atkins, Madeleine F. Kellam, & Jerry A. Lineback

INTRODUCTION
PURPOSE AND SCOPE OF STUDY

The purpose of this study is to provide data
(with some interpretations) on the principal
hydrogeologic controls on the occurrence and
movement of ground water at ten hydrologic test
sites in the Piedmont and Blue Ridge Physi-
ographic Provinces of Georgia (Fig. 1). These
sites are the Ashland Subdivision (Oconee
County), the Shoal Creek Subdivision (Coweta
County), a private well at Lost Mountain (Cobb
County), and the cities of Colbert, Locust Grove,
Lexington, Newnan, and Watkinsville, all located
in the Piedmont Province. Two sites are located
in the Blue Ridge Province, the city of Dawsonville
and Unicoi State Park. The knowledge gained
from the test sites may assist in more effective
development of the ground-water resources
elsewhere in these provinces. Studies at the ten
sites indicate that the key to obtaining additional
ground water in the Pledmont and Blue Ridge is
the proper siting of new wells with respect to
those geological and hydrological criteria that
most strongly influence ground-water availability.

This report presents geologic, geophysical,
and hydrologic test data gathered from the ten
test sites. All sites were investigated because
one or more of the wells at these sites had a
potential yleld in excess of 50 gpm. Wells at four
of these sites were drilled at locations selected by
the Georgia Geologic Survey as potentially hav-
ing high-yield possibilities. The Survey sited
these wells in response to requests from cities or
municipal water systems seeking to develop ad-
ditional ground water. Wells drilled at random
locations in the Pledmont and Blue Ridge have
an average yield of less than 20 gpm, a yield
sufficlent for domestic use but not for reliable
public water supplies.

The types of information collected at the ten
test sites include:

1. Geologic mapping within a one-mile ra-
dius of the well and field measurements
of geologic structures such as foliation,
joints, faults, linear stream segments,
discontinuities,and compositional layer-
ing.

2. Descriptions of the major lithologies in
the map area.

3. Surface geophysical studies at three
sites.

4. Borehole geophysical logging at six sites.

5. Test pumping of at least one well per site.

6. Water quality data.

In addition to presenting this information,
this report includes some general observations
on siting wells in the Pledmont and Blue Ridge
and suggests avenues for further research.

JUSTIFICATION FOR STUDY

Rapid growth of both population and indus-
try in north Georgia in recent years has in-
creased the demand for potable water in this
region. Regional water needs currently are being
met primarily through the use of surface-water
resources. The effects of severe rainfall shortages
in 1980, 1981, 1986, and 1988 suggest that
existing surface-water supplies may be unable
to meet all of the future water demands of the
area during periods of drought.

Ground water can provide a viable alterna-
tive or supplement to surface-water supplies in
the future. In some cases, but not all, develop-
ment of ground water is less environmentally
disruptive than constructing surface-water res-
ervoirs and may have economic advantages over
surface-water systems in many cases. For ex-
ample, extensive land areas need not be pur-
chased, roads need not be rerouted nor wetlands
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flooded.

Ground-water resources in the Pledmont
and Blue Ridge Provinces currently are under
utilized, due primarily to the difficulty of reliably
and predictably locating wells having adequate
yields. The North Georgia Hydrology Program
was established in December, 1986, by the Geor-
gla Geologic Survey to aid in developing the
resource potential of ground water in north
Georgia. One of the most important goals of this
study was to identify what hydrogeologic
criteria are most significant and necessary to
reliably locate sites for high yield wells in the two
provinces.

DESCRIPTION OF STUDY AREA

The Piedmont Province is a broad upland
developed on complexly deformed Late Precam-
brian and Paleozoic metamorphic and igneous
rocks. The topography of the province is rolling
to rugged with elevations ranging from approxi-
mately 2000 ft in the Dahlonega area to 500 ft or
less along the Fall Line, the southern margin of
the province. Crystalline bedrock in the province
has little intergranular porosity. Ground water
in the bedrock is in open spaces formed through
jointing or fracturing, along discontinuities
formed by compositional layering or faulting,
and in zones of weathering extending from the
surface to more than 100 ft into the bedrock in
places. The bedrock is overlain by a variable
thickness (averaging 50 ft) of residual weathered
rock called saprolite.

The Blue Ridge Province is a highland of
conical peaks and broad summits. The highest
elevation in the Blue Ridge in Georgia is
Brasstown Bald (elevation, 4,784 ft).
Intermountain plateaus average 1,600 to 1,700
ft in elevation. The topography is controlled
largely by lithology. Valleys are developed on
easlly weathered lithologies, or on highly frac-
tured rocks, and peaks are produced by more
resistant rocks. Saprolite thickness is generally
less than in the Pledmont because of the steeper
slopes.

The climate of the Pledmont and Blue Ridge
provinces is warm and moist. Average rainfall is
53 in. per year and is much higher in some
mountainous areas. Significant rainfall deficits
in the spring and summer months were recorded
in 1980, 1981, 1986, and 1988.

The population of the Piledmont and Blue
Ridge Provinces of Georgia was approximately

3,420,400 in 1985 (Bachtel, 1987). The largest
population center is the Atlanta metropolitan
area. Projections of population for the study
area in the 1990's show that continued growth is
expected.

METHODS OF INVESTIGATION

Geologic Mapping

A geologic map was constructed at each
site, extending at least one mile from each well
studied. Field maps, constructed at the scale of
1:24,000, showed major rock types and the
orientation of joint sets, compositional layering,
fold axes, and mineral lineations. Geologic de-
scriptions included the nature of the saprolite
and the length, spacing, aperture opening and
mineralization of joints and other discontinuities.
Analysis of structural trends included plotting
data, such as the orientations of joints, compo-
sitional layering, and mineral lineations on equal
area stereonets. The orientations of linear
stream segments in the vicinity of each test site
were measured on 7.5 minute topographic quad-
rangle maps. Summaries and interpretations of
the geologic and structural data appear in each
site report.

Surface Geophysical Methods

Surface geophysical investigations carried
out at three sites included magnetic surveys and
electrical resistivity soundings. Magnetic sur-
veys at the Colbert, Shoal Creek Subdivision,
and Unicoli State Park sites attempted to locate
geologic contacts suspected from geologic map-
ping. Tape and compass methods were used to
establish the survey lines and a station spacing
of 16.5 ft (5 m) minimized background noise. An
EG&G Geometrics GSD-856 proton precession
magnetometer recorded magnetic measurements
in its internal memory. Base station readings
taken at regular time intervals during the survey
corrected for the diurmal fluctuations in the
earth’s magnetic field.

The electrical resistivity survey conducted
at Unicoi State Park utilized a Bison Signal
Enhancement Earth Resistivity System, Model
2390, and the Bison Offset Sounding System
(BOSS). Soundings were oriented parallel and
perpendicular to structurally controlled valley
segments.



Borehole Geophysical Logging

A suite of geophysical logs were run on test
wells where possible. The logging was done by
the Water Resources Division, U. S. Geological
Survey (USGS), Doraville, Georgia, as part of
Georgia Geologic Survey's cooperative agree-
ment. Logs obtained included: Sonic televiewer,
caliper, temperature, spontaneous potential,
acoustic velocity, single-point resistance, and
natural gamma.

Borehole logs show the depth of
discontinuities which may yield water to the
well. The logs were compared to the drillers log
on which the driller noted water-bearing zones.
Many water-bearing zones appeared as
discontinuities on one or more of the borehole
logs. Discontinuities observed by borehole log-
ging have various origins. Many of these
discontinuities are joints or fractures in the
crystalline rocks which represent openings along
which ground water can easily move. Other
discontinuities have been interpreted as weath-
ered zones that extend some distance into the
bedrock along joints, fractures, or compositional
layering. Compositional layering in the meta-
morphic and igneous rocks of the Piedmont and
Blue Ridge may provide permeable pathways for
ground-water flow. Differential weathering along
susceptible compositional layers may result in
water-bearing discontinuities. The drilling pro-
cess itself produced apparent discontinuities
because the borehole diameter increases in softer
lithologies.

Sonic televiewer logs provide a 360° image
of the borehole and allow measurement of the
structural orientation of discontinuities.
Discontinuities interpreted asjoints or fractures
usually appear as very dark gray to black areas
with sharp boundaries on televiewer logs.
Weathered zones or discontinuities caused by
compositional layering often appear as gray
mottled or gray and black mottled areas with
uneven and indistinct boundaries on televiewer
logs. The orientation of discontinuities in the
boreholes as measured on the sonic televiewer
logs was compared to the orientation of compo-
sitional layering and jointing measured during
geologic mapping.

Hydrologic Methods

Hydrologic testing methods varied some-

what from site to site reflecting such factors as
the availability of equipment and the incom-
pleteness of knowledge of the yield characteris-
tics of the wells. The hydrologic tests employed
included constant-head tests (stress tests),
constant-rate pumping tests, and step-tests.

Lack of previous quantitative hydrologic
testing of the test wellsrequired stress tests to be
conducted in order to accurately define the yleld
characteristics of the wells. Accurate yield infor-
mation proved to be a necessary precursor to a
successful constant-rate pumping test. Nine of
the site investigations included at least one
constant-rate pumping test. In this type of test,
a well is pumped at a constant rate of discharge
for the duration of the test and the drawdown is
measured periodically in the pumped well and in
any observation wells. The water levels are again
measured after pumping while they recover to
pre-pumping levels. Most constant-rate pump-
ing tests continued for a 24 hour period plus
recovery time. Two 72- hour tests and one 41 -
day test were also carried out.

Throttling the pump engines or adjustment
of in-line valves regulated flow from the wells
during the tests. Measurements of the flow rate
were made using either a standard 4 in. by 2.5 in.
orifice weir or an orifice bucket. Air lines were
installed in some wells to measure water levels,
otherwise a conductive probe indicator was used.
Stilling wells allowed accurate water level mea-
surements in wells exhibiting cascading water.
The rate of drawdown dictated the time interval
between water level measurements. Measure-
ments were often taken more frequently than the
logarithmic measurement schedule employed
for most tests. Nearby wells at some test sites,
used as observation wells, allowed additional
water level data to be collected.

PREVIOUS INVESTIGATIONS

One of the earliest descriptions of ground
water in the Pledmont and Blue Ridge provinces
of Georgia was provided by McCallie (1908). The
ground-water resources of the Atlanta area were
described by Herrick and LeGrand (1949) and
Carter and Herrick (1951). Stewart and Herrick
(1963) described emergency water supplies for
the Atlanta area. Sever (1964) reported on the
ground-water resources of Dawson County.
McCollum (1966) studied ground water in
Rockdale County.



A general overview of ground-water occur-
rence and availability, along with a method of
selecting favorable drilling sites in crystalline rocks
of the southeastern United States, was presented
by LeGrand (1967). Cressler and others (1979)
reported on the geohydrology of Bartow, Cherokee
and Forsyth Counties. Ground water in the greater
Atlanta region was described by Cressler and oth-
ers (1983) and included the results of several
pumping tests conducted for the study. Watson
(1984) studied the hydrology of Greene, Morgan
and Putnam Counties. A regional study of the
hydrogeology of northern Georgia was conducted
by the Georgia Geologic Survey as part of the
Survey’s application for primacy over the Under-
ground Injection Control Program (Arora,ed., 1984).
Radtke and others (1986) investigated the occur-
rence and availability of ground water in an 11
county region surrounding Athens, Georgia; three
pumping tests were conducted for this study. The
hydrogeology of Lamar County was studied by
Gorday (1989).
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ASHLAND SUBDIVISION, OCONEE
COUNTY

INTRODUCTION

A constant-rate pumping test was con-
ducted on a high-yleld community-supply well
for the Ashland Subdivision, Oconee County,
located approximately 12 mi southwest of the

city of Athens (Fig. 1). The subdivision water
supply well was sited by Oconee Well Drillers at
the head of an intermittent northeast trending
stream. The driller reported that the well could
produce more than 100 gpm. The Georgla Geo-
logic Survey obtained access to the well to con-
duct a pumping test.

GEOLOGY

Ashland Subdivision lies in the Winder Slope
District of the Piedmont Physiographic Province
(Clark and Zisa, 1976). Stream valleys in the
vicinity of the well are gently concave, and hill
tops are gently convex to flat (Fig. 2). Local relief
is approximately 240 ft. The largest streams in
the Ashland Subdivision area are the Apalachee
River and Barber Creek, which have floodplains
up to one half mile wide. Large streams, such as
the Apalachee River, exhibit dendritic drainage
patterns; whereas smaller streams, such as Bar-
ber Creek, and intermittent streams have rect-
angular or trellis-style drainage. Straight stream
valley segments in the area are oriented N27°E,
N62°E, N23°W, and N59°W. The Ashland Subdi-
vision well is in a northeast-trending valley of an
intermittent stream.

Rocks within a mile radius of the test well
include a red to light tan saprolite developed
from biotite gneiss, a red to purple saprolite
developed from a mica or sillimanite mica schist,
an ocher to yellow-brown saprolite weathered
from a hornblende plagioclase amphibolite, and
a black saprolite developed from a garnet-rich
quartzite. The mica schist, amphibolite and
garnet quartzite are interlayered on a scale of a
few feet. Dikes and sills of light-colored, coarse-
grained, equigranular biotite granite intruded
the abovementioned rocks in the Ashland area.
These tabular intrusions range from less than
one foot thick to several hundred feet thick.
Pods and blebs of granite also occur along com-
positional layering.

The rocks in the Ashland Subdivision area
have been polydeformed, and they exhibit north-
south and east-west trending open upright
warping folds. The geologic map (Fig. 2} illus-
trates the complexity of the structures in the
study area. Compositional layering strikes to
the northeast and northwest and dips generally
greater than 45°.

Several steeply inclined joint sets can be
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observed in the vicinity of Ashland Subdivision
(Fig. 2, Table 1). Some straight valley segments
of at least a mile in length parallel these joint
trends.

WATER QUALITY

Water quality analysis indicates that water
from the Ashland Subdivision well meets Safe
Drinking Water Standards (Table 2). Tests were
performed by the Agricultural Service Labora-
tory of the Extension Poultry Science Depart-
ment in Athens, Georgia.

HYDROLOGIC TESTING

The pumping rate of the Ashland Subdivi-
sion well averaged 138 gpm during a 24-hour
constant-rate pumping test. A drilled well owned
by the subdivision (observation well 1) is located
820 ft southwest of the pumping well and a
shallow bored well (observation well 2) is located
on adjacent property approximately 1200 ft
southeast of the test well (Fig. 2). Water pumped
from the well during the test was directed onto
the ground. Because of the short duration of the
test and the clayey nature of the soil at the site,
recirculation of water discharged from the test
well did not appear to significantly influence the
test results.

The Ashland Subdivision well could not
sustain the initial pumping rate of 150 gpm rate
after the first few hours of the test (Fig. 3). The
production rate was dropped gradually to 132
gpm at the end of the test giving an average rate
of 138 gpm for the test.

Drawdown in the test well totalled 171 ft at
the end of the 24-hour test. A graph of draw-
down versus time for this well plots as a smooth
curve (Fig. 4). The recovery curve also is smooth
and is symmetrical to the drawdown curve.

Drawdown was first observed in observa-
tion well 1 after three hours of pumping. Obser-
vation well 1 showed a total of 1.4 ft of drawdown
during the test (Fig. 5). Abottle found floating in
this well during the recovery portion of the test
apparently interfered with the conductive probe
used to measure the water level, causing the
data to be somewhat erratic. Observation well 2
recorded no drawdown for the duration of the
test.

SUMMARY

The hydrologic test results show that the
Ashland Subdivision well had a yield of 138 gpm
for 24 hours. A total of 171 ft of drawdown was
observed in the pumped well. Observation well
1 had a drawdown of 1.4 ft and observation well
2 showed no effects of the pumping. Water-
quality analysis indicates that ground water
from the Ashland Subdivision well meets
drinking water standards.

COLBERT, MADISON COUNTY
INTRODUCTION

The city of Colbert is located in southern
Madison County (Fig. 1). Madison County offi-
clals requested that the Geologic Survey assist in
locating new municipal well sites for Colbert.
Three wells were drilled at sites designated by
the Geologic Survey and two additional wells
were drilled at sites selected by the water well
contractor hired by the city.

WELL SITING

The Geologic Survey sited three wells for the
city of Colbert. The first step in identifying poten-
tial high-yielding well sites was to examine the
locations and yields of existing wells in the
vicinity of Colbert. The yields of these wells
ranged from O to 35 gpm with the highest yield-
ing well located at the head of a northwest-
trending valley. This northwest topographic trend
is prominent in the Colbert area and could
indicate the orientation of discontinuities which
may channel ground water to wells.

The criteria used in the selection of the site
for Colbert well 1 included the intersection of
topographic features trending parallel to
discontinuities (Fig. 6). Well site 2 is located in
a northwest-trending topographic feature near
an intersecting north-south discontinuity. The
drill rig could not reach the site due to wet
conditions, and so well 2 was drilled about 150
ft north of the chosen site. The site for well 3 was
selected because of intersecting topographic fea-
tures and its location downdip from a perennial
stream.

Two additional wells drilled at Colbert are



Table 1. Ashland Subdivision, joint orientations and descriptions.

N27°E 60-80° 2in-1ft smooth to irregular manganese

N59°W 50-90° 2in-4 ft irregular none

N62°E 60-90° 0.5 in-1 ft smooth to irregular none

E-W 60-90° 0.5in-4 in smooth to irregular none

Table 2. Ashland Subdivision well, water-quality analysis.

Parameter Results Parameter Results

Ag <0.05 mg/l Na 6.9 mg/l

As <0.05 mg/l Nitrate 0.843 mg/l

Ba <0.05 mg/l Pb <0.02 mg/1

Cd <0.005 mg/1 Se <0.001 mg/1

Co, 2.6 mg/l SO, 2.4 mg/l

Cr <0.01 mg/l Zn 0.34 mg/l

Cu 0.01 mg/l Turbidity <1.00

F 0.1 mg/l (NTU)

Fe 0.059 mg/1 Alkalinity (as 52 mg/l

Hg <0.001 mg/l CaCO)

Mg 1.23 mg/l Hardness (as 15.1 mg/l
CaCo,) 3.00 mg/1
Chloride

< = below laboratory detection limits
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located at sites selected by the driller. Well 1A
was picked at a T-intersection of two
drainageways across the valley from well 1. The
criteria for selection of the site of well 4 included
convenience factors; the city owned the well site
and possessed easy access. Well 4 is located
between topographic features that curve away
from each other in the upslope direction indicat-
ing a convergent dip configuration for the
discontinuities responsible for these topographic
features.

GEOLOGY

The city of Colbert lies in the Winder Slope
District, a subdivision of the Piedmont Physi-
ographic Province (Clark and Zisa, 1976). Stream
valleys are gently concave with floodplains as
wide as several hundred feet (Fig. 6). Hill tops are
gently convex with interstream divides approxi-
mately 200 ft wide. Most land surface slopes
gently, with a total relief of about 100 ft. Straight
valley segments apparent on the 7.5 minute
topographic map in the vicinity of Colbert are
orlented N40°W, N66°W, N25°, N4O°E, N6°E, and
N85°E. The wells located by the Geologic Survey
are at intersections of tributaries to Beaverdam
Creek in an area of rolling topography.

The site is mostly underlain by red to tan
saprolite weathered from a coarse-grained bi-
otite gneiss. This saprolite is interlayered with
red to tan saprolite weathered from graphite-
bearing mica schist and ocher-colored saprolite
weathered from an amphibolite. Coarse-grained,
equigranular biotite granite and quartz feldspar
pegmatite intruded the mica schist.

Compositional layering generally strikes
northeast and dips to the southeast and north-
west near Colbert (Fig. 6). The compositional
layering at well site 1 trends northwest with a
southwest dip. Near well site 2, compositional
layering strikes north-south and dips to the
west. Compositional layering strikes northeast
with a southeast dip in the vicinity of well site 3.
A fold trending northeast, and plunging to the
southwest, may be present in the Colbert area
(Fig. 6).

Joints strike N72°W with dips from 54°NE to
vertical;, N65°W and N-S with vertical dip; and
N23°W dipping 55 to 75°SW (Fig. 6). At well 2,
joint sets strike N22°E dipping 78°SE and N8O°W
with vertical dip. A joint set strikes N56°W with
vertical dip near well 3.

13

GEOPHYSICAL TESTING
Surface Geophysical Testing

A magnetic survey conducted at Colbert
near the well sites consisted of four profile lines
(Fig. 7). Individual magnetic readings were sub-
tracted from an average of readings at the site in
order to identify magnetic anomalies. Profile line
1 showed a smooth increase in fleld values to the
south, with no large magnetic anomalies near
the sites of wells 1 and 1A. Neither were any large
anomalies detected in profile line 4. Profile line
2 showed an anomaly of about 120 gamma near
well 2 (Fig. 8). This anomaly is spike-shaped and
is superimposed on a smooth decrease in the
field values to the west. Profile line 3 shows a 50
gamma drop to the north near well 3 (Fig. 9). The
50 gamma anomaly on line 3 is much greater
than the average 10-15 gamma variation in the
magnetic fleld common over most of the site.

The magnetic anomaly in profile 2 is most
likely due to a magnetic unit interlayered in the
metamorphic sequence. The anomaly in profile
3 is a much more significant feature and may
represent a geologic contact near well 3. Well 3
produced 210 gpm during a 72-hour pumping
test and penetrated numerous discontinuities.
The steepness of the change suggests that the
contact 1s dipping at a high angle and is possibly
vertical. The geographic locations of the anomalies
suggest that lithologic boundaries may coincide
with linear stream segments.

Borehole Geophysical Logging

A suite of borehole geophysical logs, in-
cluding sonic televiewer, caliper, temperature,
spontaneous potential, acoustic velocity logs,
single-point resistivity and natural gamma were
runon Colbert Wells 1, 1A, 2, 3, and 4. These logs
aided in identification of discontinuities in the
wells that may represent water-bearing zones.

Discontinuities are visible on the sonic
televiewer log of Colbert well 1 at 68 ft, 140-145
ft and 383-385 ft (Figs. 10-12). Anomalies on the
caliper, temperature, spontaneous potential, and
acoustic velocity logs correlate with the discon-
tinuity visible on the sonic televiewer log at 68 ft
(Figs. 13-16). The caliper log shows an increase
in borehole diameter at 140-145 ft, correlating
with the discontinuity zone visible on the sonic
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Figure 10. Sonic televiewer log of Colbert well 2, 62-75 ft.
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Figure 14. Temperature log of Colbert well 1.
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Figure 15. Spontaneous potential log of Colbert well 1.
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televiewer log. This depth interval also correlates
with anomalies on the spontaneous potential,
single-point resistance (Fig. 17), and acoustic
velocity logs.

The fractured zone visible on the sonic
televiewer log at 383-385 ft in well 1 correlates
with anomalies on the caliper, spontaneous po-
tential, single-point resistance and acoustic ve-
locity logs. Not all anomalies seen on borehole
geophysical logs of well 1 could be ascribed to
discontinuities, however. The caliper and resis-
tance logs both contained anomalies which could
not be correlated with discontinuities visible on
sonic televiewer logs, and the gamma-ray
anomalies on the natural gamma log showed no
apparent correlation with any discontinuity seen
on the sonic televiewer logs (Fig. 18).

The sonic televiewer logs from Colbert well
1A show discontinuities at 369-370 and 500-501
ft (Figs. 19 - 20). These zones are marked by
anomalies on the caliper, single- point resistivity
and spontaneous potential logs (Figs. 21, 23,
and 24). Caliper and single-point resistance logs
from Colbert well 1A indicate a possible water-
bearing zone at 266-277 ft (Figs. 21 and 24).
Temperature and natural gamma logs were not
useful in identifying discontinuities in this well
(Figs. 22 and 25).

Colbert well 2 was geophysically logged, but
the well driller reported that the major water-
bearing zone was penetrated at 450 ft, which was
below the reach of the logging equipment (Figs.
26-30). The driller reported a minor weathered
zone between 323 and 332 ft. The spontaneous
potentiallog shows an increase at 310-330ft and
the single -point resistance values decrease slightly
between 320 and 360 ft. These anomalies could
suggest a minor water-bearing zone near 320 ft.

Anomalies on the sonic televiewer, caliper,
spontaneous potential, single-point resistance,
and acoustic velocity logs of Colbert well 3 indicate
the presence of a discontinuity at 123-125 ft
(Figs. 31-34, 36-38). Another discontinuity is
indicated at 161-163 ft by anomalies on the
sonic televiewer, caliper, resistance, and acoustic
velocity logs. At 185-190 ft, the sonic televiewer
shows a discontinuity that appears to be a
weathered zone. The caliper, spontaneous po-
tential, resistance, and acoustic velocity logs
also show anomalies at or near this depth. A
possible fractured or weathered zone may be
indicated between 201 and 237 ft by anomalies
on the spontaneous potential, resistance, and
acoustic velocity logs. Natural gamma anoma-

24

lies also occur near this interval (Fig. 39). Spon-
taneous potential and acoustic velocity logs show
discontinuities at 248-254 ft. No temperature
anomalies were logged in this well (Fig. 35).

The sonic televiewer log, and other logs,
indicate a major discontinuity at 123-125 ft in
Colbert well 4 (Figs. 40-45). A significant in-
crease in borehole diameter occurs at this depth
(Fig. 41) and the single-point resistance log
shows an anomaly near this depth (Fig. 44). An
increase in borehole diameter at 169 ft, along
with an increase in ground-water temperature at
170 ft (Fig. 42), indicates a probable water-
bearing zone. The single-point resistance log
also shows a significant negative shift at 169 ft.
A spontaneous potentiallog and a natural gamma
log were also run on Colbert well 4 (Figs. 43 and
45).

The orientations of subsurface
discontinuities were measured from sonic tele-
viewer logs of Colbert wells 1, 1A, 2, 3 and 4.
These orientations were plotted on equal area
diagrams and compared with the orientations of
foliation, joints, and straight valley segments.

Wells 1, 3 and 4 penetrated northwest-
dipping discontinuities which are parallel or
subparallel to the major structural features in
the Colbert area. The strike and dip of foliation
measured at the land surface are within 28° and
12°, respectively, of the strike and dip of sub-
surface discontinuities measured from televiewer
logs. Well 3, the highest ylelding of the five
Colbert wells, intercepted mnumerous
discontinuities of varying orientations.

HYDROLOGIC TESTING

Air lift tests on Colbert wells 1 and 1A
indicated well yields of 15 and 10 gpm, respec-
tively. Nofurther hydrologic tests were performed
on these wells. Stress tests, using a submersible
pump powered by a generator, were performed
on Colbert wells 2, 3, and 4 in order to estimate
production capacity for these wells.

The stress test conducted on Colbert well 2
lasted for 72-hours. Outflow was directed to the
floodplain of the creek 15 feet from the well. The
pumping rate is shown in Figure 46. The draw-
down and recovery curves generated from the
data gathered during the test are irregular and
asymmetrical (Fig. 47).

A 72-hour well stress test was also carried
out on Colbert well 3. Variations in the power
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Figure 36. Spontaneous potential log of Colbert well 3.
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Figure 37. Acoustic velocity log of Colbert well 3.
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output by the generator caused minor fluctua-
tions in the pumping rate (Fig. 48). Discharge
directed into the flood plain of the creek, 15 feet
from the well, flowed away from the well. Rapid
drawdown in well 3, noted during the first hours
of testing, quickly transitioned into relative
stability (Fig. 49). The total drawdown was 117
ft for a pumping rate of 210 gpm. The fluctua-
tions in drawdown match fluctuations in the
pumping rate. The water level in test well 3 rose
rapidly during the first hours of the recovery
period, followed by a short transition into a slow
final recovery.

Discharge was directed onto the floodplain
of a nearby perennial stream during a 24-hour
stress test conducted on Colbert well 4. The
pump maintained a rate of 83 gpm for most of the
test period with a total drawdown of 66 ft
recorded. Two major fluctuations in the pump-
ing rate did occur during the test, however (Fig.
50). A truck severed the power line to the pump
230 minutes into the test. At the end of the test
period, the driller requested that the well capac-
ity be tested under a simulated water-system
load. With the well at maximum drawdown, the
pumping rate was varied in order to emulate well
capacity at varying head values. Drawdown and
recovery observed in the pumped well plot as
asymmetrical and frregular curves (Fig. 51).

SUMMARY

Three wells sited for the city of Colbert by
the Geologic Survey were selected on structural
and topographic criteria. The three wells (wells 1,
2, and 3) produced yields of 15, 153, and 210
gpm, respectively. Two additional wells, sited
and drilled, by the contractor produced yields of
10 and 83 gpm.

Well 3 penetrated numerous discontinuities
which are parallel or subparallel to foliations and
joints mapped in the Colbert area. This well
produced the highest yield of the Colbert wells
(210 gpm) suggesting that enhanced recharge
may be available through the numerous
discontinuities noted in the well bore.

DAWSONVILLE, DAWSON COUNTY

INTRODUCTION

Dawsonville is located in central Dawson
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County (Fig. 1) which lies in the Dahlonega
Upland District of the Blue Ridge Physiographic
Province (Clark and Zisa, 1976). The Geologic
Survey selected a site for a new Dawsonville
municipal water well at the request of the city.
The Geologic Survey conducted a 24-hour con-
stant rate pumping test on a well drilled on this
site. No geophysical studies were carried out at
the Dawsonville well site.

WELL SITING

The most productive of Dawsonville's previ-
ously drilled wells was located in a topographic
low, at the intersection of two streams. A similar
topographic situation was sought as the location
for the new well. An examination of the
Dawsonville area indicated that a northwest
structural trend with a vertical dip was the most
frequent in the area (Fig. 52). The Geologic
Survey selected the new well site (well 4) at the
intersection of a northwest-trending valley and a
northeasterly trending valley oriented parallel
to compositional layering. The well site is topo-
graphically low and is located in a large drainage
basin.

GEOLOGY

Valleys near the Dawsonville well site are
narrow and v-shaped and appear to be structur-
ally controlled (Fig. 52). Ridge tops are narrow
and irregular in shape. Most streams have
rectangular or trellis drainage patterns, but the
larger streams have dendritic drainage patterns.
Relief in the study area is approximately 300 ft.
Stream valley segments near Dawsonville are
oriented N50°W, N44°W, N22°W, and N32°E.

Three mappable rock units occur in the
study area. All three strike northeast and dip
southeast. These are:

1) A unit containing mica schist, biotite
gneiss, and amphibolite. These rocks consist of
a coarse-grained tan- to purple-colored mica
schist saprolite and coarse-grained tantoyellow-
brown biotite gneiss and quartz-rich gneiss sa-
prolite. The mica schist is interlayered with the
biotite gneiss on a 1-2 ft scale. The mica schist
locally contains thin layers of ocher-colored
amphibolite saprolite.

2) A unit characterized by button mica
schist and biotite gneiss. This unit consists of a
coarse-grained tan to purple garnet bearing
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button mica schist saprolite that is thinly
interlayered with a tan to yellow-brown biotite
gneiss saprolite. Garnets are lessthan0.1 in. in
diameter. The size of “buttons” in the schist
varles. The gneiss is a coarse-grained massive to
foliated biotite-quartz plagioclase gneiss. The
gneiss forms shoals in Flat Creek and along
tributaries to Flat Creek west of the well site.

3) A unit of mica schist. This sequence
consists of a fine- to coarse-grained red to tan
garnet mica schist saprolite with purple- to tan-
weathered quartz-rich gneiss saprolite. Garnets
in this schist have a diameter of up to 0.25 in,

The geologic map (Fig. 52) illustrates the
northeast strike and southeast dip of composi-
tional layering. Joints near the well site are
spaced from one inch to several feet apart and
their strike length varies from an inch to several
feet (Table 3). Joint sets are oriented N45°W,
N50°E, N62°W, and N18°W, and all dip vertically
(Fig. 52). Aperture (joint opening) isless than 0.1
in. in saprolite and manganese commonly coats
joint surfaces.

WATER QUALITY

A water-quality analysis conducted by the
Water Supply Laboratory of the Environmental
Protection Division indicates water from this
well meets Safe Drinking Water Standards (Table
4).

HYDROLOGIC TESTING

Dawsonville’s municipal well 4 was drilled
to a depth of 200 ft and had an air lift yield of 100
gpm. The Geologic Survey conducted a 24-hour
constant-rate test on the well using a submers-
ible production pump and utility power. No
observation wells were available for the test. A
nearby stream received the discharge from the
pumped well. The pumping rate remained con-
stant at approximately 75 gpm for the duration
of the test with only 9.43 ft of drawdown ob-
served. Drawdown and recovery curves con-
structed from the test data are smooth (Fig. 53).
The shape of the drawdown curve for the test well
can be matched to an exponential integral (Theis
Well Function) but the meaning of transmissivity
and storativity values which could be derived
from this methodology are unknown because the
assumptions which govern the Theis method are
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not met in this crystalline rock aquifer.
SUMMARY

The Geologic Survey located a well site for
the City of Dawsonville (municipal well 4). The
site selected lies in a topographically low area at
the intersection of two discontinuities. Hydro-
logic tests indicate that the well can easily sus-
tain a pumping rate of 75 gpm for a period of 24
hours.

LEXINGTON, OGLETHORPE COUNTY

INTRODUCTION

The city of Lexington is located in central
Oglethorpe County, about 20 miles east of Ath-
ens (Fig. 1). The Georgia Geologic Survey was
asked by the city of Lexington to test municipal
well 3 to evaluate the well’s production capacity.
Although the well site was not selected by the
Geologic Survey, it is a moderately high-yield
well located next to, but not on, a prominent
linear stream segment.

GEOLOGY

The city of Lexington lies in the Washington
Slope District, a subdivision of the Piedmont
Physiographic Province (Clark and Zisa, 1976).
Stream valleys in the Lexington area are gently
concave and hill tops are gently convex to flat.
Relief is roughly 120 ft, and most land slopes
gently. Drainage patterns of the larger streams,
such as Town Creek, are dendritic but have long
straight valley segments (Fig. 54). Intermittent
streams have dendritic or trellis drainage pat-
terns. Straight valley segments near Lexington
are orientated N11°E, N25°E, N84°E, and N68“W.
Municipal well 3 is located on the west side of a
northeast-trending straight valley segment.

Rocks within a mile radius of municipal
well 3 are mainly light gray, medium-grained,
massive, equigranular, biotite granite gneiss with
intrusions of light-colored, medium-grained,
equigranular granite. The granite is porphyritic
in places, with feldspar phenocrysts up to 0.5 in
in diameter. Medium- to coarse-grained chloritic



Table 3. Dawsonville, joint orientations and descriptions.

N50°W 90° 2in-1ft straight manganese
smooth clay

N50°E 90° 1-3 ft smooth to manganese
irregular

N62°'W 90° 1ft straight manganese
smooth clay

N18°W 90° 1ft smooth to manganese
curvilinear clay

Table 4. Dawsonville municipal well 4, water quality analysis.

Parameter

pH
Ag
As
Ba

Cd
Cr
Cu
F

Fe

Hg
Nitrate

< = below laboratory detection limits

Results

6.4

<25 pg/l
<25 pg/l
<50 pg/

<Sugl
<25 pg/l
<50 pg/

<0.1 mg/1
<50 pg/l

<0.5 pg/l
0.80 mg/1
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Parameter

Pb

Mn

Na

Se

Zn
Spec.Cond.
Alkalinity
Hardness
Total
Dissolved
Solids

Results

<25 pg/l
<25 pg/l
2.3 mg/l
<5 g/
640 pg/l
34 ymho/cm
14 pg/l
10 pg/l

24 mg/l
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Figure 53. Drawdown and recovery curves for Dawsonville city well 4.
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epidote amphibolite and light-colored granite
gneiss underlie the biotite granite gneiss. Bore-
hole logs suggest that the contact between these
two units is at 190-200 ft in municipal well 3.

Foliation was not apparent in the massive
granite gneiss unit. The granite contains biotite
schlieren; however, orientation data are insuffi-
cient to determine a trend. Joint surfaces are
smooth, spacing is from 6 in. to 10 ft, and joints
commonly are 1 to 5 ft in length. Joint sets are
oriented N36°W, N50°E, N29°E, N80°W, and N2°E,
all with vertical dips (Fig. 54).

WATER QUALITY

A water quality analysis performed by Law
and Company indicates that water from this well
has sulfate and TDS levels that exceed Second-
ary Maximum Contaminant Levels (Table 5).

BOREHOLE GEOPHYSICS

Sonic televiewer, caliper, temperature,
acoustic velocity, single-point resistance and
natural gamma logs were run on municipal well
3 (Figs. 55-62). The logs show discontinuities at
91-94, 211-225, and 486-498 ft.

The sonic televiewer log (Fig. 55) shows a
discontinuity at 91-94 ft. Anomalies on the cali-
per, temperature, natural gamma, and to alesser
extent, the single-point resistance log, also indi-
cate a discontinuity at this depth. A weathered
zone at 211-225 ft is apparent on the sonic
televiewer log (Fig. 56) and is also represented by
anomalies in borehole diameter, water tempera-
ture, natural gamma and acoustic velocity. Ob-
servations made by the well driller, as well as the
sonic televiewer log (Fig. 57), indicate that a
water-bearing weathered zone lies between 486
and 498 ft. An increase in borehole diameter at
this depth, in addition to a slight decrease in
ground-water temperature, support this inter-
pretation. The single-point resistance log also
shows an anomaly at this depth (Fig. 61).

Increases in borehole diameter at 250-265
and 358-380 ft (Fig. 58) could not be correlated
with water-bearing zones. Significant increasing
anomalies on the natural gamma log (Fig. 62)
occur at 113, 157, 215, and 309 ft, only one of
which could be correlated with a water-bearing
zone.

The

orientations of subsurface
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discontinuities were measured from the sonic
televiewer log of the Lexington well. These orien-
tations were plotted on an equal area diagram
and compared with the orientations of joints and
straight stream valley segments measured at the
surface near the well site. Discontinuities mea-
sured on the televiewer log strike within 11°of a
surface joint set that strikes N60°E with vertical
dip. Northwest-striking discontinuities measured
on the televiewer log strike within 5° of a straight
stream valley segment.

HYDROLOGIC TESTING

A 24-hour constant-rate pumping test was
conducted on Lexington municipal well 3 using
asubmersible production pump and utility power.
No observation wells could be located to monitor
the test. The outflow from the test well was
directed onto the ground and flowed to a nearby
stream.

A drawdown of 186 ft took place during the
test, carried out at a constant pumping rate of
60 gpm (Fig. 63). The drawdown curve formed by
the data gathered during the test is irregular
(Fig. 64). The recovery curve, while smoother
than the drawdown curve, was not a smooth
exponential integral curve.

SUMMARY

Lexington municipal well 3 is located on the
side of a northeast-trending linear valley seg-
ment. Sonic televiewer logs indicate that the well
penetrated several northeast-striking
discontinuities. The well sustained a pumping
rate of 60 gpm during a 24-hour test with an
observed drawdown of 186 ft.

LOCUST GROVE, HENRY COUNTY

INTRODUCTION

The City of Locust Grove, in Henry County,
obtains its municipal-supply water from a spring
(Fig. 1). During the drought of 1986, the yield of
the spring dropped and the city had to purchase
water from Henry County. The mayor requested
that the Geologic Survey locate a well to



Table 5. Lexington municipal well 3, water-quality analysis.

Results

7.0
<0.04 mg/1
< 0.02 mg/l
<0.05 mg/1
<0.005 mg/1
11 mg/l
7.0 mg/1
<0.04 mg/l
<0.04 mg/1
1.2 mg/l
<0.04 mg/l
<0.001 mg/l
<0.04 mg/1

< = below laboratory detection limit

Parameters

Na

Pb

Se

S0,

Zn

Total
Dissolved
Solids
Nitrate
Nitrogen (N)
Turbidity
(NTU)
Alkalinity (as
CaCO,)

Total Hardness
(as CaC0,)

32 mg/l
<0.02 mg/l
<0.01 mg/l

200 mg/l

0.20 mg/1

503 mg/l

0.55 mg/1
2.7

38 mg/l

240 mg/1
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Figure 55. Sonic televiewer log of Lexington municipal well 3, 86-100 ft.
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Figure 56. Sonic televiewer log of Lexington municipal well 3, 211-225 ft.
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Sonic televiewer log of Lexington municipal well 3, 486-498 ft.
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Figure 58. Caliper log of Lexington municipal well 3.
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Figure 59. Temperature log of Lexington municipal well 3.
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Figure 60. Acoustic velocity log of Lexington municipal well 3.
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Figure 62. Natural gamma log of Lexington municipal well 3.
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supplement their spring.
WELL SITING

Four well sites were chosen for the city of
Locust Grove. Three of these sites were rejected
by the city for drilling because they were too far
from existing water lines or were located on
property not owned by the city. Afourth site was
accepted for drilling. This well site (municipal
well 1) was located in a topographic low at the
intersection of a structurally controlled, north-
east-trending stream and a northwest-trending
discontinuity.

GEOLOGY

The city of Locust Grove lies in the Wash-
ington Slope District, a subdivision of the Pied-
mont Physiographic Province (Clark and Zisa,
1976). Valleys in the vicinity of Locust Grove are
concave (Fig. 65). Floodplains range between
100 and 200 ft wide, with gently convex
interstream divides. Relief is approximately 190
ft. Intermittent streams in the Locust Grove area
have trellis-style drainage patterns, and peren-
nial streams have dendritic to rectangular
drainage patterns. Straight stream valley seg-
mentsin the Locust Grove area, measured on 7.5
minute topographic maps, are orlented NO6°W,
N54°W, N28°W, and N50-70°E. The well site is in
a northeast-trending segment of the valley of
Brown Branch.

Rocks within a mile radius of the Locust
Grove well include coarse-grained biotite schist,
coarse-grained sillimanite mica schist, and
coarse-grained biotite gneiss. These rocks are
interlayered on a scale of one inch to a few feet.
The saprolite shows layering on a similar scale.

Compositional layering in the rocks strikes
northeast and dips southeast (Fig. 65). Joint
sets strike N78°W, E-W, N59°W, and N21°E. All
joints have vertical to nearly vertical dips. Joint
spacing ranges up to several feet and persistence
along strike varies up to several feet. Joint
planes are smooth to rough curvoplanar and
joint aperture in weathered rock is less than 0.1
in.

WATER QUALITY

A water quality analysis indicates that
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water from this well is acceptable as a drinking
water source (Table 6). The tests were performed
by Law and Company, Clarkston, Georgia.

BOREHOLE GEOPHYSICS

A suite of borehole geophysical logs, includ-
ing sonic televiewer, caliper, temperature,
spontaneous potential, acoustic velocity, single-
point resistance and natural gamma logs were
run at Locust Grove municipal well 1 (Figs. 66-
72). Geophysical logs and the well driller's
observations indicate that probable water-bear-
ing zones lie at 109-110 and 153-154 f{t.

The sonic televiewer log shows a disconti-
nuity at 109-110 ft (Fig. 66a). The temperature
log indicates an increase in ground-water tem-
perature at this depth probably resulting from
water flowing into the borehole (Fig. 68). The
spontaneous potential log changes character
abruptly at approximately 100-110 ft, possibly
duetothe presence of a water-filled discontinuity
at this depth.

The driller’s report indicates that the dis-
continuity at 153-154 ft yields the largest quan-
tity of water (Fig. 66b). This corresponds with an
increase in borehole diameter on the caliper log
(Fig. 67). The temperature log also shows an
increase in temperature at this depth, suggest-
ing that water enters the borehole from a water-
bearing discontinuity at or near this depth.
Although other geophysical logs (natural gamma,
resistance, and acoustic velocity) were run, their
results could not be correlated to water-bearing
zones.

The orientations of ten discontinuities
measured from the sonic televiewer log of the
Locust Grove well are “scattered” when plotted
on an equal-area diagram and no average ori-
entation could be measured. The water-bearing
discontinuity at 109-110ft is oriented NO3°W and
dips 27°SW, subparallel to the NO6°W orienta-
tion of straight valley segments near the well.
The major water-bearing discontinuity at 153-
154 ft strikes N9O°E and dips 11°N. This strike
is parallel to the E-W striking joint set, but the
joints have vertical dips at the surface.

HYDROLOGIC TESTING

A 24-hour constant-rate pumping test
was conducted on Locust Grove municipal well 1
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Table 6. Locust Grove municipal well 1, water-quality analysis.

Parameter

Results

7.5
<0.04 mg/1
<0.02 mg/1
<0.1 mg/1
<0.005 mg/1
5.6 mg/l
3.3 mg/l
<0.04 mg/1
<0.04 mg/l
<0.4 mg/l
0.18 mg/l
<0.001 mg/1
0.09 mg/l

< = below laboratory detection limit

Parameter

Na

Pb

Se

SO,

Zn

Color (Pt-Co
Units)
Turbidity
(NTU)
Alkalinity (as
CaCO,)
Nitrate
Nitrogen
Total hardness
(as CaCo0,)
Total disolved
solids

Results
6.9 mg/l
<0.02 mg/l
<0.001 mg/l
7.6 mg/1
<0.02 mg/1
0.56
76 mg/l
<0.3 mg/l
68 mg/l

150 mg/1
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Figure 66. Sonic televiewer log of Locust Grove municipal well, (a) 105-114 ft., (b) 149-158 ft.
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Figure 67. Caliper log of Locust Grove municipal well.
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Figure 68. Temperature log of Locust Grove municipal well.
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Figure 69. Spontaneous potential log of Locust Grove municipal well.
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Figure 70. Acoustic velocity log of Locust Grove municipal well.
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Figure 71. Single-point resistivity log of Locust Grove municipal well.
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Figure 72. Natural gamma log of Locust Grove municipal well,
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using a four-inch, shaft-driven turbine pump
powered by a diesel engine. No observation wells
could be located. An intermittent stream located
about 300 ft northwest of the test well received
the outflow from the test pumping. The well was
pumped at a constant rate of 180 gpm (Fig. 73)
which produced a total of 139 ft of drawdown.
Drawdown and recovery curves formed by the
test data are smooth but asymmetrical (Fig. 74).

SUMMARY

The Geologic Survey located municipal well
1 for the city of Locust Grove at the intersection
of a structurally controlled straight stream val-
ley segment and a discontinuity trend. The well
had a yield of 180 gpm after a 24-hour pumping
test (Fig. 74). The total drawdown recorded was
139 ft.

LOST MOUNTAIN, COBB COUNTY
INTRODUCTION

The community of Lost Mountain is located
in western Cobb County (Fig. 1). A domestic well
in Lost Mountain was tested for its hydrologic
properties by the Geologic Survey because a
report by the well driller indicated that the well
produced a large volume of water from what may
be a bottom-hole fracture at a depth of 616 feet.
Bottom-hole fractures are a class of inferred,
near- horizontal discontinuities that may have
developed at depths of hundreds of feet due to
stress relief as overburden is naturally removed
from the crystalline rocks of the Piedmont by
erosion (Cressler, Thurmond, and Hester, 1983).
The Geologic Survey obtained access to this well
in order to test the hydrologic properties of one
of these presumed bottom-hole discontinuities.
Geophysical logs were not run on this well.

GEOLOGY

The community of Lost Mountain lies in the
Central Uplands District, a subdivision of the
Piedmont Physiographic Province (Clark and Zisa,
1976). Total relief in the area is approximately
520 ft (Fig. 75). With the exception of Lost
Mountain, the hill tops are gently convex and
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stream valleys are gently concave. Intermittent
streams in the Lost Mountain area have trellis-
style drainage patterns; whereas, larger streams
commonly show dendritic drainage. Straight
valley segments near Lost Mountain are oriented
N50°E, N70°E, N20°E, N20°W, N45°W, and N85°E.
The well site is located on an interstream divide
on the southeastern flank of Lost Mountain and
is several hundred feet higher than the sur-
rounding area (Fig. 75).

Two mappable lithologic units are present
in the vicinity of the Lost Mountain well. One is
a unit containing amphibolite, biotite gneiss and
garnet quartzite. Roughly 85-90 percent of this
unit is a dark-green coarse-grained epidote-
chlorite-plagioclase-hornblende amphibolite.
Amphibolite weathersto ayellow-brownto ocher-
colored saprolite with a boxwork texture. Gray
coarse-grained biotite plagioclase granite gneiss
makes up 5-10 percent of this unit. Scattered
quartz and feldspar porphyroblasts are present
and range in diameter up to 0.1 in. The gneiss
contains a few garnets that are 0.1 in. in diam-
eter. These two lithologies are interlayered on a
scale one inch to a few feet. The remaining 5
percent of this unit consists of a reddish-brown
weathered, garnet quartzite. Garnets range in
diameter up to 0.4 in. The quartzite exhibits a
“spotted” texture in places and is 10 to 30 ft in
thickness.

The other unit in the vicinity of Lost Moun-
tain is predominantly a coarse-grained, silver-
grey togreen, garnet-chlorite schist. The garnets
range in diameter up to 1 in. Locally this unit has
a “button schist” texture with buttons ranging
from 1 to 3 in. The chlorite schist weathers to a
red-brown or tan saprolite. The schist is a
massive unit with a crude foliation characterized
by chlorite wrapped around garnet
porphyroblasts. Quartzite comprises a very
small percent of this unit. The quartzite con-
tains pyrite and possibly chalcopyrite. Outcrops
of quartzite commonly are less than 5 ft wide in
this map unit.

The geologic map (Fig. 75) illustrates the
northeast strike and the southeast and north-
west dip of the rocks. Joint spacing is from 2 in.
to 1 ft and persistence along strike varies from 1
in. to 20 ft. Joints occur as en echelon fractures
and as straight, curving, or irregular planes that
are manganese coated in places. Most joints,
however, are straight with smooth surfaces. Joint
aperture in weathered rock is 0.1 in. or less.
Joint sets oriented N50°W, N70°W, and N54°E are
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Figure 73. Pumping rate during test of Locust Grove city well.
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Figure 74. Drawdown and recovery curves for Locust Grove city well.
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vertical and joints oriented N15°W dip 70°NE (Fig.
75).

HYDROLOGIC TESTING

A 24-hour step test was conducted on the
Lost Mountain well using a submersible pump
and generator supplied by the driller. No ob-
servation wells could be located for this test. The
pumping rate during the test was very irregular
due to intermittent failure of the generator, but
averaged 60 gpm (Fig. 76). Pumping at this rate
produced a total drawdown of only 9.5 ft during
the test period. Drawdown and recovery curves
generated from the test data are irregular and
asymmetrical (Fig. 77). The curves are atypical in
that they have a low slope and a linear shape.
The well had not recovered to its pre-pumping
water level after 6 days.

SUMMARY

The Lost Mountain well sustained an average
pumping rate of 60 gpm for 24 hours. The
drawdown was minimal, indicating that a con-
siderable amount of water was stored in the
bottom-hole fracture. However, full recovery of
the well did not take place during the six days of
monitoring. The very slow rate of recovery of this
well was attributed to its high topographic
position and limited recharge.

NEWNAN, COWETA COUNTY

INTRODUCTION

The city of Newnan is located in central
Coweta County (Fig. 1). Newnan relies primarily
on surface water to meet its municipal-supply
needs, but withdraws ground water from three
wells to supplement surface-water supplies. The
Geologic Survey asked to be allowed to use one
of these wells to conduct a pumping test because
the other two wells could be used as observation
wells. A 24-hour pumping test was conducted
on well P, and wells S and NE (Geologic Survey
designation) were used as observation wells (Fig.
78). Information on well construction was not
available for any of these wells.
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GEOLOGY

The city of Newnan lies in the Greenville
Slope District (Clark and Zisa, 1976), a subdivi-
sion of the Piedmont Physiographic Province.
Total relief in the Newnan area is approximately
200 ft (Fig. 78). Hilltops are gently convex, and
stream valleys are gently concave. The largest
streams in the area exhibit dendritic drainage
patterns. Smaller intermittent streams have
trellis-style drainage patterns. Straight valley
segments identified on topographic maps near
Newnan are oriented N29°W, NO4°E, N74°W, and
N40°E. The three municipal wells are all located
in the valley of a northwest-trending tributary of
Sandy Creek in an area of rolling topography.

The floodplain of the tributary where the
wells are located is underlain by alluvium which
in turn overlies the Clarkston Formation. The
alluvium consists of tan, micaceous, sandy silt.
The alluvium along the tributary to Sandy Creek
ranges from O to 5 ft thick. A six-inch bed of
colluvial and alluvial cobbles underlies the
alluvium and marks the contact between the
alluvium and bedrock.

The Clarkston Formation is the bedrock
unit in which the Newnan city wells are com-
pleted. The formation consists of a tan to purple
saprolite derived from a sillimanite-garnet-mica
schist and a tan to purple saprolite derived from
a biotite-plagioclase gneiss. These two litholo-
gies are interlayered on a scale of one to several
feet. The gneiss locally contains feldspar
porphyroblasts and layers of manganese garnet
quartzite and manganese garnet schist. Ocher-
colored saprolite derived from a dark-green to
black coarse-grained hornblende-plagioclase
amphibolite also is present (Higgins and Atkins,
1981). Amphibolite layers are commonly less
than one foot thick and comprise only about 5
percent of the outcrop area. All ofthese lithologies
contain intrusions of granite and quartz-feldspar
pegmatite in places.

The geologic map illustrates the northwest
strike and northeast dip of the compositional
layering (Fig. 78). Shearing parallels the compo-
sitional layering. Joints are spaced from one
inch to several feet apart and persistence along
strike varies from an inch to several feet (Table
7). Joint aperture in weathered rock is less than
0.1 in. Joint sets that strike E-W, N25°W, and
N52°E all dip vertically. Joints striking N22°E dip
54°NW and some of the E-W joints dip 34°N.
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Table 7. Newnan, joint orientations and descriptions.

Joint Dip Spacing Surface Coating
East-West 90° 2in-1ft smooth to none
irregular
curving
Northwest " " smooth curving manganese
Northeast N ! smooth manganese
Northeast NW 2in weathered manganese
surface
East-West N 3-6in curving smooth manganese
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HYDROLOGIC TESTING

Two pumping tests were conducted at well
P, a capacity test to measure the maximum
pumping rate sustainable by the well over a
period of four hours and a 24-hour constant-rate
test during which the well was pumped at a rate
of 30 gpm. Wells S and NE served as observation
wells during these tests.

Drawdown in the pumping well could not
be adequately measured because of cascading
water (Fig. 79). The water level in well NE
dropped over 2 ft in 24 hours while water level in
well S dropped just over 0.5 ft in the same period
of time (Figs. 80, 81). Recovery of wells NE and
P was monitored after the constant discharge
test. Recovery of well S was not recorded due to
its imited drawdown during pumping. The test
well has a sustainable pumping rate of 30 gpm
after 24 hours of pumping.

SUMMARY

The Newnan well sustained a pumping rate
of 30 gpm for 24 hours. Drawdown could not be
recorded in well P due to cascading water. Only
2 ft of drawdown was noted in an observation
well located 345 ft from well P and a little more
than 0.5 ft of drawdown in a second observation
well located 214 ft from P.

SHOAL CREEK SUBDIVISION,
COWETA COUNTY

INTRODUCTION

Shoal Creek Subdivision, in Coweta County,
is located about 35 miles south of Atlanta and 2
mi west of Peachtree City (Fig. 1). The Geologic
Survey asked to be allowed to measure the
hydrologic properties of Shoal Creek commu-
nity-supply well 4 because of its high-yield po-
tential.

GEOLOGY

The Shoal Creek Subdivision lies in the
Greenville Slope District, a subdivision of the
Piedmont Physiographic Province (Clark and Zisa,
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1976). Hilltops in the area are convex to flat and
are 800 to 1000 ft across (Fig. 82). The remain-
ing area is gently sloping. Local relief is roughly
120 ft. Stream valleys in the vicinity of Shoal
Creek are gently concave with floodplains be-
tween 200 and 400 ft wide. Drainage patterns
range from dendritic to rectangular. Straight
stream valley segments in the area, measured
from topographic quadrangle maps, trend N35°W,
N53°W, N13°E, N38°E, and N79°E. Shoal Creek
Subdivision well 4 is located at the intersection
of a northeast-trending intermittent stream and
a northwest-trending segment of the valley of
perennial Shoal Creek.

Two major geologic units are present in the
Shoal Creek area, the Promised Land Formation
and the Clarkston Formation (Higgins and oth-
ers, 1987, Higgins and Atkins, 1981). The well is
located at the contact between the two forma-
tions.

The Promised Land Formation crops out
east of Shoal Creek. It consists of granite gneiss
(approximately 90 percent) and amphibolite (ap-
proximately 10 percent). The granite gneiss is a
light-colored, medium-grained, equigranular,
foliated, biotite, quartz, plagioclase granite gneiss.
The amphibolite is represented by a red-orange
to ocher-colored amphibolite saprolite.

The Clarkston Formation crops out west of
Shoal Creek. It consists of interlayered medium-
to coarse-grained garnet, biotite, quartz, plagio-
clase gneliss; tan- to purple-weathering medium-
to coarse-grained mica schist; and yellow- to
ocher-weathering medium- to coarse-grained
amphibolite. These metamorphic rocks were
intruded by a coarse-grained equigranular bi-
otite granite.

The study area is located in the southwest-
ern nose of the Newnan- Tucker Synform, a
northeast trending regional fold. This fold has
been refolded by a north trending upright fold
(Scott Creek fold generation; Higgins and Atkins,
1981; Atkins and Higgins, 1980). The general
strike of the compositional layering is northeast
with a southeast dip (Fig. 82). The rocks along
Shoal Creek, however, strike northwest and dip
to the northeast.

Joints are spaced from 2 to 6 in. apart, and
persistence along strike varies from 1 in. to 70 ft
(Table 8). Joint aperture in weathered and
exposed rock is less than 0.1 in. Joints in the
Shoal Creek area are commonly vertical and
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Table 8. Shoal Creek, joint orientations and descriptions.

Joint Length Spacing Surface Coating

NS5°E 50-60 ft 6in-2 ft smooth none

N41°W 60-70 ft 4-6in curvo- none
planar

N35°E 1in-5 ft 3-6in irregular none

Table 9. Shoal Creek Subdivision well, water-quality analysis.

Parameters Results Parameters Results

pH 8.0 Ni nd

Ag nd Pb nd

A nd Se nd

Ba nd SO, nd

Cd nd Zn 0.009 mg/1

Cl 40 mg/1 Hardness

Cr nd (as CaCo0,) 120 mg/l

Cu 0.016mg/1 Turbidity (NTU) 1.6

F 0.500 mg/1 Nitrate nd

Fe 0.43 mg/1 Total Solids

Mg nd (as NaCl) 259 mg/l

Mn 0.010 mg/1

Na 0.009 mg/1

nd = not detected
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strike N55°E, N41°W, N35°E, and N59°W (Fig. 82).
WATER QUALITY

A water-quality analysis from Shoal Creek
Subdivision well 4 indicates that the water is
high in iron, turbidity, and hardness (Table 9).
The Shoal Creek water analyses were performed
by West Georgia Water Analysis of Carrollton.

GEOPHYSICAL TESTING

Surface Geophysics

A series of magnetic profiles were con-
ducted at Shoal Creek Subdivision well 4 to
determine whether any magnetic anomalies are
assoclated with this high-yielding well. Mea-
surements were conducted ona 330x 330 ft (100
x 100 m) grid centered on the well and laid out by
pace and compass (Fig. 83). Figures 84 and 85
show the drift in the base station during the
measurement period.

The most prominent feature in the survey
is the large magnetic anomaly produced by the
well casing (Fig. 86). Figure 87 shows the data
with the well casing anomaly removed. Figure 88
is a contour map of the cleaned magnetic data.
The most prominent feature on the map is a
magnetic anomaly in the southwest part of the
survey area (Fig. 88). The magnitude of the
anomaly is greater than 40 gammas, whichis ten
times the normal ambient variation in the mag-
netic field seen over the rest of the site. This
anomaly suggests a consistent contrast in
magnetic properties between the rocks to the
southwest and those to the northeast of the
survey area.

Borehole Geophysics

A suite of borehole geophysical logs, in-
cluding caliper, temperature, spontaneous po-
tential, acoustic velocity, single-point resistance
and natural gamma logs were run at Shoal
Creek Subdivision well 4 (Figs. 89-94). A water-
bearing discontinuity was reported by the well
driller at approximately 228 ft, corresponding
with anomalies on borehole geophysical logs.
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The caliper log (Fig. 89) suggests a relatively
smooth borehole surface of constant diameter
until about 220 ft. From 220 to 228 ft, the
borehole diameter becomes smaller. The appar-
ent reduction in hole diameter is caused by a
pipe lodged in the borehole. The caliper log
indicates a great increase in borehole diameter
at 228 ft. Anomalies on the spontaneous
potential and single-point resistance logs occur
from about 210 to 230 ft (Figs. 91 and 93). These
anomalies may be related to the water-bearing
discontinuity at 228 ft. However, the metal pipe
lodged in the borehole probably produced some
of this activity. The acoustic velocity log (Fig. 92)
shows one major anomaly at about 231 ft.

HYDROLOGIC TESTING

The Geologic Survey conducted two pump-
Ing tests, a stress test and a 24-hour constant-
rate pumping test on Shoal Creek Subdivision
well 4, using a four-inch shaft-driven turbine
pump powered by a gasoline engine. Discharge
from the test well was directed into Shoal Creek,
50 ft away, via a drainage ditch. No observation
wells could be located near the site.

The appropriate pumping rate for the 24-
hour constant-rate test was calculated from the
results of a four-hour stress test. During the
constant-rate test, the well sustained a pump-
ing rate of 104 gpm for 24 hours (Fig. 95). The
total drawdown observed during the constant-
rate test was 143 ft. Drawdown and recovery
curves generated by the data gathered from the
constant-rate test are irregular but symmetri-
cal (Fig. 96). The well was somewhat unusual
in that, prior to pumping, the well had an arte-
sian flow rate of 5 gpm. The well again began to
flow several days after testing, but at a lower
rate.

SUMMARY

The Shoal Creek Subdivision well is lo-
cated at the contact between the Promised Land
and Clarkston Formations. The well was test
pumped at a rate of 104 gpm for 24 hours with
a drawdown of 143 ft. A plot of drawdown
versus recovery produced symmetrical curves.,
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Figure 89. Caliper log of Shoal Creek Subdivision well 4.
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Figure 90. Temperature log of Shoal Creek Subdivision well 4.
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Figure 91. Spontaneous potential log of Shoal Creek Subdivision well 4.
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Figure 92. Acoustic velocity log of Shoal Creek Subdivision well 4.
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UNICOI STATE PARK, WHITE
COUNTY

INTRODUCTION

Unicol State Park is located in northern
White County, about 80 miles northeast of At-
lanta (Fig. 1). The yield of the park’'s water-
supply well 1 declined from approximately 100
gpm to 30 gpm during the summer drought of
1986, forcing the park to curtail activities for
part of the summer. In an effort to obtain
adequate supplies of potable water, the park
drilled 4 new wells, two of which were sited by the
Geologic Survey (wells 2 and 5). Two additional
wells were sited, one by the well driller (well 3)
and another by a dowser (well 4) (Fig. 97).

GEOLOGY

Unicol State Park is located in the Blue
Ridge Mountain District, a subdivision of the
Blue Ridge Physiographic Province (Clark and
Zisa, 1976). Ridges trend northeast and are
steep-sided with small rounded hill tops (Fig.
97). Local relief is approximately 1200 ft. Most
of the land surface is sloping. Many of the stream
valleys in the vicinity of the park are v-shaped
with little or no floodplain. Streams exhibit
trellis-style drainage patterns. Straight stream
valley segments near Unicoi State Park trend
N50°W, N76°E, N48°E, and N10°E. Well 2 is lo-
cated at the intersection of northwest- and
northeast-trending tributary streams of Smith
Creek. Well 5 is located south of Unicol Lake in
a straight, north-south-trending segment of the
valley of Smith Creek. The park’s original well
(well 1) is located northeast of well 2 in a
northeast-trending tributary of Smith Creek.

Three major mappable lithologic units can
be identified in the vicinity of Unicol State Park
(Gillon, 1982, and German, 1985). Biotite gneiss
consists of slabby, gray-weathering, coarse-
grained biotite plagioclase gneiss with thin (1
in.) crenulated mica schist layers. Gneissic lay-
ering varies in thickness from one inch to several
feet in this unit.

A second unit contains interlayered mica
schist, biotite gneiss, and amphibolite.Tan- to
silvery-weathering, coarse-grained mica schist
isinterlayered with coarse-grained biotite gneiss
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on a scale of 1 to 20 ft. One- to two-foot wide
units of ocher-colored, coarse-grained amphibo-
lite are also present. The occurrence of amphi-
bolite distinguishes this sequence from the others.

The third unit is interlayered biotite gneiss
and mica schist. Lithologies are a grayish-white
weathering coarse-grained biotite feldspar gneiss
interlayered with crenulated mica schist. Schist
layers are 0.5 to 1 ft thick. The gneiss weathers
to a distinct white sandy saprolite with feldspar
porphyroblasts 0.5 in. in length. This sequence
comprises 50 percent of the area studied.

The geologic map illustrates the northeast
strike and the northwest and southeast dips of
the compositional layering (Fig.97). Joints are
spaced from one to several feet apart. Joints at
Unicoti are straight to curvilinear with smooth
surfaces. The joint sets strike N18°E, vertical;
NO5°E, SE dip; N50°W, vertical, and N-S with
east or west dip.

WATER QUALITY

Water-quality analyses performed by the
Georgia Environmental Protection Division Wa-
ter Quality Laboratories indicate that well 2 is
high in iron and that well 5 is high in calcium,
sulfate, strontium, and zinc as compared to well
2 (Table 10). The sulfate content renders water
from well 5 non-potable.

GEOPHYSICAL TESTING

Surface Geophysics

Nine vertical resistivity soundings and three
magnetic profiles were conducted at the site of
well 5. Electrical and magnetic surveys indicate
anomalies parallel to the north-south topographic
trend and parallel to a north-south joint set.
Both resistivity and magnetic surveys support
the existence of a narrow fracture zone. Schmitt
and others (1991) describe the results of the
surface geophysical investigations in the Unicoi
area.

Borehole Geophysics
A suite of borehole geophysical logs, in-

cluding sonic televiewer, caliper, temperature,
spontaneous potential, acoustic velocity, single-



point resistance and natural gamma logs were
run on Unicol Wells 2 and 5 (Figs. 98-114).
Unicoi well 2 (Figs. 98-104) contains two poten-
tial water-bearing zones at 105 and 643-650 ft.
The caliper log (Fig. 99) shows an increase in
borehole diameter at 90-105 ft. The spontane-
ous potential and single-point resistance logs
also show anomalies at 105 ft. A potential water-
bearing zone at 643-650 ft is indicated by the
televiewer log (Fig. 98). From 105 to 500 ft,
resistance values are stable, and thenthevalues
decrease from 500 to 650 ft.

A flow meter was used at Unicof well 5, in
addition to borehole geophysical logs, in order to
locate water-bearing zones. Several such zones
were identified (Figs. 105-114). At 79-80 ft, the
sonic televiewer log shows a discontinuity which
the flow meter indicates to be water-bearing (Fig.
105). Borehole diameter also increases at this
depth and anomalies occur on the single-point
resistance and acoustic velocity logs. The sonic
televiewer and caliper logs show a weathered
discontinuity at 84-88 ft that also produces
water. The single-point resistance and acoustic
velocity logs show anomalies at this depth. Mi-
nor water-bearing zones were identified at 148-
150 and 265-268 ft on the basis of sonic tele-
viewer, caliper, single-point resistance, and
acoustic velocity logs, along with flow meter
data. The flow meter indicates the presence of
another minor water-bearing weathered discon-
tinuity at 301-342 ft. This zone is also indicated
by changes in borehole diameter, single-point
resistance and acoustic velocity. A more signifi-
cant water-bearing zone is located at 345-352 ft.
The flow meter and temperature log both indicate
that ground water enters the borehole at this
depth. The sonicteleviewer log shows a weathered
discontinuity, and the borehole diameter in-
creases at this depth.

The orientation of subsurface discontinuities
were measured from sonic televiewer logs of
Unicoi wells 2 and 5. These orientations were
plotted on equal area diagrams and compared
with the orientations of compositional layering,
joints, and straight valley segments mapped at
the surface. Subsurface discontinuities in Unicoi
wells 2 and 5 strike northeast. The strikes of the
discontinulities in the two wells are within 9° of
each other. Northeast-striking, northwest-dip-
ping compositional layering was measured at
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the land surface. The strike and dip of the
surface compositional layering are within 23°
and 18°, respectively, of the strike and dip of
northwest-dipping subsurface discontinuities
measured from sonic televiewer logs. The sub-
surface discontinuities of this orientation may,
therefore, be related to compositional layering.
The three northeast-striking discontinuities ob-
served in the sonic televiewer logs strike within
17°of alinear streamvalley trend (N75°-80°E). The
discontinuities from 148 to 150 ft and 265 to 268
ft in the Unicoti well 5 are water-bearing and dip
about 55° and 59°, respectively, to the north-
west. These dips correspond to the dip direction
of compositional layering and may represent
zones of differential weathering.

HYDROLOGIC TESTING

A total of four new wells were drilled at
Unicol State Park. Well 3 (driller) and 4 (dowser),
sited without using geological or structural cri-
teria, had air-lift yields of approximately 5 gpm.
Well 2 was sited by the Geologic Survey on the
basis of proximity to existing water lines at the
request of park officials. A 24-hour constant-
rate pumping test conducted on Unicol well 2
utilized a submersible pump powered by utility
power. The discharge from the well was directed
into a nearby creek. The pumping rate was held
constant at approximately 10 gpm except
during the very early portion of the test (Fig.
115). Drawdown and recovery curves constructed
from data gathered at well 2 illustrate the char-
acteristics of the well (Fig. 116). Curves gener-
ated from the data on two observation wells
(wells 3 and 4) are irregular and asymmetrical
(Figs. 117 and 118).

Unicol well 5 was sited by the Geologic
Survey using geologic and structural criteria. It
was test pumped at a constant rate of 130 gpm
for 41 days, except when power was down, in an
attempt to reduce sulfate levels in the ground
water from this well. Testing was conducted
using a submersible pump powered by utility
power. The discharge from well 5 flowed into a
nearby stream. Drawdown stabilized during the
test and remained constant except during peri-
ods of interrupted power (Fig. 119). Sulfate
levels did not decline significantly during the 41
days of pumping. Recovery was not monitored at
well 5.
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EXPLANATION Helen 1:24,000, photorevised 1985.
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Figure 97. Geologic map of part of the Helen Quadrangle and the locations of the Unicoi State Park
wells.
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Table 10. Unicoi State Park wells 2 and 5, water-quality analyses.

Well Number 2
Date Sampled 9/15/86
Parameters

pH 4.5
Spec. Cond. 50
Cl 1
SO, <2
NO,+NO, <0.02
ICAP Screen

Ca 6.2
K 0.8
Mg 0.6
Na 32
Ag <10
Al 105
As <40
Au <25
Ba <10
Be <10
Bi <50
Cd <10
Co <10
Cr <10
Cu <10
Fe 23
Mn 40
Mo <10
Ni <20
Pb <25
Sb <50
Se <3
Sn <50
Sr 27
Ti 13
Tl <50
\'/ <10
Y <10
Zn <10
Zr <10

< = below laboratory detection limits

5

8/15/86

5.0
1100

1
850

<0.002

250
34
14
24.7
<10
<20
<40
<25
<10
<10
<50
<10
<10
<10
<10
20
68
<10
<20
<25
<50
<8
<50
1230
<10
<50
<10
<10
87
<10
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5

9/15/86

Results

52
328
3
125
<0.02

56.6
1.1
0.6
8.9

<10
<20
<40
<25
<10
<10
<50
<10
<10
<10
<10
<50

49

<10
<20
<25
<50
<3
<50
270
<10
<50
<10
<10
135
<10

5
3/5/87

72
834
1
400
<0.5
185
1.2
21.7
<25
<25

<50

<5

<25
<50

40
<10

<25

<5
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Units

pmho/cm
mg/l
mg/l
mg.N/1



COMPASS QUADRANTS

B

o

1334 NI H1d3A

Figure 98. Sonic televiewer log of Unicoi State Park well 2, 643-650 ft.
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Figure 99. Caliper log of Unicoi State Park well 2.
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Figure 100. Temperature log of Unicol State Park well 2.
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Figure 101. Spontaneous potential log of Unicoi State Park well 2.

125



DEPTH IN FEET

MICROSECONDS PER FOOT
1?0 200 300 400

o

500

0 T ) T : ) : T :'

100-

200+

500-

T T 7 T 1 T T T T 1 T 1 B T 1] T T T T L] L] T f T L] T T T L L T ¥ T B

700

Figure 102. Acoustic velocity log of Unicoi State Park well 2.
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Figure 103. Single-point resistivity log of Unicol State Park well 2.
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Figure 104. Natural gamma log of Unicoi State Park well 2.
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Figure 105. Sonic televiewer log of Unicoi State Park well 5, 75-90 ft.
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Figure 106. Sonic televiewer log of Unicoi State Park well 5, 145-155 ft,
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Figure 107. Sonic televiewer log of Unicoi State Park well 5, 260-275 ft.
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Figure 108. Sonic televiewer log of Unicoi State Park well 5, 344-352 ft.
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Figure 109. Caliper log of Unicol State Park well 5.
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Figure 110. Temperature log of Unicoi State Park well 5.
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Figure 111. Spontaneous potential log of Unicol State Park well 5.
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Figure 112. Acoustic velocity log of Unicoi State Park well 5.
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Figure 113. Single-point resistivity log of Unicoi State Park well 5.
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Figure 114. Natural gamma log of Unicoi State Park well 5.
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Figure 115. Pumping rate during test of well 2 at Unicoi State Park.
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Figure 116. Drawdown and recovery curves for well 2 at Unicoi State Park.
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Drawdown and recovery curves for observation well 2 at Unicoi State Park.
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Figure 119. Drawdown curve for well 5 at Unicol State Park during 41-day pumping test.



SUMMARY

The Georgia Geologic Survey sited two
wells for Unicoi State Park, wells 2 and 5. Well
2 has a yield of 10 gpm after pumping for 24
hours. Wells 3 and 4, sited by others, had ylelds
less than 5 gpm each and were used as observa-
tion wells during the pumping test of well 2.
Well 5 produced 130 gpm from numerous
discontinuities and it sustained this yield for
over 4 months of pumping. Well 5 produces
more than the amount of water needed to sus-
tain the park; however, the water is not potable
due to a high sulfate content.

WATKINSVILLE, OCONEE COUNTY
INTRODUCTION

A high-yleld, private water-supply well
owned by Oconee Well Drillers, located in
Watkinsville, Oconee County, about 8 mi south
of Athens, was made available to the Geologic
Survey for testing to measure its hydrologic
properties (Fig. 1). A second drilled well, located
400 ft northwest, and a shallow bored well,
located 1000 ft southwest of the pumping well,
were used as monitoring wells.

GEOLOGY

Watkinsville lies in the Winder Slope Dis-
trict, a subdivision of the Pledmont Physiographic
Province. Stream valleys in the Watkinsville
area are gently concave and hill tops are flat to
gently convex. Valley floodplains are narrow,
usually less than 100 ft in width (Fig. 120). Most
of the land surface is gently sloping. Relief is
approximately 100 ft. Intermittent streams ex-
hibit trellls or rectangular drainage patterns.
Straight streamvalley segments near Watkinsville
trend N40°W, N15°E, N50O°E, and N78°E. The test
well is located in the valley of an intermittent,
northwest-trending tributary of southeast-
flowing Porters Creek.

The study area is underlain by a red-
weathering biotite gneiss, red- to tan-weathering
mica schist, red-weathering biotite granite, and
ocher- to yellow-brown weathering amphibolite.
Biotite granite occurs as dikes and pods in the
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gneiss. Biotite schist is interlayered with the
biotite gneiss on the scale of one inch to a few
feet. Amphibolite occurs locally. Sillimanite
mica schist occurs northeast of Watkinsville.
Sillimanite mica schist and amphibolite are
interlayered on a one foot scale.

Rocks In the study area have been
polydeformed. The geologic map (Fig. 120) illus-
trates the complexity of the structures. Compo-
sitional layering strikes northeast and dips to
the southeast and northwest.

Joints are spaced from one inch to several
feet apart and their persistence along strike
varies from one inch to several feet. Joint
aperture in weathered and exposed rock is less
than 0.1 in. Joints strike N40°E, N60°-80°E, and
N36°W and have vertical to near vertical dips
(Fig. 120, Table 11).

BOREHOLE GEOPHYSICS

Geophysicallogs, including sonic televiewer,
caliper, temperature, spontaneous potential,
acoustic velocity logs, single-point resistance,
and natural gamma, were run at the Watkinsville
well(121-127). Examination of the logs indicates
the presence of water-bearing zones at depths of
140-146 ft, 150-152 ft, 347-348 ft, and 400-410
ft. Another water-bearing zone may be present at
20-21 ft.

The sonic televiewer log (Fig. 121a) and the
caliper log (Fig. 122) indicate what appears to be
a discontinuity at a depth of 20-21 ft. This,
however, may actually be a zone where saprolite
has “washed out™ just below the base of the
casing (16 ft). The sonic televiewer log indicates
a potential water-bearing zone at 140-146 ft,
consisting of a low-angle discontinuity dipping
29° SE, intersecting a high-angle discontinuity
that dips 84°SW (Fig. 121b). This zone also is
characterized by increased borehole diameter on
the caliper log, decreasing water temperature,
and by anomalies on the spontaneous potential,
single-point resistance, and acoustic velocity
logs (Figs. 122-126). Two other potential water-
bearing zones appear at 150-152 and 347-348 ft
on the sonic televiewer logs (Figs. 121b and
121c) and are also indicated by anomalies on the
caliper, temperature, spontaneous potential,
resistance, and acoustic velocity logs. A large
anomaly at 400-410 ft on the single-point re-
sistance log correlates with anomalies on tem-
perature, natural gamma, and acoustic velocity
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Table 11. Watkinsville, joint orientations and descriptions

Joint

N40° E

N60° -80° E

N36° W

Dip
90°

90°

Spacing

1-2 ft

1-2 ft

2-6in
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Surface

curvilinear trend
with smooth to
irregular surface

curvilinear trend
with irregular
surface

curvilinear trend
with smooth to
irregular surface

none

none

none



a) 20

22

b) 140

141
142
143
144
145
146

147

DEPTH IN FEET

148
149
150

151

152

c) 346

347

348

COMPASS QUADRANTS

."'iﬁlf'.

=
v

Figure 121. Sonic televiewer log of the Watkinsville well.
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logs, suggesting that this interval is another
potential water-bearing zone not detected on
sonic televiewer or caliper logs. Significant natural
gamma anomalies occur at about 275, and 332
ft (Fig. 127); however, their relationship, if any,
to water-bearing characteristics of the well are
unknown.

The orientations of subsurface
discontinuities were measured from the sonic
televiewer log of the Watkinsville well. These
orientations were plotted on equal area diagrams
and compared with the orientations of compo-
sitional layering, joints, and straight valley seg-
ments measured at the surface. The strikes of
discontinuities measured on the televiewer log
(N75°E and N80O°E) are parallel to the strike of
one joint set (N60°-80°E) and nearly parallel to
one linear streamvalley trend (N80°-85 E) mapped
on the surface. This could indicate that the
discontinuities observed on the sonic televiewer
logs are joints and that the northeast-trending
streams are structurally controlled. However,
dips measured on the televiewer vary greatly
(27°NW, 29°SE, and 84°SW) and generally are of
lower angle than dips of the corresponding sur-
face joint set.

HYDROLOGIC TESTING

A 24-hour constant-rate pumping test was
completed on the Watkinsville well using a sub-
mersible production pump and utility power.
Discharge from the well flowed into a valley head.
A pumping rate of 83 gpm was used throughout
the test (Fig. 128). Drawdown and recovery
curves generated from the test well data are
somewhat irregular and asymmetrical (Fig. 129).
Curves generated from the drilled observation
well data are more regular but also asymmetrical
(Fig. 130). The bored observation well did not
respond to the pumping.

SUMMARY

Hydrologic results indicate that the pump-
ing well had a yleld of 83 gpm for 24 the hours of
the pumping test. Water was produced from
discontinuities that were oriented parallel or
subparallel to surface joint orientations but
have varying degrees of dip.
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GENERAL OBSERVATIONS

The Georgia Geologic Survey's efforts to
locate high yield well sites and the testing of
these and other wells in the Pledmont and Blue
Ridge have yielded interesting preliminary
hydrogeologic findings which merit comment
and further investigation. The following is a
discussion of some of the observations made
during this phase of the project and of some of
the possible future avenues for investigation.

WELL SITING

Certain factors have been identified which
appear to aid in maximizing well yleld when
siting Pledmont wells. LeGrand (1967) described
physiographic characteristics, such as topogra-
phy and soil thickness, which appeared to corre-
late with high well ylelds in the Piedmont. Obser-
vations made during this study in the Piedmont
and Blue Ridge confirm this relationship and
have further refined well-siting methodology for
these regions.

Wells completed in the crystalline rocks of
the Blue Ridge and Piedmont Physiographic
Provinces produce water from soil and saprolite
and fromvoids in the unweathered rock. Ground
water is channeled to wells via fractures, joints,
weathered intervals, contacts or any other rock
discontinuities intercepted by the well. The per-
formance of a well, therefore, is controlled by the
following factors:

1) the storage and transmission capa-
bilities of the soil,

2) the storage and transmission capabil-
ities of the discontinuity network, and

3) the hydraulic efficiency of the connec-
tion between the well bore and the
discontinuities it intercepts.

An ideal Piedmont or Blue Ridge well would
be constructed in a place where the well bore will
intercept numerous discontinuities that are hy-
draulically connected to a thick, permeable rego-
lith which is, in turn, hydraulically connected to
one or more perennial streams. The ideal well
would be of relatively large diameter (e.g., greater
than 6 in.), in order to intercept a larger surface
area of water-bearing discontinuities to allow
more efficient transmission of water to the well.
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This well also would be close enough to required
utilities to reduce development costs, and it
would be shallow (less than 400 ft) to minimize
construction costs.

Ideal conditions rarely occur. Compromises
are necessary, but the hydrogeologic siting cri-
teria for the well system should not be the area
for compromise. Wells must be properly placed if
they are expected to produce high reliable yields.
Almost certainly, wells sited on the basis of
convenience will have lower yields.

Well performance factors, such as those
discussed above, reflect soil and bedrock char-
acteristics which can not be observed directly
prior to completion of a well. Thus, well siting in
the Piedmont and Blue Ridge Provinces is diffi-
cult, but possible, using a comprehensive geo-
logical approach. Methods of topographic
analysis, such as the LeGrand Method, only
indirectly address geologic factors critical to well
performance. Geologic structure, compositional
layering and the weathering characteristics of
the rocks, which are observable and mappable in
the field, must also be considered.

The topographic features of the Piedmont
and Blue Ridge Provinces, when closely exam-
ined, reflect the geologic structure and weathering
characteristics of the rocks on which they are
developed. Areas of fractured and highly weath-
ered rock are frequently expressed topographi-
cally as valleys and draws, serve to trap and
channel water, and should be exploited in the
placement of wells. The lowest elevations within
these valleys appear to produce the highest
yields, possibly due to a combination of high
water table and, in many cases, a thick soil/
saprolite or alluvium acting as a ground-water
reservoir.

Rock discontinuities, such as foliations,
compositional layering, joints and fractures, may
serve to channel ground water from the soil/
saprolite reservoir to the well. Locating wells at
intersections of such discontinuities will gener-
ally maximize yleld. Soil thickness at the well
head itself, long regarded as a predictor of well
yield, can not always guarantee a good ylield.
Wellslocated in areas of shallow soil may intercept
discontinuities which drain ground-water res-
ervoirslocated some distance away or, conversely,
a well may penetrate a thick soil which does not
readily transmit water because of limited
discontinuities in the underlying bedrock.

A structural analysis of rock discontinuities,
along with topographic analysis, has been the
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most reliable method found by this study for
siting wells in the Piedmont and Blue Ridge
Provinces. The relationship between topography
and bedrock characteristics is complex, but it
must be understood if a well is to be optimally
sited.

HYDROLOGIC TESTING

Pumping tests conducted by the Geologic
Survey on wells in the Piedmont and Blue Ridge
have ylelded some interesting results. Each test
yielded a unique set of results indicating the
highly variable nature of the hydrogeologic sys-
tem in the Piedmont and Blue Ridge Provinces.
The importance of monitoring water-level re-
covery, rather than just drawdown, was dem-
onstrated by pumping test results. Recovery
response may present a truer picture of long
term well yield than does the drawdown curve,
because the effects of pump performance,
variations in pumping rate, and turbulence
caused by the pumping are not present. Draw-
down and recovery curves demonstrate another
significant aspect of crystalline rock hydrology:
well behavior can not be reliably predicted using
classical analytical methods. Since the assump-
tlons governing the application of the Theis
equation are not met, transmissivity and
storativity have no clear physical meaning in
aquifers formed of discontinuities in crystalline
rocks. Further, such a well changes performance
characteristics over time as the well is pumped
and the discontinuities are de-watered.

RECOMMENDATIONS

This study demonstrates that ground water
in the Piedmont and Blue Ridge Provinces has
the potential to be a reliable source for public
drinking water supplies and for light industrial
and commercial uses. Further refinements in
well-siting methodology are needed, aswellas a
more complete understanding of the perfor-
mance characteristics of crystalline-rock wells.
Development of ground water to provide or
supplement water supplies in the future will
depend on the accuracy with which high-ylelding
wells can be sited and on the degree to which the
long-term performance of such wells can be
predicted. Further research in crystalline-rock
hydrology should address the question of how



best to site high-yielding wells without the need
for expensive preliminary investigations or
testing.

Many drillers familiar with finding water in
the Pledmont and Blue Ridge report that ap-
proximately 5-7 percent of randomly drilled do-
mestic wells have a high yleld potential (greater
than 50 gpm). Observations from this study
indicate that the high yield wells lie in identifi-
able geologic structures. The structures which
can be identified as representing potential high-
yield sites probably occupy only 5 percent of the
land area or less. Thus, rational development of
ground-water resources in the Piedmont/Blue
Ridge may require developers of water supplies
to obtain drilling sites or water rights in places
more remote from their treatment or distribution
systems than they usually have in the past.

Since almost all ground-water in the Pied-
mont/Blue Ridge can be considered as being
part of the surface or water table aquifer, it is
quite prone to pollution from man-made sources.
Special ground-water protection efforts should
be directed towards those geological environ-
ments in which the high yield well sites may be
located.
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