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CONVERSION FACTORS, ACRONYMS AND ABBREVIATIONS,

AND VERTICAL DATUM
CONVERSION FACTORS
Multiply by to obtain
Length
inch (in.) 25.4 millimeter
foot (ft) 0.3048 meter
mile (mi) 1.609 kilometer
Area
square mile (mi?) 2.590 square kilometer
Volume
gallon (gal) 3.785 liter
Flow
gallon per minute (gal/min) 0.06309 liter per second
Concentration
part per million 1 milligrams per liter (mg/L)
1,000 micrograms per liter (pg/L)
picocurie per liter 3.19 tritum unit

Specific conductance
micromho per centimeter 1 microsiemens per centimeter
at 25° Celsius (umhos/cm at 25°C) at 25 ° Celsius (uS/cm at 25 °C)
Temperature

Temperature in degrees Fahrenheit (° F) can be converted to degrees Celsius (° C) as follows:

°C=5/9 (°F-32)

iv



ACRONYMS AND ABBREVIATIONS

EPA U.S. Environmental Protection Agency
EPD Georgia Environmental Protection Division
DIC Dissolved inorganic carbon

DNR Georgia Department of Natural Resources
DOE U.S. Department of Energy

SRS Savannah River Site

TOC Total organic carbon

USGS  U.S. Geological Survey

VERTICAL DATUM

Sea level: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929--a geodetic datum
derived from a general adjustment of the first-order level nets of the United States and Canada, formerly

called “Sea Level Datum of 1929”.



GEOLOGIC, HYDROLOGIC, AND WATER-QUALITY DATA
FOR A MULTI-AQUIFER SYSTEM IN COASTAL PLAIN
SEDIMENTS NEAR MILLERS POND, BURKE COUNTY,

GEORGIA, 1992-93

John S. Clarke/ , William F. FallsV/ , Lucy E. EdwardsV , Norman O. Frederiksenl/ R
Laurel M. Bybelly , Thomas G. GibsonY , and Ronald J. LitwinY/

ABSTRACT

The Millers Pond test site, in northeastern Burke
County, Georgia, was constructed during 1991-92 to
better characterize the geologic, hydrologic, and water-
quality characteristics of a multi-aquifer system in
Coastal Plain sediments. These data are presented for
1992-93. The test site consists of a continuously cored
859 feet (ft) deep hole that penetrated the entire
thickness of Coastal Plain sediments, and seven test
wells developed at depths ranging from 80 to 735 ft.
Lithologic and paleontologic examination of core
indicated that there are at least 11 distinct lithologic
units of Late Cretaceous through Eocene age at the site,
having a total thickness of 852 ft. The test wells were
screened in the Upper Three Runs aquifer, Dublin
aquifer system, and Midville aquifer system. Upon
completion and development of each well, a 72-hour
aquifer test was conducted, water samples were
collected and analyzed for chemical constituents, and
continuous water-level recorders were installed.

Water-level fluctuations in wells completed in the
confined aquifers at the Millers Pond test site were
coincident and appear to mostly represent a mass-
loading response to fluctuations of Savannah River
stage, about 2 miles east of the site. Water-levels in the

1y s. Geological Survey.

Upper Three Runs (water table) aquifer, however,
showed little similarity to water levels in wells
completed in the deeper confined aquifers, and are
apparently influenced by precipitation, evapotrans-
piration, and possibly pumping.

Water from each of the seven zones screened at
the Millers Pond test site is of good quality and low in
dissolved solids. Concentrations of iron, however,
exceed the U.S. Environmental Protection Agency’s
secondary drinking-water standards in all zones except
the Upper Three Runs aquifer. Water from the Upper
Three Runs (water table) aquifer contained 730
picoCuries per liter (pCi/L) of tritium. Tritium at
concentrations slightly above the 1 pCi/L detection limit
were measured in two wells screened in the upper part
of Dublin aquifer system.

Although layers of clay and silt separate the
screened intervals of wells completed in the Dublin and
Midville aquifer systems, the uniform distribution of
head, similarity of water-level fluctuations and water
chemistry, and drawdown response during aquifer tests,
indicate that parts of the two aquifer systems are
hydraulically connected. Conversely, the uppermost part
of the Dublin aquifer system seems to be hydraulically
separated from adjacent water-bearing zones.



INTRODUCTION

The U.S. Department of Energy (DOE), Savannah
River Site (SRS), has manufactured nuclear materials
for the National defense since the early 1950's. A
variety of hazardous materials, including radionuclides,
volatile organic compounds, and heavy metals, are
either disposed of or stored at several locations at the
SRS. Contamination of ground water has been detected
at several locations within the site (Westinghouse
Savannah River Company, 1993, p. 12). Concern has
been raised by State of Georgia officials over the
possible migration of contaminated ground water
through aquifers underlying the Savannah River (trans-
river flow) into Georgia.

The U.S. Geological Survey (USGS), in coopera-
tion with the DOE and Georgia Department of Natural
Resources (DNR), is conducting a study to delineate the
components of ground-water flow and water quality
near the Savannah River. Stream-aquifer relations will
be evaluated to determine the potential movement
beneath or discharge into the Savannah River. The
overall objectives of this study are to identify ground-
water flow paths, quantitatively describe ground-water
flow, and evaluate stream-aquifer relations between the
Savannah River and underlying aquifers. The potential
for trans-river flow will be evaluated under both current
conditions and under selected hypothetical pumping
scenarios.

The geologic, hydrologic, and water-quality
characteristics of aquifers and confining units will be
characterized to support the analysis. Accordingly, a
test-drilling program was initiated and data collected
and analyzed to determine the geologic, hydrologic, and
water-quality characteristics of Coastal Plain sediments
near the Savannah River (fig. 1). Clusters of test wells
are being constructed in major aquifers at several
locations along the Savannah River in Georgia (fig. 1).

Purpose and Scope

The purpose of this report is to present geologic,
hydrologic, and water-quality data collected at the
Millers Pond test site in northeastern Burke County, Ga.
Data collected include the depth, thickness, geologic
properties,  paleontology  (fossil content and
identification), and water chemistry of the Coastal Plain
aquifers at the site. These data, presented in graphs,
tables, and diagrams, will provide correlations of
stratigraphy and ground-water flow-system
characteristics. Records of all data collected at the site
are on file at the U.S. Geological Survey District Office,
Atlanta, Ga.

The objectives of the test-drilling project were to
(1) obtain core samples for geologic testing and
paleontologic (fossil) examination; (2) obtain geo-

physical logs to aid in the description and definition of
the lithology and physical characteristics of the
sediments penetrated; (3) determine water quality from
discrete water-bearing zones; (4) determine the pressure
head at selected water-bearing intervals; and (5)
determine hydraulic properties of water-bearing zones
(not described in this report).

Description of Study Area

Sediments in the Atlantic Coastal Plain
physiographic province consist of alternating layers of
sand, silt, clay, and lesser amounts of limestone that dip
southeastward forming several aquifers and confining
units. Although data in South Carolina are plentiful,
limited geologic, hydrologic, and water-quality data are
available in Georgia to determine the characteristics of
these aquifers and confining units adjacent to the
Savannah River.

The Millers Pond test site is located in
northeastern Burke County, about 16 miles (mi) south of
Augusta, Ga., about 12 mi northeast of Waynesboro,
Ga., and about 2 mi west of the Savannah River (fig. 1).
The altitude of the site ranges from about 242 to 243 ft
above sea level, as determined by use of a global
positioning system.

Well-Numbering System

Each of the test wells at the Millers Pond test site
were numbered according to the order of drilling; that is,
test well 1 (TW-1) was the first well completed, TW-2
was the second, and so on. In addition to these project
well numbers, wells in Georgia also are numbered
according to a system based on the USGS index of
topographic maps. Each 7 1/2-minute topographic
quadrangle in the State has been given a number and
letter designation beginning at the southwest corner of
the State. Numbers increase eastward and letters
advance alphabetically northward. Quadrangles in the
northern part of the area are designated by double
letters. The letters "I", "II", "O", and "OO" are omitted.
Wells inventoried in each quadrangle are numbered
consecutively beginning with 1. Thus, the 171 well
numbered in the 30Z quadrangle is designated 30Z017.
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WELL CONSTRUCTION AND CORING

During July 1991, a corehole penetrating Coastal
Plain sediments and terminating in pre-Cretaceous
basement rock was completed at the Millers Pond test
site. Continuous, 2-in. diameter core samples were
collected from a depth of 10 ft to a total depth of 859 ft
using the wire-line coring method. The core samples
were used to determine lithology, grain size, sand/clay
ratio, and environment of deposition. The paleontology
of selected core samples provided age control for the
time of deposition. Borehole geophysical logs were not
collected because of excessive caving problems and the
corehole was abandoned. In December 1991, a second
borehole was completed to a depth of 859 ft near the
location of the abandoned corehole and borehole
geophysical logs were collected.

To help characterize the vertical distribution of
hydraulic head and water chemistry of Coastal Plain
sediments at the Millers Pond test site, test wells were
drilled and completed in seven water-bearing intervals
at depths ranging from 80 to 735 ft. An attempt was
made to position a screen at the top and base of each
major aquifer system to determine the vertical head
gradient and possible contrasts in hydraulic properties
and water quality across the unit. Screened intervals for
each well were positioned in layers having relatively
higher sand content surrounded by clay beds of
relatively lower permeability, as was determined by
examination of core and geophysical logs. Screened
intervals were made as large as possible (up to a
maximum thickness of 40 ft) to allow adequate pumping
rates during aquifer tests. Construction characteristics of
the seven wells are shown on figures 2-8, and are
summarized in table 1.

TW-1, completed in February 1992, was
constructed from the second 859-ft boring using a 6-in.
diameter steel casing and a telescoped 4-in. diameter
steel casing and stainless-steel screen line (fig. 2). The
6-in. diameter steel casing was installed to a depth of
690 ft and pressure grouted in place. The 4-in. diameter
casing and screen line then was telescoped from a depth
of 684 ft using a lead K-packer. Initial plans were for
installation of a sand filter pack; however, excessive
caving of fine-grained sands from the interval 705-735
ft required that the well be completed without a filter
pack. A 10-ft sediment sump of 4 in. casing with endcap
was emplaced at 735-745 ft.

Problems associated with the construction of TW-1
forced a change in planned well construction. In sub-
sequent wells (TW-2 through TW-7), a continuous 6-in.
casing and screen line was used (figs. 3-8). In this
procedure, the casing and screen line is placed in the
borehole, and the filter pack, bentonite seal, and grout
are emplaced in the annular space using a tremie pipe.
TW-2, TW-3, and TW-7 were completed using a 6-in.
diameter steel casing and stainless-steel screen line

(figs. 3, 4, and 8). In the three shallowest wells (TW-4,
TW-5a, and TW-6) 6-in. threaded and coupled polyvinyl
chloride (PVC) casing and stainless-steel screen were
used (figs. 5-7). PVC casing was used for the three
shallowest wells because of its lower cost; whereas,
steel casing was required in deeper wells because of its
resistance to collapse. A 10-ft long sediment sump was
emplaced beneath the screened interval in TW-2, TW-3,
TW-4, TW-5a, and TW-6; a 5-ft long sediment sump
was emplaced beneath the screened interval in TW-7.

TW-5 was installed in April 1992 using 6-in. PVC
casing and stainless-steel screen. Subsequent well
development showed that during construction, the
screen line separated from the casing and left a gap open
to the formation sand. After several attempts to stop
sand infiltration into the well, it was abandoned and
back-filled with cement grout. Another well (TW-5a)
was completed adjacent to TW-5 during October 1992
using similar construction specifications as TW-5 (fig.
6).

Test wells 1, 2, 3, 4, 5a, 6, and 7 were developed
using air surging and jetting techniques. Development
of TW-3 also involved use of a polyphosphate
defloculant to aid in breaking down the drilling-mud
cake on the borehole wall. Development in each of the
seven wells continued until the return water was free of
drilling mud and sand.

GEOLOGIC DATA

Coastal Plain sediments underlying Burke County
range in age from Late Cretaceous to Holocene and
consist of units of sand, silt, clay, and minor amounts of
limestone. Lithologic and paleontologic evidence from
the Millers Pond core suggests that at least 11 distinct
lithologic units are present in the vicinity of the site,
having a total thickness of 852 ft (plate 1). A
generalized correlation of units of Late Cretaceous
through Eocene age in the southeastern United States is
shown in figure 9. These sediments unconformably
overlie igneous and metamorphic rocks of Paleozoic age
and consolidated red beds of early Mesozoic age
(Chowns and Williams, 1983).

Lithology

Lithologic and geophysical characteristics of sedi-
ments at the Millers Pond test site are shown graphically
on plate 1. A detailed description of the lithology, grain
size and sorting, induration, texture, contact relations,
and physical and biogenic sedimentary structure of core
collected at the Millers Pond test site is shown in the
Appendix. Textural classification of siliciclastic sedi-
ments, listed in the Appendix, was adapted from a
standard grain-size scale (Wentworth, 1922) and
includes: clay (less than 0.020 millimeters (mm)), silt
(0.020 - 0.065 mm), sand (0.065 - 2.00 mm), granules
(2.00 - 4.00 mm), and pebbles (4-64 mm). Sand-size
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—— Shelter for water-level monitoring

instruments
Concrete
surface pad 7 / Top of casing 1.25 feet above land surface
\r_ 1 ,4 ___ Land surface altitude 241.98 feet
llaatnns s nn,n
T ERm s T .
:_:.:_ ~ s 4-inch diameter pvc casing
::-:::5 ::::'.: Bentonite grout
80 feet e K-packer
107.3 feet :::;:: v ::::: Water level, September 13, 1993
3 i 15.25-inch hole diameter
W R Wiy
_-:: ._'-: 6-inch diameter pvc casing
L] (!
i 5 Cement grout
Ly " !

187 feet 7
2 é Bentonite seal
194 feet _
211 feet Filter pack
Slot-20, 6-inch diameter
251 feet wire-wrapped stainless
steel screen
Sediment sump with end cap
261 feet

Figure 6. Schematic diagram of Millers Pond test well 5a. Footages are depths below land surface.



I— Shelter for water-level monitoring
instruments
Concrete
surface pad Top of casing 1 foot above land surface
N  Land surface altitude 242.23 feet
e UL OTL Lo _5:_1.:;-_.3
2 A
85.82 feet ._ L% Water level, September 13, 1993
o _-:.-
b5 L% 12.25-inch hole diameter
i 3
3y i
A L4 6-inch diameter pvc casing
"y, [
St [t
g E
A al, _-.-
:-_: ::-1— Cement grout
LT iy
el Pags
284 feet o ry
é / Bentonite seal
294 feet ,
300 feet - Filter pack
Siot-20, 6-inch diameter
325 feet wire-wrapped stainless
steel screen
Sediment sump with end cap
335 feet Pilot hole
336 feet

Figure 7. Schematic diagram of Millers Pond test well 6. Footages are depths below land surface.

10



— Shelter for water-level monitoring

instruments
Concrete
surface pad Top of casing 2.27 feet above land surface
\T, . i Land surface altitude 242.07 feet
e EEEE I
=i A
85.61 feet —— 4% L Water level, September 13, 1993
.1.-- .l._.l
:'_'.: -'.-f-: 15.25-inch hole diameter
6-inch diameter pvc casing
—— Cement grout
430 feet
Bentonite seal
440 feet Fit .
445 feet Her pac
Slot-20, 6-inch diameter
475 feet wire-wrapped stainless
steel screen
Sediment sump with end cap

480 feet Pilot hole

Figure 8. Schematic diagram of Millers Pond test well 7. Footages are depths below land surface.

11



4!

T Modified from Prowell and others, 1985
2 Paul F. Huddlestun, Georgia Geologic Survey, personnal commun.,

Figure 9. Generalized correlation of units of Late Cretaceous t
Areas of shaded pattern indicate missing stratigraphic interval.

January 1994.

.. Eastern Georgia
System/| European Provincial|  Alabama Western Georgia | Lithologic | Georgia Geologic , South Carolina North
Series Stage Stage Unit. | Survey Nomenclature | W E Carolina
. Ocala B Parkers E"erry and }
& . . . Harieyville Fms.
% | Priabonian | y5cksonian Yazoo > Limestone | Ocala Limestone Barnwell Barnwell /' (Cooper Grou
N Clay E7 Group Group
Bartonian Moodys Branch Formation Moodys Branch Formation
2 Gosport Sand McBean Santee 2 Castle Hayne
K- . . . . Lishon Formation | Formati =
HE Lisbon Formation | Lisbon Formation ES , ormation Formation |G|  Formation
; = Lutetian | Claibornian M U do U d | Warley Hill Fm p
=
g . . B c &
E Tallahatta Formation | Tallahatta Formation | | ongaree [Huber(Congaree :=:
& - B2 'ormation Fm (Formation £
£ Ypresian T - - =i
3 S Hatchefigbee / Bashi Fm | Hatchetigbee / Bashi Fm El Unnamed Fuhburne
. abinian orm ‘Hscahoma Formation
% g _Th_aiet'a“_ [ Nanafuli Baker Bl Formaton | Narafaa | Boker Hill Formatior n »Snapy PI‘;‘T""IQ{ m
3| & . on — —_— —
4 Selandian
2 Midwayan | Porters Creek Pl FEllenton Sawdust Beaufort
Sl g - ormation ; Formation Landing Formation
& z! Danian Clayton Formation | Clayton Formation Fm
Maastrichtian | Navarroan | e Providence Sand L Peedee Formation F:re:l:::on
— — 7 Ripley Formation teel Creek Fm of
Black Creek
i Gaillard
Campanian | Tayloran Demopolis Chalk Cusseta Sand UK4 aard | Black Creek Group Black Creek
Group
Caddin Formation
Mooreville Chalk i .
al L Blufftown Formation Shepherd Grove Fin
4 = —
o @ . .
g & i ini Eutaw Formatio i K2 Middendorf Middendorf
f“: 5‘ Santonian | Austinian otaw Formation | Futaw Formation Formation Formation
@ . . .
5 Coniacian MecShan Formation |"Tuscaloosa Formation” | UKl Cape Fear Formation Cape Fear Formation
. —?— — |- —?— — Cape Fear Formation
Turonian . Clubhouse
2 Eaglefordian| Tuscaloosa Group |Tuscaloosa Formation Formation
o
Cenomanian Beech Hill
Woodbinian Formation

hrough Eocene age in the southeastern United States.
Abbreviations used: Fm, formation.



- grains are further subdivided into five classes: very fine
(0.065 - 0.125 mm), fine (0.125 - 0.250 mm), medium
(0.250 - 0.500 mm), coarse (0.500 - 1.000 mm), and
very coarse (1.000 - 2.000 mm). Grain-size distribution
and sorting of siliciclastic framework grains was based
on visual classification of sand grains, granules, and
pebbles. In this report, granules and pebbles are con-
sidered to be grain-size classes in estimates of sorting.

Categories of sorting were based on the number of
grain-size classes observed in a sediment sample and are
herein defined as: well sorted (one grain-size class),
moderately sorted (two grain-size classes), poorly sorted
(three or four grain-size classes), and very-poorly sorted
(five or more grain-size classes). The size of heavy
". minerals, mica grains, clasts, lignite, and carbonate
grains, and the abundance of matrix were not considered
in sorting estimates.

Categories of induration for siliciclastic sediment
depended on the amount of matrix and cement present.
Samples from this core were categorized as: loose
(grains are not bound by cement or clay matrix); clay-
bound (framework grains are bound in a soft clay
matrix); and friable (framework grains are bound in a
hardened clay matrix and cement).

The textural classification of carbonates was based
on the distribution and abundance of carbonate matrix
and grains (Dunham, 1962). A mudstone contains less
than 10 percent carbonate grains in a matrix-supported
texture. A wackestone contains more than 10 percent
carbonate grains in a matrix-supported texture. A
packstone has a grain-supported texture having a
carbonate matrix. A grainstone consists of carbonate
grains without a matrix. Carbonates in core from the
Millers Pond site are predominantly calcite and some
aragonite. Carbonates are described as either loose,
partially lithified, or lithified.

The Geological Society of America (GSA), Rock
Color Chart (Geological Society of America, 1991), was
used to identify the color of sediments. Color or colors
for an interval are given as a written description using a
GSA color code.

Micropaleontology

Paleontologic data provided geologic age, and
paleontologic and lithologic data provided environment
of deposition for several geologic units at the Millers
Pond site. Twenty-five samples were examined for
dinoflagellates, pollen, benthic foraminifers, and
calcareous nannofossils, and 11 of the samples yielded
age-diagnostic assemblages. The locations of samples
are shown on plate 1 as small triangles adjacent to the
lithologic column.

Palynomorphs from sample 1 (827-828 ft) include
Complexiopollis abditus, Complexiopollis sp. D,
Complexiopollis sp. E, Complexiopollis sp. 1,
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Monmipites fragilis, Momipites sp. 1, Praecursipollenites
sp. A, and Santalacites minor. Sample 2 (797-802 ft)
contains Complexiopollis exigua, Complexiopollis sp.
D, Complexiopollis sp. H, Momipites sp. H, and
Praecursipollenites sp. A. Palynomorphs in these two
samples suggest that this assemblage is correlative with
the Complexiopollis exigua-Santalacites minor pollen
zone (Zone V-A) of Christopher (1979) and Christopher
and others (1979). Recently, this zone has been
correlated with the Coniacian stage (Sohl and Owens,
1991). Previous correlations of this zoneé were more
encompassing and included middle to late Turonian
(Christopher, 1979a) and Santonian (Christopher,
1982b). Sohl and Owens (1991) correlate pollen zone
V-A with the Cape Fear Formation in the Carolinas and
the McShan Formation in western Alabama. The lack
of both marine palynomorphs (dinocysts, acritarchs) and
microforaminiferal linings suggests a nonmarine
environment of deposition.

The pollen assemblage from sample 3 (517 ft)
probably is correlative to pollen zone CA-4 of
Wolfe (1976) and includes Complexiopollis sp. D,
Proteacidites sp. (equivalent to PR-1 of Wolfe, 1976),
and forms labeled CP3B-5, C3B-2, C3C-3, and NB-3 by
Wolfe (1976). Zone CA-4 was correlated to the upper
part of the lower Campanian and to part of the Tar Heel
Formation of the Black Creek Group by Sohl and
Owens (1991). The absence of marine dinocysts and
microforaminiferal linings in this sample suggests a
nonmarine environment of deposition.

Sample 4 (252-257 ft) contains diagnostic pollen
species Porocolpopollenites ollivierae and dinocyst
species Carpatella cornuta and Spinidinium pulcherum.
The combination of these taxa place the age of this
sample in the late part of the early Paleocene or the early
part of the late Paleocene (Frederiksen, 1991; Williams
and others, 1993). Sample 5 (237-242 ft) was only
examined for dinocysts. It contains Andalusiella sp.
aff. A polymorpha, Peridiniacean cyst sp. B, and
Peridiniacean cyst sp. C of Edwards (1980). These
species co-occur in the Porters Creek Formation in
Alabama (Edwards, 1980), but the upper limits of their
age ranges have not been documented. Both- samples
are correlative with unit P1 of Prowell and others
(1985). The forms suggest a nearshore-marine environ-
ment of deposition.

Sample 6 (165 ft) contains both pollen and
dinoflagellates. Pollen include Caryapollenites podro-
mus group or Subtriporopollenites anulatus, Nudopollis
terminalis, Tricolpites asper, and Betula infrequens. The
dinoflagellates include Adnatosphaeridium sp., Cribro-
peridinium giuseppei, Diphyes colligerum, Operculodi-
nium centrocarpum, Phthanoperidinium echinatum,
Polysphaeridium  zoharyi,  Pentadinium  favatum
(primitive forms), Spiniferites spp., Turbiosphaera cf. T.
galatea, and Wetzeliella sp. The dinocysts suggest
correlation with unit E3 of Prowell and others (1985)



and are the biostratigraphic equivalent of the upper part
of the Tallahatta Formation in Alabama (upper part of
the lower Eocene and lower part of the middle Eocene)
(Hazel and others, 1985). The forms suggest a
nearshore-marine environment of deposition.

Sample 7 (155 ft) contains a diverse dinocyst
assemblage including Achilleodinium biformoides,
Adnatosphaeridium? sp., Cordosphaeridium fibrospin-
osum, Lingulodinium machaerophorum, Nematosphae-
ropsis sp., Operculodinium centrocarpum, Pentadinium
favatum, Pentadinium goniferum, Phthanoperidinium
comatum, Polysphaeridium zoharyi, Spiniferites spp.,
Thalassiphora pelagica, Turbiosphaera magnifica, and
Wetzeliella/Gochtodinium sp. The overlap of P. favatum
and P. goniferum indicates correlation with the lower
part of unit E4 of Prowell and others (1985), and with
one or more of the following units: the upper part of the
Congaree Formation, the Warley Hill Formation, and
the lower part of the Santee Formation (Lucas-Clark,
1992). However, the possibility of reworking cannot be
excluded. The dominance by the Weizeliella group
suggests a nearshore-marine environment of deposition.

Carbonate-rich samples from 82-148 ft contained
dinocysts, pollen, foraminifers, and calcareous
nannoplankton of middle Eocene age. A diverse and
abundant assemblage of dinocysts was observed in
samples 8 (148 ft), 9 (124 ft), and 10 (120 ft) and
includes:  Pentadinium  goniferum,  Pentadinium
laticinctum  laticinctum, Samlandia chlamydophora,
Cordosphaeridium cantharellum, and Dapsillidinium
pseudocolligerum. The only age-diagnostic pollen types
were encountered in sample 8: Rouseia monilifera,
Tetracolporopollenites lesquereuxianus, and large forms
of Carya (greater than 28 um). Planktonic foraminifers
were not present, but benthic foraminifers were
identified in samples 8, 9, 10, and 11 (82 fi).
Foraminiferal assemblages in these samples are
dominated by specimens of Hanzawaia, Cibicides, or
Discorbis, and they also may include abundant
specimens of Elphidium, Nonion, and Textularia.
Specimens of Globocassidulina, Gyroidina, and
Lenticulina are also present. The species Cibicides
westi was found in samples 10 and 11; this species is
characteristic of middle Eocene strata, particularly those
of the Lisbon and Gosport Formations and their
equivalents. Samples 8 and 10 contain very sparse
assemblages of calcareous nannofossils.

The microfossils identified in samples 8, 9, 10, and
11 indicate an age in the upper part of the middle
Eocene (late Lutetian to Bartonian).  Equivalent
microfossil assemblages have been identified in the
upper part of the Lisbon Formation and Gosport
Formation of Alabama, the Lisbon Formation of
Western Georgia, the McBean Formation of Eastern
Georgia, and the McBean Formation and Santee
Formation of South Carolina (Prowell and others,
1985). Lithologic characteristics and paleontologic
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evidence from this unit suggest deposition in a shallow
(less than 100 ft in depth), open-marine environment.
The foraminiferal assemblage indicates warm, well-
oxygenated water.

HYDROLOGIC DATA

Water-bearing units at the Millers Pond site were
related to previously named hydrogeologic units by
comparing core and geophysical data collected at the
site to interpreted borehole data from nearby sites
reported by Miller (1986), Clarke and others (1985),
Brooks and others (1985), and Aadland and others
(1992). This comparison indicated that several lithostra-
tigraphic equivalents to hydrogeologic units from the
literature are present at the Millers Pond site. They are,
in descending order: (1) loosely consolidated sand and
calcareous sand of Eocene age that are updip equi-
valents to the largely carbonate Floridan aquifer system
of Miller (1986); (2) the Dublin aquifer system (Clarke
and others, 1985), comprised of sand of Paleocene and
Late Cretaceous age; and (3) the Midville aquifer
system (Clarke and others, 1985) comprised of sand of
Late Cretaceous age. A generalized correlation of
hydrogeologic units in the study area is shown in plate

The Floridan aquifer system is comprised of the
largely carbonate Upper and Lower Floridan aquifers
(Miller, 1986) in downdip areas south of Millers Pond
and the SRS. In updip areas, terrigenous sediments of
Eocene age are hydraulically connected to the Upper
and Lower Floridan aquifers. To account for this
connection, Krause and Randolph (1989) included these
updip equivalents in their simulation of ground-water
flow in the Floridan aquifer system. Updip equivalents
to the Upper Floridan aquifer have been referred to in
the study area as the Jacksonian aquifer (Vincent, 1982)
and the Upper Three Runs aquifer (Aadland and others,
1992). Updip equivalents to the Lower Floridan aquifer
have been referred to as the Gordon aquifer system
(Brooks and others, 1985) and the Gordon aquifer
(Aadland and others, 1992). In this report, updip equi-
valents to the Upper Floridan aquifer are referred to as
the Upper Three Runs aquifer. Updip equivalents to the
Lower Floridan aquifer are referred to as the Gordon
aquifer.

With the exception of the Gordon aquifer, one or
more test wells were installed in selected intervals in
each of the hydrogeologic units to determine their
hydraulic properties, water levels, and water chemistry
(table 1, plate 1). One well (TW-4) was completed in
the Upper Three Runs aquifer, three wells (TW-5a, TW-
6, and TW-7) were completed in the Dublin aquifer
system, and three wells (TW-1, TW-2, and TW-3) were
completed in the Midville aquifer system.



The uppermost part of the Dublin aquifer system,
screened in TW-5a, is characterized by sand of
Paleocene age that is separated from the lower parts of
the aquifer system by clay of Paleocene and Late
Cretaceous age. This upper part of the Dublin aquifer
system as defined by Clarke and others (1985), was
redefined by Aadland and others (1992) as part of the
Meyers Branch confining system in the vicinity of the
SRS. However, pemieable sediments within the Meyers
Branch are included in the uppermost part of the Dublin
aquifer system in this report.

Following well completion and development,
water-level recorders were installed in each well to
continuously monitor water-level fluctuations and trends
in water-bearing units. Water-level data were used to
determine the vertical distribution of hydraulic head in
the water-bearing units (table 1, plate 1) and the
magnitude of water-level fluctuations.

Vertical distribution of hydraulic head gives an
indication of the potential for vertical ground-water
movement and interconnection between adjacent
aquifers. Under unstressed conditions, upward gradients
occur in discharge areas, downward gradients occur in
recharge areas, and minimal vertical gradient exists in
areas dominated by lateral flow. At the Millers Pond
site, water levels measured on September 13, 1993, and
corrected for altitude differences between wells,
indicated that there was a slight upward head gradient of
0.84 ft between the deepest well (TW-1) screened in the
interval 705-735 ft, and TW-6 screened in the interval
300-325 ft. The slight vertical head difference between
the two screened intervals, completed in the Midville
and Dublin aquifer systems, respectively, suggests (1)
that the principal direction of ground-water flow is
lateral in this interval, or (2) that the two aquifer systems
are hydraulically interconnected, or (3) both. Such
interconnection was reported in the vicinity of Millers
Pond by Clarke and others (1985), and in the vicinity of
the SRS by Aadland and others (1992), who referred to
the interconnected aquifers as the Dublin-Midville
aquifer system.

Water levels (corrected for altitude) in TW-5a,
screened in the upper part of the Dublin aquifer system,
indicate it is a potential hydrologic sink or low point of
the aquifer systems at the Millers Pond test site. An
upward head gradient of 20.73 ft was present between
TW-6 and TW-5a (open interval, 211-251 ft); whereas
between TW-5a and TW-4, screened in the Upper Three
Runs aquifer (open interval, 80-100 ft), there was a
downward head difference of 41.6 ft. The lower water
levels in TW-5a may be the result of ground-water
discharge from the water-bearing zone due either to
regional pumping or incision of the upper part of the
Dublin aquifer system by the Savannah River. Incision
of sediments overlying the upper part of the Dublin
aquifer system was reported in the Savannah River
floodplain about 4 mi northeast of the Millers Pond test
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site by Leeth and Nagle (1994). This incision could
allow the direct discharge of water from the aquifer
system into the river, producing a cone of depression
surrounding the river.

Relations among ground-water levels at the
Millers Pond site; Savannah River stage; and
precipitation for August-December 1992, at Augusta,
Ga., are shown in figures 10 and 11. A hydrograph for
TW-5a is not shown because the well was completed
after this period.

In each well tapping the confined aquifers at the
Millers Pond site (TW-1, TW-2, TW-3, TW-6, and TW-
7), ground-water-level fluctuations were similar and
seemed to respond mostly to fluctuations of river stage.
During August-December, 1992, water levels in wells
tapping the deeper confined aquifers (TW-1, TW-2, and
TW-3 (fig. 10); and TW-6 and TW-7 (fig. 11) rose an
average of about 1.4 ft, compared to a rise in river stage
of about 13 ft, mostly during November and December
1992. In addition, two peaks of river stage were
indicated by water-level peaks in the confined aquifers
during October 1992.

To further evaluate the intluence of river stage on
ground-water levels in confined aquifers at the Millers
Pond site, a statistical comparison using Spearman’s
rank correlation coefficient (SRCC) (Iman and Conover,
1983) was performed using ground-water-level data
from TW-6 and stage data from the Savannah River at
Jackson, S.C., gage. The SRCC measures the strength
of the monotonic correlation between two variables. If
the X variable and Y variable increase together, there is
a positive correlation; if the X variable decreases as the
Y variable increases, there is a negative correlation.
The closer the SRCC is to either +1 (a positive
correlation) or -1 (a negative correlation), the stronger
the relation between the two variables. Evaluation of
data from TW-6 and the Jackson gage during August-
December 1992, showed a positive correlation (SRCC =
0.761, p-value <0.0001) between river stage - and
ground-water levels. Variations in water level not due to
changes in river stage are likely the result of changes in
ground-water pumping.

Possible explanations for the ground-water-level
response to river stage at the Millers Pond site include
direct influx of river water into an aquifer or a mass-
loading pressure response. The depth of the aquifers
and the distance (2 mi) from the Savannah River makes
it unlikely that there is any direct influx of water from
the river into the aquifers at Millers Pond. The most
likely explanation for the ground-water-level response
to stream stage is a mass-loading pressure response in
the confined aquifers. Similar mass-loading responses
to flooding and heavy rainfall in the vicinity of the SRS
were reported by Siple (1967, p. 66); in the vicinity of
the Millers Pond site by Benson and others (1993); and
in east-central Georgia by Milby and others (1991).
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Table 1. Well-construction and water-
[Water-bearing unit: M, Midville aquifer system; UT, Upper Three R

level data for test wells at the Millers Pond test site, Burke County, Georgia
uns aquifer; D, Dublin aquifer system; --, no data]

. Casing Screened interval Water level
Well Water- Altitude Date Well
numbers bearin of land of depth Below land Dat
(see uni tg surface 4 ction ( fe?et) Depth  Diameter Depth ~ Diameter Zsrvaac? :fe Remarks
figure 1) (feet) (feet) (inches) (feet) (inches) (feet) measurement
TW-1 M 243.03 02/11/92 745 0-690 6 705-735 4 85.78 09/13/93  K-packer installed at 684
(30Z017) 684-705 4 feet (see figure 2)
735-745 4
TW-2 M 243.06 02/19/92 635 0-595 6 595-625 6 86.08 09/13/93 None
(30Z021) 625-635 6
TW-3 M 242.37 03/18/92 558 0-518 6 518-548 6 85.58 09/13/93 None
(30Z023) 548-558 6
TW-4 UT 242.09 03/19/92 110 0-80 6 80-100 6 64.81 09/13/93 None
(30Z2022) 100-110 6
TW-5 D 241.98 04/09/92 260 0-210 6 210-250 6 - -- Well abandoned
(30Z024) 250-260 6
TW-5a D 242.98 10/16/92 261 0-80 4 211-251 6 107.30 09/13/93  Replacement well for TW-5.
(30Z2028) 0-211 6 Four-inch casing installed at
251-261 6 0-80 feet to seal off casing
breach at 52-60 feet
TW-6 D 242.23 07/02/92 336 0-300 6 300-325 6 85.82 09/13/93 None
(30Z025) 325-335 6
TW-7 D 242.07 08/--192 480 0-445 6 445-475 6 85.61 09/13/93 None
(30Z026) 475-480 6
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Figure 10. Daily mean ground-water levels in Millers Pond test wells 1, 2, and 3; daily mean stream
stage at Savannah River at Jackson, South Carolina; and precipitation at Augusta, Georgia,
August - December, 1992.
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stage at Savannah River at Jackson, South Carolina; and precipitation at Augusta, Georgia,
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The water-levels in TW-4, tapping the Upper
Three Runs (water table) aquifer, showed little
similarity to levels in the deeper confined aquifers.
During August-December, 1992, the water levels in
TW-4 declined about 1 ft, in contrast with rising water
levels in the confined aquifers. Because of its shallow
depth (80-100 ft), the water-level in TW-4 is influenced
by changes in precipitation and evapotranspiration, but
may also be influenced by ground-water pumping. Low
rainfall and increased evapotranspiration and pumping
during the summer and fall, may have resulted in water-
level decline in the well.

WATER-QUALITY DATA

Water samples were collected from each test well
following development and a subsequent pumping
period of at least 24 hours to determine selected
chemical and physical characteristics of the water-
bearing zones. Samples were analyzed for dissolved
concentrations of inorganic constituents, trace elements,
tritium, and the presence of volatile and semi-volatile
organic compounds (table 2). Alkalinity, dissolved
oxygen, pH, specific conductance, and water
temperature were measured at the welthead prior to the
collection of water samples.

Water sampled from each of the seven zones
screened at the Millers Pond test site is low in dissolved
solids and, with the exception of high concentrations of
iron, is considered to be of good quality. Water from
TW-1, TW-2, TW-3, TW-5a, TW-6, and TW-7
contained concentrations of iron that exceeded the U.S.
Environmental Protection Agency (EPA) and Georgia
Environmental Protection Division (EPD) secondary
maximum contaminant level of 300 pg/L (U.S.
Environmental Protection Agency, 1990a; Georgia
Environmental Protection Division, 1993). In addition,
water from TW-6 contained 93 pg/l. of manganese,
exceeding the EPA and EPD secondary maximum
contaminant level of 50 pg/L (U.S. Environmental
Protection Agency, 1990a; Georgia Environmental
Protection Division, 1993).

Water from TW-4, screened in the Upper Three
Runs (water table) aquifer, contained 730 picocuries per
liter (pCi/L) of tritium, below the EPD primary
maximum contaminant level of 20,000 pCi/L. (Georgia
Environmental Protection Division, 1993). The tritium
concentration in TW-4 closely matched the concen-
tration in stream baseflow near the site and probably is
representative of that in the water-table aquifer
(Summerour and others, 1994).

Tritium at slightly above the 1 pCi/L detection
limit, were measured in TW-5a (2.23 pCi/L) and in TW-
6 (3.19 pCi/L) screened in the Dublin aquifer system.
Tritium above detectable levels was not detected in any
of the other zones at the Millers Pond site. The most
likely explanations for the low tritium levels in the
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confined Dublin aquifer system in TW-5a and TW-6 are
(1) leakage of shallow ground water or precipitation
having above-background concentrations of tritium
along the annular space of the well, or (2) introduction
of tritium into the aquifer through drilling fluids. Other
possible explanations include (3) leakage of shallow
ground water through overlying confining units and into
the aquifer, or (4) lateral movement of ground water
from recharge areas to the Millers Pond site. Of the
second two possibilities, it is unlikely that downward
leakage through confining units occurred in TW-6
because of the upward hydraulic gradient between it and
TW-5a.

The vertical distribution of selected water-quality
characteristics were plotted (fig. 12) to determine if any
distinguishing chemical features exist in the different
water-bearing zones at the Millers Pond site. In
addition, a trilinear plot showing the percentage
composition (in milliequivalents per liter) of major
cations and anions in water was prepared to determine if
any of the water-bearing zones were characterized by a
unique water type (fig. 13).

Several patterns are evident on figure 12: (1) the
specific conductance and the concentration of dissolved
solids, hardness as CaCO3, alkalinity as CaCO3, silica,
calcium, magnesium, and strontium, are greatest in the
211-251-ft interval (TW-5a), and decreases in concen-
tration with increasing depth; (2) the pH of water
decreases with depth, ranging from a high of 8.54 in the
80-100 ft interval (TW-4), to 5.96 in the 705-735 ft
interval (TW-1); (3) with the exception of TW-1, the
concentration of iron increases with depth, ranging from
18 micrograms per liter (ug/L) in the 80-100 ft interval
to 2,600 ng/L in the 595-625 ft interval (TW-2); (4)
anomalously high concentration of manganese (93
mg/L) is present in the 300-325 ft interval (TW-6); and
(5) anomalously high concentration of zinc (610 pg/L)
is present in the 445-475 ft interval (TW-7).

Although analyses from TW-5a indicate that water
from the uppermost part of the Dublin aquifer system
may be distinct from other units based on higher
constituent concentrations, it is important to note that
some of the higher concentrations may be a result of
grout contamination introduced when nearby TW-5 was
abandoned. Similarly, the anomalous concentration of
zinc in TW-7, screened at the base of the Dublin aquifer
system, probably is a result of collecting water samples
from a galvanized discharge pipe.

With the exception of TW-1, each of the zones is
characterized by a calcium-bicarbonate type water (fig.
13). Test well 1, however, is not dominated by any
particular ion or ions. The difference in ionic
composition between TW-2 and TW-3, screened in the
middle and upper parts of the Midville aquifer system,

‘respectively, and TW-1, screened at the base of the

Midpville, suggest that there is some hydraulic separation
between the zones.
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Table 2. Chemical and physical characteristics of ground-water samples collected from test wells at the Millers Pond test site, Burke County, Georgia
[Analyses by U.S. Geological Survey, except as noted; units: mg/L, milligrams per liter; mS/cm, microsiemens per centimeter; mg/L, micrograms per liter; pCi/L,
picocuries per liter; water-bearing unit: M, Midville aquifer sytem; UT, Upper Three Runs aquifer; D, Dublin aquifer system; --, no data available; <, less than; E,

estimated value]

Characteristic and unit TW-1 TW-2 TW-3 TW-4 TW-5a TW-6 TW-7
(302017) (30Z021) (30Z023) (30Z022) (30Z2028) (30Z025) 30Z026)
Screened interval, in feet below land surface 705-735 595-625 518-548 80-100 211-251 300-325 445-475
Water-bearing unit M M M UT D D D
Date sampled 12-14-92 11-04-92 01-08-93 i 01-15-93 02-11-93 05-05-93 03-03-93'1/
05-05-93 05-05-93
Physical characteristics and inorganic constituents
Hardness as calcium carbonate, mg/L 20.24E 40.43E 34.99E 48.98E 125.90E 74:21E 61.67E
Alkalinity, as calcium carbonate, mg/L 249 35.0 35.1 46.0 116.5 59.0 64.0
Oxygen, dissolved, mg/L 0.0 0.0 0.0 9.01 0.0 0.0 0.0
pH, standard units 5.96 6.11 6.33 8.54 7.78 6.55 6.49
Specific conductance, in uS/cm 110.0 111.0 102.0 101.1 256.0 163.0 147.0
Water temperature, degrees centigrade 21.0 224 21.5 16.8 20.7 21.0 20.8
Sum of constituents, mg/L 60.85 68.71 66.03 65.02 175.17 107.95 99.26
Inorganic carbon, dissolved, as carbon dioxide, mg/L 25.6 50.8 53.9 31.6 87.8 67.4 64.1
Nitrogen, ammonia dissolved, mg/L <.01 .01 .01 01 <.01 <01 01
Nitrogen, nitrite dissolved, mg/L <.01 <01 <.01 <.01 <.01 <.01 <01
Nitrogen, ammonia + organic dissolved, mg/L <2 <2 <2 <2 <2 <2 <2
Nitrogen, nitrate and nitrite, dissolved, mg/L <.02 <02 .02 1.2 <.02 <02 .06
Phosphorus, dissolved, mg/L 03E 13 .06 02 02 .03 2
Orthophosphate phosphorus, dissolved, as 04E 05 .02 02 <.02 .03 02
phosphorus, mg/L
Calcium, dissolved, mg/L 6.1 14.0 12.0 19.0 48.0 28.0 23.0
Magnesium, dissolved, mg/L 1.2 1.3 1.2 36 1.4 1.0 1.0
Sodium, dissolved, mg/L 6.3 33 33 1.2 49 2.3 25
Potassium,dissolved, mg/L 2.4 1.6 1.5 29 1.6 88 1.7
Chloride, dissolved, mg/L 3.6 2.0 2.2 1.6 2.4 2.2 2.3
Sulfate, dissolved, mg/L 13.0 11.0 11.0 4 10.0 10.0 9.8
Fluoride, dissolved, mg/L. 0.2 0.2 0.2 <.l <1 02 0.1
Silica, dissolved, mg/L 11.0 11.0 11.0 9.0 36.0 26.0 18.0

Bromide, dissolved, mg/L A7 23 .1 1 25 <1 <.1
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‘Table 2. Chemical and physical characteristics of ground-water samples collected from test wells at the Millers Pond test site, Burke County, Georgia--Continued
!
Characteristic and unit TW-1 TW-2 TW-3 TW-4 TW-5a TW-6 TW-7
(30Z2017) (30Z021) (30Z2023) (30Z022) (30Z028) (30Z025) 30Z026)

Trace elements

Barium, dissolved, ug/L 19.0 30.0 28.0 17.0 10.0 30.0 24.0
Beryllium, dissolved, pg/L 3.0 <1.0 3.0 3.0 1.0 <1.0 <1.0
Cadmium, dissolved, ng/L <5.0 <50 2.0 20 <1.0 <1.0 <1.0
Chromium, dissolved, pug/L <10.0 <10.0 <5.0 <5.0 <5.0 5.0 <5.0
Cobalt, dissolved, pg/L <10.0 <10.0 <3.0 <3.0 <30 <3.0 <3.0
Copper, dissolved, pg/L <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
Iron, dissolved, pg/L 1,700.0 2600.0 2100.0 18.0 430.0 1500.0 1400.0
Lead, dissolved, pg/LL <50.0 <50.0 <10.0 <10.0 <10.0 <10.0 <10.0
Manganese, dissolved, pg/L 240 30.0 30.0 1.0 28.0 93.0 23.0
Molybdenum, dissolved, pg/L 14.0 <10.0 10.0 10.0 <10.0 <10.0 <10.0
Nickel, dissolved, pug/L <10.0 11.0 <10.0 10.0 <10.0 10.0 <10.0
Silver, dissolved, pg/L <5.0 <5.0 <1.0 1.0 1.0 <1.0 <1.0
Strontium, dissolved, pg/L 41.0 74.0 52.0 32.0 220.0 120.0 84.0
Vanadium, dissolved, ug/L. <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
Zinc, dissolved, wg/L 140.0 180.0 94.0 10.0 54.0 130.0 610.07
Aluminum, dissolved, pg/L <20.0 <20.0 <20.0 <20.0 20.0 <20.0 <20.0
Lithium, dissolved, ng/L 5.0 <5.0 <4.0 <4.0 6.0 10.0 <4.0
Volatile organic compounds®
Dichlorobromomethane, total, pg/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <50
Carbon tetrachloride, total, ug/L <5.0 <50 <5.0 <5.0 <50 <5.0 <5.0
1,2-Dichloroethane, total, pug/L <5.0 <50 <5.0 <5.0 <50 <5.0 <5.0
Bromoform, total, ug/L. <5.0 <50 <5.0 <5.0 <5.0 <5.0 <50
Chloroform, total, ug/L <5.0 <5.0 ’ <5.0 <50 <5.0 <5.0 <5.0
Toluene, total, pg/L <5.0 <5.0 <5.0 <5.0 <50 <5.0 <50
Benzene, total, pg/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
Chlorobenzene, total, ug/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
Chloroethane, total, ug/L <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
Ethylbenzene, total, pg/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
Methyl bromide, total, ug/L <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0

Methyl chloride, total, pg/L. <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
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Table 2. Chemical and physical characteristics of ground-water samples collected from test wells at the Millers Pond test site, Burke County, Georgia--Continued

Characteristic and unit TW-1 TW-2 TW-3 TW-4 TW-5a ' TW-6 TW-7
(30Z017) (30Z021) (30Z023) (30Z022) (30Z028) (30Z025) 307026)

Volatile organic compounds—-ContinuedsJ

Methylene chloride, total, ug/L <50 <5.0 <5.0 <5.0 <50 <5.0 51.0
Tetrachloroethylene, total, pg/L <50 <5.0 <5.0 <5.0 <50 <5.0 <5.0
Trichlorofluoromethane, total, ug/L. <5.0 <50 <5.0 <5.0 <5.0 <5.0 <50
1,1-Dichloroethane, total, ug/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
1,1-Dichloroethylene, total, ug/L <5.0 <5.0 <5.0 <50 <5.0 <5.0 <5.0
1,1,1-Trichloroethane, total, ug/L <5.0 <50 <5.0 <5.0 <5.0 <5.0 <50
1,1,2-Trichloroethane, total', pg/L <5.0 <50 <5.0 <50 <50 <5.0 <50
1,1,2,2- Tetrachloroethane, jg/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
1,2-Dichloropropane, total, ug/L <5.0 <5.0 <5.0 <50 <5.0 <5.0 <5.0
1,2-Transdichloroethylene, total, pug/L <5.0 <5.0 <5.0 <5.0 <50 <5.0 <50
Trans-1,3-Dichloropropene, total, pg/L <5.0 <50 <5.0 <5.0 <5.0 <5.0 <50
Cis-1,3-Dichloropropene, total, 1g/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <50
Vinyl chloride, total, ug/L <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
Trichloroethylene, total, pg/L <5.0 <5.0 <5.0 <50 <5.0 <5.0 <50
Carbon disulfide, total, pg/L. <5.0 <5.0 <5.0 <50 <5.0 <5.0 <50
Vinyl acetate, total, pg/L <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0
2-Hexanone, total, ug/L <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0
Styrene, total, ug/L <5.0 <5.0 <5.0 <5.0 <50 <5.0 <5.0
1,2-Dibromoethane, total, pg/L <5.0 <5.0 <50 <5.0 <5.0 <5.0 <5.0
Xylene, pug/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
Acetone, total, ug/L <100.0 <100.0 <100.0 <100.0 <100.0 <100.0 <100.0
Methy! ethyl ketone, total, pug/L <100.0 <100.0 <100.0 <100.0 <100.0 <100.0 <100.0
Tritium®
Tritium, pCi/L <1.0 <1.0 <1.0 730.0% 3.19% 2.23% <1.0

1yjolatile organic compounds only.

ZHigh value may be the result of contact with galvanized discharge pipe.

3/ Analyses by Georgia Department of Natural Resources, Environmental Protection Division.
4 Analyses by Alberta Environmental Centre, Vegreville, Alberta, Canada.

5/Accuracy of analysis (based on background readings) is +22.33 picoCuries per liter.
6/Accuracy of analysis (based on background readings) is * 1.28 picoCuries per liter.
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Figure 12. Distribution of selected chemical properties and constituent concentrations with depth at the
Millers Pond site.
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Figure 13. Percentage composition of major ionic constituents in ground water at the Millers Pond site.
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AQUIFER INTERCONNECTION

Ground-water-level and water-chemistry data were
evaluated to assess the degree of aquifer interconnection
at the Millers Pond site. In addition, aquifer tests were
conducted at the site to give a qualitative indication of
interaquifer leakage.

Evidence for interaquifer leakage was assessed
during seven, 72-hr aquifer tests conducted during
November 1992 to March 1993. For each test, the
drawdown responses in three wells open to adjacent
aquifers were measured while pumping one of the seven
test wells (table 3). A measurable drawdown response
was observed in adjacent zones during pumping of TW-
1, TW-2, and TW-3, screened in the Midville aquifer
system, and TW-6 and TW-7 screened in the Dublin
aquifer system. No measureable drawdown was
observed in adjacent zones during pumping of TW-4,
screened in the Upper Three Runs aquifer, or TW-5a,
screened in the upper part of the Dublin aquifer system.

Parts of the Dublin and Midville aquifer systems
seem to be hydraulically connected at the Millers Pond
site. Although low-permeability clay layers separate the
water-bearing units screened in the two aquifer systems
(TW-1, TW-2, TW-3, TW-6, and TW-7, plate 1), the

uniform distribution of head (table 1, plate 1), similarity
of water-level fluctuations (figs. 10, 11) and water
chemistry (figs. 12 and 13), and drawdown response
during aquifer tests (table 3) indicate that parts of the
two aquifer systems are hydraulically connected.
Depositional models of Cretaceous-age sediments that
comprise the Dublin and Midville aquifer systems
suggest that the clay and silt layers probably are of
limited lateral extent, and thus, do not provide extensive
confinement between layers.

The uppermost part of the Dublin aquifer system
(TW-5a) is hydraulically separated from adjacent water-
bearing zones. This hydraulic separation is indicated by
(1) lack of drawdown response in adjacent water-
bearing zones during aquifer tests, and (2) differences in
hydraulic head, water-level fluctuations, and water
chemistry between TW-5a and wells screened in the
underlying Dublin and Midville aquifer systems (TW-1,
TW-2, TW-3, TW-6, and TW-7). Layers of clay of
Paleocene age separate the uppermost part of the Dublin
aquifer system from adjacent water-bearing zones.
These sediments apparently are more laterally extensive
than clays in the underlying units and thus provide a
greater degree of confinement than the underlying clay
layers at the Millers Pond site.

Table 3. Drawdown response in pumped well and observation wells during 72-hour aquifer tests at the Millers Pond

test site, Burke County, Georgia

[Data from Jerry Moore, Clemson University, written commun., 1993; shaded

values represent drawdown in purped well; NM, zone not monitored during test]

Water-bearing unit and drawdown response in pumped well and observation wells (in feet)

Pumped well
and test Upper
yield, Three Dublin aquifer system Midville aquifer system
in gallons Runs
per minute
TW-4 TW-5a TW-6 TW-7 TW-3 TW-2 TW-1
TW-4 (8) L __5v.25 : <0.0003 <0.0003  <0.0003 NM NM NM
TW-5a (41) <0.0003 | f70.54 . <0.0003 <0.0003 NM NM NM
TW-6 (12) <0.0003 <00003 19030 033 NM NM NM
TW-7 (19) NM NM 0.23 137.80 0.20 0.13 NM
TW-3 (165) NM NM NM 0.88 209.98 0.66  <0.0003
TW-2 (65) NM NM NM 0.13 023 8859 013
TW-1 (178) NM NM NM 0.06 0.10 056  147.64
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SUMMARY AND CONCLUSIONS

This report contains geologic, hydrologic, and
water-quality data of Coastal Plain sediments collected
during 1991-93 at a test site in northern Burke County,
Georgia. The test site consists of one 859-foot (ft) deep
corehole and seven test wells screened at different
depths. The corehole penetrated sediments of Late
Cretaceous through Eocene age and incised pre-
Cretaceous basement rock at a depth of 852 ft.
Lithologic and paleontologic examination of core from
the Millers Pond test site indicated that there are at least
11 lithologic units in the vicinity of the site.

Seven test wells were installed at depths ranging
from 80 to 735 ft to determine the hydraulic properties,
ground-water levels and water chemistry of Coastal
Plain sediments. One well was completed in the Upper
Three Runs (water table) aquifer, three wells were
completed in the Dublin aquifer system and three wells
were completed in the Midville aquifer system. Upon
completion and development of each well, a 72-hour
aquifer test was conducted, water samples were
collected and analyzed for physical characteristics and
chemical constituents, and continuous water-level
recorders were installed.

Water-level data were collected to determine
vertical head differences at the site. Water-level
measurements during September 1993 indicate that a
slight upward head gradient of 0.84 ft was present
between the screened intervals of 705-735 ft and 300-
325 ft, tapping the Midville and Dublin aquifer systems,
respectively. This slight head difference indicates that
the principal direction of ground-water flow is lateral in
this interval or that the two aquifer systems are
hydraulically interconnected, or both. Water levels in
the 211-251 ft interval, screened in the upper part of the
Dublin aquifer system, indicate it is a potential
hydrologic sink or low point of the aquifer systems at
the Millers Pond site. The lower water levels in TW-5a
may be the result of ground-water discharge from the
water-bearing zone due to regional pumping or incision
of the upper part of the Dublin aquifer system by the
Savannah River.

Water-level fluctuations at the Millers Pond test
site during August-December 1992 were compared to
records of river stage and precipitation to evaluate
possible cause and effect relations. Water-level
fluctuations in wells tapping the confined aquifers at the
Millers Pond site were similar and generally correspond
to fluctuations of river stage, and to a lesser degree,
pumping. Alternatively, water-levels in the Upper Three
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Runs (water table) aquifer, showed little similarity to
levels in wells tapping the deeper confined aquifers, and
suggest that the water table is strongly influenced by
precipitation, evapotranspiration, and pumpage.

Water from each of the seven zones screened at the
Millers Pond site is of good quality and low in dissolved
solids. Concentrations of iron, however, exceeded the
U.S. Environmental Protection Agency and Georgia
Environmental Protection Division secondary drinking-
water standards in all zones except the Upper Three
Runs aquifer.

Water from the Upper Three Runs (water table)
aquifer contained 730 picoCuries per liter (pCi/L) of
tritium. Tritium at concentrations slightly above the 1
pCi/L detection limit, were measured in two wells
screened in the upper part of Dublin aquifer system and
are probably the result of either (1) leakage of
contaminated shallow ground water or precipitation
along the annular space of the well or (2) introduction of
tritium into the aquifer through drilling fluids. Other
possible explanations include (3) leakage of shallow
ground water through overlying confining units and into
the aquifer or (4) lateral movement of ground water
from recharge areas to the Millers Pond site.

To establish if any distinguishing chemical
features of water-bearing zones exist at the Millers Pond
test site, water types were determined and distribution of
selected water-quality characteristics were plotted with
depth. Water from the uppermost part of the Dublin
aquifer system may be characterized by higher
constituent concentrations; however, some of the higher
concentrations may be a result of grout contamination
from a nearby abandoned well. Most of the water-
bearing zones are characterized by a calcium-
bicarbonate type water; however, the base of the Mid-
ville aquifer system is characterized by a mixed water
that is not dominated by any particular ion or ions.

Ground-water-level and water-chemistry data were
evaluated together with preliminary results of 72-hour
aquifer tests to assess the degree of aquifer
interconnection at the Millers Pond site. Although
layers of clay and silt separate the wells screened in the
Dublin and Midville aquifer systems, the uniform distri-
bution of head, similarity of water-level fluctuations and
water chemistry, and drawdown response during aquifer
tests indicate that parts of the two aquifer systems are
hydraulically connected. Conversely, the uppermost part
of the Dublin aquifer system seems to be hydraulically
separated from adjacent water-bearing zones.
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APPENDIX

Lithologic description of Millers Pond core, Burke County, Georgia

[Unless otherwise reported, core recovery is 100 percent; ft, foot; mm, grain size, in millimeters]

Depth below
Lithologic description land surface,
in feet
No recovery. 0-10
Sand, fine- to coarse-grained, moderately sorted, loose to clay-bound, clay matrix (5-15 percent), dark
yellow orange (10YR6/6) with moderate red (SR4/6) to dark reddish brown (10R3/4) staining, 10-20
gradational lower contact.
Sand, medium- to very coarse-grained, moderately to poorly sorted, loose, clay matrix (less than 5
percent), pale yellow orange (10YR6/6) to dark yellow orange (10YR6/6), lower contact not 20-27
recovered, recovery 43 percent.
Sand, medium- to coarse-grained, moderately sorted, unidentified black heavy minerals (less than 1
percent), loose, clay matrix (5-10 percent), discontinuous clay laminae (5 percent), laminated at 38 ft, 27.42
moderate brown (5YR3/4) to dark yellow orange (10YR6/6), lower contact not recovered, recovery 33
percent.
Sand, fine- to coarse-grained, granules (5-10 percent), pebbles (5 percent), poorly to very poorly sorted,
loose, clay matrix (5-10 percent), moderate reddish brown (10R4/6), lower contact not recovered, 42-47
recovery 30 percent.
Sand, fine-grained, well sorted, mica (1 percent), loose, clay matrix (5 percent), wavy laminated, dark 47-48
yellow orange (10YR6/6), sharp lower contact. )
Sand, medium- to coarse-grained, granules (5 percent), moderately to poorly sorted, loose, clay matrix 48-52
(5-10 percent), moderate reddish brown (10R4/6), lower contact not recovered, recovery 38 percent. )
Sand, medium- to coarse-grained, moderately sorted, lignite (1-2 percent, 1-3 mm), mica (1 percent),
loose, clay matrix (less than 5 percent) pale yellowish orange (10YR8/6) to grayish orange (10YR7/4), 52-62
lower contact not recovered, recovery 35 percent.
Sand, fine- to medium-grained, granules (5 percent), pebbles (1 percent), moderately to poorly sorted,
lignite (1 percent), loose, clay matrix (5 percent), discontinuous clay laminae (5 percent), grayish 62-67
yellow (5Y8/4), lower contact not recovered, recovery 80 percent.
Clay, well-laminated at 69 ft, dark yellowish orange (10YR6/6) to pale yellowish orange (10YR8/6), 67-69
with lenses and laminae of fine-grained sand, lignite (1 percent, 1-2 mm), lower contact not recovered.
No recovery. 69-72
Sand, fine- to medium-grained, moderately sorted, lignite (5 percent,1-2 mm), clay-bound, clay matrix
(10-20 percent), dark yellowish orange(10YR6/6) with pale greenish yellow (10Y8/2) clay clasts (10- ~ 72-73
20 percent), sharp lower contact.
Clay, lignite (1-2 percent, 1-2 mm), pale greenish yellow (10Y8/2),sharp lower contact. 73-73.5
Sand, fine- to medium-grained, moderately sorted, grading down to fine- to very coarse-grained, poorly
sorted, clay-bound, clay matrix (10-20 percent), carbonate matrix (1-2 percent), dusky yellow (5Y8/ 73.5-75
4), sharp lower contact.
Carbonate, fine- to very coarse-grained quartz sand (20-25 percent), fragmented mollusk shells (10 75.76
percent), partially lithified, grayish yellow (5Y8/4), sharp lower contact.
Sand, medium-grained, well sorted, clay-bound, clay matrix (10-20 percent), dark yellowish orange 7678
(10YR6/6), lower contact not recovered, recovery 50 percent.
No recovery. 78-82
Carbonate, mudstone to grainstone, fine- to coarse-grained quartz sand (20-40 percent), macrofossils
include pelecypods, large oysters, and urchins, pelecypods molds (2-10 percent), very pale orange 82-100

(10YRS8/2), sharp lower contact, recovery 95 percent.
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APPENDIX--Continued

Lithologic description of Millers Pond core, Burke County, Georgia

Lithologic description

Depth below
land surface,
in feet

Sand, fine- to medium-grained, carbonate matrix (30 percent), carbonate grains (20 percent), moderately
sorted, loose to partially lithified, grayish yellow (5Y8/4), lower contact not recovered, recovery 92
percent.

Carbonate, mudstone, fine-grained quartz sand (5-20 percent), partially lithified, yellowish gray (5Y7/
2), sharp lower contact.

Carbonate, mudstone to wackestone, small pelecypods (5-20 percent), fine- to medium-grained quartz
sand (10-20 percent), lignite (2-5 percent, 1-2 mm), glauconite (1-2 percent), clay matrix (5-10
percent), partially lithified, yellowish gray (5Y8/1) to light olive gray (5Y6/1), gradational lower
contact.

Carbonate, mudstone to wackestone, with large pelecypod fragments (5 percent), small shark tooth,
fine- to very coarse-grained quartz sand (20 percent), glauconite (5-10 percent), loose to partially
lithified, yellowish gray (5Y8/1), sharp lower contact.

Sand, fine- to very coarse-grained, moderately to poorly sorted, carbonate matrix (20 percent), carbonate
grains (25 percent), glauconite (2-5 percent), loose, yellowish gray (5Y8/1), sharp lower contact.

Carbonate, mudstone to wackestone, with spicules (2-5 percent), very fine- to fine-grained quartz sand
(25-40 percent), glauconite (2-5 percent), lignite (1 percent, 1-10 mm), white (N9) clay clasts (1
percent) at 142.5 ft, burrow-mottied texture at 142-143 ft, loose to partiaily lithified, light olive gray
(5Y6/1), sharp lower contact.

Carbonate, wackestone, large oysters and pelecypods (20 percent), very fine- to very coarse-grained
quartz sand (20-30 percent), glauconite (2-5 percent), loose to partially lithified, light olive gray (5Y6/
1), sharp lower contact.

Sand, very fine- to very coarse-grained, granules (5 percent), very poorly sorted, carbonate matrix (5
percent), pelecypods (10-20 percent), glauconite (2-5 percent), loose, light olive gray (5Y6/1), sharp
lower contact.

Sand, very fine- to fine-grained, moderately to well sorted, lignite (1-2 percent, 1-2 mm), mica (less than
1 percent), loose, clay-lined burrows (5 percent), discontinuous laminae at 156 ft, light olive gray
(5Y6/1), gradational lower contact.

Sand, fine- to coarse-grained, moderately to poorly sorted, loose, light brownish gray (SYR6/1),
gradational lower contact.

Sand, fine- to very coarse-grained, poorly sorted, lignite (1 percent), black (N1) clay clasts (2-15 mm, 2-
3 percent), loose, light brownish gray (5YR6/1), sharp lower contact.

Clay, massive, pyrite clusters (1-5 percent, 1-2 mm), medium light gray (N6) to yellowish gray (5Y8/1),
sharp lower contact.

Clay, massive, very light gray (N8) to white (N9), patchy moderate red (SR4/6) to pale yellowish orange
(10YR&/6) staining (20 percent), root-like pattern, gradational lower contact.

Clay, massive, very fine-grained sand (25-35 percent), very light gray (N8), lower contact not recovered

No recovery.

Clay, massive, very light gray (N8), patchy light red (5R6/6) to dark reddish brown (10R3/4) staining
(35 percent), gradational lower contact.

Clay, silty (5-15 percent), mica (less than 1 percent), very light gray (N8) to yellowish gray (5Y8/1),
sharp lower contact.

Sand, very fine- to fine-grained, well sorted, grades down to fine- to medium-grained, moderately
sorted, mica (1-2 percent), lignite (1 percent, 1-15 mm), loose to clay-bound, clay matrix (5-15
percent), patchy pyrite (1-2 percent), yellowish gray (5Y7/2), lower contact not recovered, recovery
83 percent.

No recovery.
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APPENDIX--Continued

Lithologic description of Millers Pond core, Burke County, Georgia

Depth below
Lithologic description land surface,
in feet
Sand, fine- to very coarse-grained, quartz and smoky quartz granules (5-10 percent), lag of granules (10-
20 percent) at 227 ft, poorly to very poorly sorted, mica (1-2 percent, 1-2 mm), loose to clay-bound, 217-227

clay matrix (5-15 percent), white (N9) to very light gray (5Y6/1), sharp lower contact, recovery 30
percent.

Sand, fine- to medium-grained, moderately sorted, down to lag of fine- to very coarse-grained sand,
granules (10 percent), pebbles (5 percent, 4-15 mm), loose to clay-bound, clay matrix (5-10 percent), 227.932
very clayey (35 percent) at 228 ft, very light gray (N8), lower contact not recovered, recovery 60
percent.

Sand, fine- to medium-grained, moderately to well sorted, mica (1 percent), loose to.clay-bound, clay
matrix (5-15 percent), clay laminae (2-3 percent), pale yellow brown (10YR6/2) to olive gray (5Y4/1), 232-244
lower contact not recovered, recovery 67 percent.

No recovery. 244-247

Clay, laminated, lignite (2-5 percent, 10 percent at 252 ft), laminae and beds of very fine-grained sand
(10 percent), layer of coarse- to very coarse-grained sand with granules (10 percent) at 249 ft, mica (2- 247-250
5 percent), olive gray (5Y4/1), lower contact not recovered.

No recovery. 250-252
Clay, laminated, mica (5 percent), lignite (5 percent, 1-2 mm), black (N1) to brownish black (S5YR2/1),
interlaminated and interbedded with very fine- to fine-grained sand, well sorted, loose, mica (5 252-257

percent), light olive gray (5Y6/1), gradational lower contact, recovery 80 percent.

Sand, fine- to medium-grained, well sorted, mica (2-5 percent), lignite (2-5 percent, 1-10 mm) at 263 ft,
loose, clay matrix (less than 5 percent), yellowish gray (5Y8/1), black (N1) clay laminae (20-25 257-263
percent), sharp lower contact, recovery 30 percent.

Clay, massive, fine- to very coarse-grained sand (25-35 percent), very light gray (N8), gradational lower 263-269
contact, recovery 50 percent.

Sand, fine- to very coarse-grained, granules (10-25 percent), pebbles (5-10 percent, 4-15 mm), very
poorly sorted, smoky quartz (5 percent), clay bound, clay matrix (25-25 percent), very light gray 269-271
(N8),sharp lower contact.

Clay, massive, fine- to very coarse-grained sand (25-35 percent), very light gray (N8), gradational lower 271273
contact.

Sand, fine- to medium-grained, moderately sorted, clay-bound, clay matrix (20 percent), mica (1-2

. . 273-277

percent), very light gray (N8), gradational lower contact.

Sand, fine-to very coarse-grained, granules (10-25 percent), pebbles (5 percent, 4-8 mm), very poorly
sorted, clay-bound, clay matrix (20 percent), smoky quartz (5 percent), very light gray (N8), sharp 277-284
lower contact, recovery 70 percent.

Clay, massive, sand content increasing downward (5-35 percent), very fine- to fine-grained sand, very 284.294
light gray (N8), minor grayish yellow (5Y8/4) staining (5-10 percent), gradational lower contact.

Sand, very fine- to fine-grained, well sorted, clay-bound, clay matrix (15-20 percent), pyrite clusters (1 294-296
percent, 1-2 mm), very light gray (N8), gradational lower contact.

Sand, fine- to very coarse-grained, granules (5-10 percent), pebbles (5 percent, 4-10 mm), poorly to very
poorly sorted, smoky quartz (5 percent), mica (1-2 percent, 1-2 mm), white (N9) to very light gray 296-317
(N8B), lower contact not recovered, recovery 25 percent.

Sand, fine- to very coarse-grained, granules (5-10 percent), poorly to very poorly sorted, mica (1
percent), loose, clay matrix (less than 5 percent), bed of sandy clay at 332-333 ft, very light gray (N8), 317-348
sharp lower contact, recovery 25 percent.

Clay, massive, fine- to coarse-grained sand (25 percent), light gray (N8), gradational lower contact. 348-349
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APPENDIX--Continued

Lithologic description of Millers Pond core, Burke County, Georgia

Depth below
Lithologic description land surface,
in feet
Sand, fine- to very coarse-grained, granules (5-15 percent), pebbles (5 percent, 4-12 mm) at 378 ft and at
395 ft, poorly to very poorly sorted, mica (1-2 percent), loose, clay matrix (5-10 percent), rounded 349.397

clay clasts (5 percent, 5-15 mm) at 359 ft, white (N9) to very light gray (N8), lower contact not
recovered, recovery 50 percent.

Clay, massive, fine- to medium-grained sand (5-15 percent), white (N9) to very light gray (N8), 397-406
gradational lower contact, recovery 80 percent. )

Sand, medium- to very coarse-grained, granules (5-20 percent), mica (2-3 percent, 1-2 mm), poorly to
very poorly sorted, pebbles (5 percent) and clay clasts (1-2 percent, 5-20 mm) at 408 ft, 422 ft and 428
ft, loose, clay matrix (5-10 percent), clay laminae at 413 ft, 419 ft and 429 ft, white (N9) to very light
gray (N8), sharp lower contact, recovery ‘65 percent.

Sand, medium- to very coarse-grained, moderately to poorly sorted, mica (1-2 percent), granules (5-10
percent) and pebbles (5 percent, 4-10 mm) from 442 to 447 ft, brown and black heavy minerals at 445 429-447
ft, loose, clay matrix (5-10 percent), white (N9) to yellowish gray (5Y8/1), sharp lower contact,
recovery 60 percent.

Clay, lenses and laminae of very fine-grained sand (20 percent), mica {1-2 percent), sand content
: : : : 447-449
increasing downward, very light gray (N8), gradational lower contact.

Sand, fine- to very coarse-grained, poorly to very poorly sorted, granules (25 percent) and clay clasts (5
percent) at 460", granules (5-10 percent) at 474 ft and 479 ft, mica (1-2 percent), laminae of brown and
black heavy mineral grains at 458 ft, loose, clay matrix (5-10 percent), white (N9) to very light gray
(N8), sharp lower contact, recovery 65 percent.

406-429

449-480

Clay, massive, fine- to very coarse-grained sand (10-20 percent), very light gray (N8), lower contact not 480-482
recovered. )

Clay, massive, very fine- to fine-grained sand (5-30 percent) from 489 to 498 ft, mica (1-2 percent), very
light gray (N8) with patchy moderate red (SR5/4) staining from 483 to 489' ft and patchy moderate 482-498
yellow (5Y7/6) staining from 489 to 498 ft, gradational lower contact, recovery 80 percent.

Sand, very fine- to fine-grained, well sorted, clay-bound, clay matrix (10-15 percent), grading down to
medium- to coarse-grained, moderately sorted, loose, clay matrix (less than 5 percent), mica (2-3 498-511
percent), clay laminae at 503 ft, light gray (N7), lower contact not recovered, recovery (50 percent).

Sand, medium- to very coarse-grained, granules (10-25 percent), very poorly sorted, clay clasts (less
than 5 percent), mica (2 percent), smoky quartz (5 percent), loose, clay matrix (5-10 percent), light 511-513
gray (N7), sharp lower contact.

Clay, questionable burrows at 517 ft, fine- to medium-grained sand (5-10 percent), lignite (1 percent, 1- 513-518
2 mm), very light gray (N8), sharp lower contact, recovery 60 percent.

Sand, fine- to coarse-grained, moderately sorted, mica (1-2 percent), loose, clay matrix (5-10 percent),
alternating with four intervals (522-523 ft, 531-532 ft, 536-537 ft, and 549-552 ft) of medium- to very
coarse-grained sand with granules (5-15 percent), very poorly sorted, loose, clay matrix (less than 5 518-552
percent), pebbles (5 percent, 4-10 mm) at 536 ft and 550 ft, white (N9), lower contact not recovered,
recovery 65 percent.

Clay, massive, fine- to coarse-grained sand (10-35 percent), very light gray (N8) with patchy moderate 552.558
red (5R4/6) and moderate yellow (5Y7/6) staining, gradational lower contact.

Sand, fine- to coarse-grained grading down to fine- to very coarse-grained, moderately to poorly sorted,
mica (1-2 percent), loose, clay matrix (5-10 percent), very light gray (N8) to white (N9), lower contact ~ 558-577
not recovered, recovery 50 percent.

Sand, fine- to very coarse-grained, granules (10-15 percent) and pebbles (5 percent, 4-10 mm) at 587,
poorly to very poorly sorted, mica (1-2 percent), loose to clay-bound, clay matrix (5-10 percent, 25 577.592
percent at 577 ft), very light gray (N8) with dusky yellow (5Y6/4) staining (5 percent), lower contact
not recovered, recovery 50 percent.
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Lithologic description of Millers Pond core, Burke County, Georgia

Lithologic description

Depth below
land surface,
in feet

Clay, massive, fine- to coarse-grained sand (10-20 percent), very light gray (N8) with patchy moderate
red (5R5/4) and moderate yellow (5Y6/4) staining (10 percent), gradational lower contact, recovery 70
percent.

Sand, fine- to coarse-grained, poorly sorted, mica (1-2 percent), loose, clay matrix (5 percent), very light
gray (N8), sharp lower contact, recovery 70 percent.

Sand, very fine- to medium-grained down to fine- to very coarse-grained, poorly to very poorly sorted,
mica (1-2 percent), black heavy minerals (1 percent), loose to clay-bound, clay matrix (5-15 percent),
yellow gray (5Y7/2) to light brown (SYR6/4), lower contact not recovered, recovery 30 percent.

Clay, massive, fine- to very coarse-grained (30-40 percent), mica (1-2 percent), very light gray (N8),
gradational lower contact.

Sand, fine- to very coarse-grained, poorly sorted, mica (1-2 percent), clay-bound, clay matrix (25-35
percent), very light gray (N8), gradational lower contact.

Sand, fine- to very coarse-grained, poorly to very poorly sorted, granules (10-15 percent) and pebbles (5
percent) from 643 to 648 ft, black heavy minerals (1 percent), mica (1-2 percent), clay-bound, clay
matrix (10-20 percent), white (N9) to very light gray (N8), sharp lower contact, recovery 60 percent.

Sand, fine- to medium grained, moderately sorted, mica (1-2 percent), loose, clay matrix (5-10 percent),
clay laminae at 567 ft, very light gray (N8), lower contact not recovered, recovery 30 percent.

Sand, fine- to very coarse-grained, granules (10-20 percent), pebbles (5-10 percent, 4-12 mm), very
poorly sorted, garnet (1-2 percent), black and amber heavy minerals (1-2 percent), smoky quartz (5-10
percent), loose, clay matrix (5-10 percent), very light gray (N8), sharp lower contact, recovery 35
percent.

Clay, massive, fine- to very coarse-grained sand (10 percent), very light gray (N8), sharp lower contact,
recovery 40 percent.

Sand, fine- to medium-grained, moderately sorted, loose to clay-bound, clay matrix (5-15 percent), very
light gray (N8), sharp lower contact.

Clay, massive, fine- to medium-grained sand (20-35 percent) below 677", mica (1-2 percent), very light
gray (N8) with patchy dark reddish brown (10R3/4) and dusky yellow (5Y6/4) staining, lower contact
not recovered.

Sand, fine- to very coarse-grained, with pebbles (5 percent, 4-10 mm), poorly to very poorly sorted,
mica (1-2 percent), loose, clay matrix (5-10 percent), lower contact not recovered, recovery 18
percent.

Clay, massive, fine- to very coarse-grained sand (10-25 percent), very light gray (N8) with patchy
moderate reddish orange (10R6/6) and dusky yellow (5Y6/4) staining, lower contact not recovered,
recovery 65 percent.

Sand, fine- to medium-grained down to medium- to very coarse- grained, granules (5 percent),
moderately to very poorly sorted, mica (1-2 percent), clay-bound, clay matrix (10-15 percent), very
light gray (N8), sharp lower contact, recovery 32 percent.

Clay, massive, light gray (N7), lower contact not recovered.
No recovery.

Sand, very fine- to medium-grained, granules and pebbles of smoky quartz (5 percent), moderately
sorted, lignite (5-15 percent, 1-20 mm), mica (2-3 percent), loose, clay matrix (5-10 percent), very
light gray (N8), lower contact not recovered.

Sand, medium- to very coarse-grained, granules (10-25 percent), pebbles (5 percent, 10-20 mm), poorly
to very poorly sorted, large piece of lignite and pyrite at 727 ft, mica (1-2 percent), clay clast at 728 ft,
loose, clay matrix (5-10 percent), very light gray (N8), lower contact not recovered, recovery 25
percent.
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Lithologic description of Millers Pond core, Burke County, Georgia

Lithologic description

Depth below
land surface,
in feet

Sand, fine- to very coarse-grained, granules (5-10 percent), pebbles (5 percent), clay-bound, clay matrix
(30-35 percent), very light gray (N8), sharp lower contact, recovery 85 percent.

Clay, massive, fine- to medium-grained sand (40 percent), very light gray (N8), lower contact not
recovered.

Sand, fine- to very coarse-grained, granules (10-20 percent), pebbles (5-10 percent, 4-10 mm), clay
clasts (2 percent), clay-bound, clay matrix (10-20 percent), very light gray (N8), sharp lower contact,
recovery 80 percent.

Clay, massive, waxy, fine- to very coarse-grained sand (10-20 percent), very light gray (N8) with dusky
yellow (5Y6/4) to moderate reddish orange (10R6/6) staining, sharp lower contact.

Sand, medium- to very coarse-grained, granules (10-20 percent), poorly to very poorly sorted, friable,
clay matrix (20 percent), light red (SR6/6), sharp lower contact.

Clay, massive, waxy, grayish yellow green (5GY7/2) to light olive gray (5Y6/1) with patchy staining of
dusky yellow (5Y6/4), moderate yellow (5Y7/6), and dark reddish brown (10R3/4), beds (0.5 ft) of
fine- to very coarse-grained sand at 773.5 ft and 775 ft, sharp lower contact, recovery 58 percent.

Sand, fine- to coarse-grained, moderately to poorly sorted, feldspar (5 percent), friable, clay matrix (10-
15 percent), light olive gray (5Y6/1), lower contact not recovered.

No recovery.

Sand, fine- to medium-grained, moderately sorted, mica (1-2 percent), friable, clay matrix (5-10
percent), light olive gray (5Y6/1), sharp lower contact.

Sand, very fine-grained, well sorted, loose, clay matrix (5 percent), light olive gray (5Y6/1), laminae (2-
5 mm) of olive gray (5Y4/1) siltstone (10 percent), lower contact not recovered.

No recovery.

Siltstone, wavy laminated to mottled, lignite (less than 1 percent), mica (1-2 percent), friable, clay
matrix (10-25 percent), light olive gray (5Y6/1) to olive gray (5Y4/1), sharp lower contact.

Sand, fine- to very coarse-grained, granules (10-25 percent), pebbles (10-30 percent, 4-30 mm) of quartz
and feldspar, very poorly sorted, clay clasts (1-2 percent), mica (1-2 percent), black and dark red
heavy minerals (2 percent) at 803 ft, friable, clay matrix (10-20 percent), pale olive (10Y6/2) to
yellowish gray (5Y7/2), sharp lower contact.

Clay, massive, waxy, pale olive (10Y6/2) with moderately reddish brown (10R4/6) staining, bed of very
fine- to fine-grained sand (808-809 ft), pale olive (10Y6/2), sharp lower contact.

Sand, very fine- to fine-grained, moderately to well sorted, down to fine- to very coarse-grained,
granules (5-25 percent), pebbles (5-10 percent), very poorly sorted, mica (1-2 percent), feldspar (5-10
percent), friable to loose, clay matrix (5-15 percent), bed (0.3") of siltstone at 827 ft, light olive brown
(5Y5/6) to moderately olive brown (5Y4/4) to pale olive (10Y6/2), sharp lower contact, recovery 77
percent.

Clay, massive, waxy, fine- to very coarse-grained sand (10-20 percent), pale olive (10Y6/2) to yellowish
gray (5Y7/2), sharp lower contact.

Sand, fine- to very coarse-grained, granules (20 percent), pebbles (5-30 percent), very poorly sorted,
friable, clay matrix (5-20 percent), bed (0.3 ft) of clay at 845 ft, pebble lag at 852 ft, large clast of
saprolite at 848 ft, pale olive (10Y6/2) to dusky yellow (5Y6/4), sharp lower contact, recovery 58
percent.

Biotite-hornblende gneiss with quartzite dikes (10 percent), garnets (2-3 percent).
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FLORIDAN AQUIFER SYSTEM ¥/
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Moderately to poorly sorted, loose sand with a well laminated
clay at 67-69 feet. Sand is fine- to coarse-grained with minor
amount of clay matrix. Pebbles and granules are present at 42 to
49 feet where they comprise as much as 10 percent of the
framework grains. Discontinuous, wavy laminae of clay are
present from 27 to 38 feet and from 62 to 66 feet. Small
fragments of lignite are present in the sands and clay below 52
feet. Mostly reddish brown to dark yellow orange.

CONFINING | UPPER THREE RUNS
UNIT

Sandy carbonate mudstones to grainstones and moderately to
well-sorted sand. Sand is fine- to medium-grained in a mostly
clay matrix. Mostly orange with yellow shades toward top.

LY

Sandy carbonate mudstones to wackestones, and moderately to
very poorly sorted sand. Sand is very fine- to very coarse-
grained-in a carbonate matrix (5-30 percent). Granules are
present at the base of the unit. Mudstone and wackestone
contain very fine- to. very coarse-grained sand (20-40 percent).
Mostly gray to olive green at base and yellowish gray to grayish
yellow at top.
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GORDON 3/,

PALEOCENE

4/

UNIT

Moderate to poorly sorted sand containing lignite and black clay—l

clasts. Sand is very fine- to very coarse-grained and poorly
consolidated. Mottled in color from light brownish gray to light

—I olive gray.

Massive clay. Clay is very light gray to yellowish gray with
patchy red and yellow staining, assumed to be oxidized iron-
bearing minerals. The clay from 165 to 169 feet contains pyrite,
and is medivm light gray in color. Lowermost part of unit is
silty. :
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Well to very poorly sorted sand. Sand is very fine- to very
coarse-grained with granules and pebbles in a clay matrix (5-15
percent). Contains minor lignite and smoky quartz. White to
very light gray, with darker olive color at base.
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Well to very poorly sorted sand, laminated clay, and massive
sandy clay. Sand is fine- to very coarse-grained “with granules
and pebbles in a clay matrix. Clay contains fine- to very coarse-
grained sand (25-35 percent). Lignite and smoky quartz present
in minor amounts, Mostly very light gray with olive gray
laminated clay at top. Massive clay at base.
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Poorly to very poorly sorted sand and massive .clay. Sand is very
fine- to very coarse-grained with granules in a clay matrix
(generally 5-10 percent). White to very light gray in color.
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Massive clay, containing very fine- to very coarse-grained sand
(5-30 percent). Very light gray with red and yellow staining.

CRETACEOUS
UPPER

MIDVILLE AQUIFER SYSTEM ¥

Well to very poorly sorted sand and massive sandy clay. Sand is
very fine- to very coarse-grained with granules and pebbles in a
clay matrix (5-10 percent). Clay contains fine- to very coarse-
grained sand (10-40 percent). Lignite, smoky quartz, and coarse-
grained mica present in minor amounts. White to very light gray
in color. Fron staining present in some layers.
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[> »°  PALEONTOLOGIC SAMPLE AND IDENTIFICATION
NUMBER--Blank where sample barren of fossils. See text
pages 13,14

AND CONSTRUCTION DIAGRAM OF WELLS AT MILLERS POND TEST SITE, BURKE COUNTY, GEORGIA
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