Georgia Power Plant Branch NPDES Permit No. GA0026051 Ash Pond Dewatering Plan Revised November 2018 # **Background** Plant Branch, located on Lake Sinclair in Putnam County, began construction in 1961 and by 1969 had four units in operation. Plant Branch delivered safe, reliable and affordable energy to the community for decades. Plant Branch was retired in April 2015. Now that the plant is no longer operating, a dewatering process is necessary to facilitate permanent closure of the ash ponds. Plant Branch will remove all four ash ponds (Ponds B, C, D & E) and consolidate the ash in a new, lined onsite landfill. One ash pond, Ash Pond A, has been removed as it was never part of the wastewater system. The remaining ponds currently contain the approximate water volumes, subject to change as result of dewatering activities and precipitation: Ash Pond B 3,303,324 ft³ Ash Pond C 4,798,749 ft³ Ash Pond D 14,407 ft³ Ash Pond E 31,108,551 ft³ # **Purpose** This Ash Pond Dewatering Plan (Plan) describes the additional procedures, safeguards and enhanced wastewater treatment measures that Georgia Power Company (GPC) will implement to ensure the facility's NPDES permit effluent limitations continue to be met and the receiving waterbody continues to be protected during the ash pond dewatering process. This Plan provides an overview of the wastewater treatment system, describes the key processes, details of the major process control measurements being performed, and explains the effluent monitoring to be completed during dewatering. This Plan will be implemented upon commencement of active ash pond closure activities. Prior to the closure process beginning, ash pond discharges will not cause water levels to drop beyond normal historical operation. Following approval of the dewatering plan by EPD, and prior to commencement of dewatering, GPC will provide EPD with notification of dewatering implementation. As explained below, in addition to the additional requirements implemented during the dewatering process, GPC will continue to meet the effluent limitations of the plant's NPDES permit and comply with all requirements of the NPDES permit. ### **Wastewater Treatment System** The wastewater treatment system (Treatment System) for dewatering the ash ponds will be a physical-chemical treatment plant that consists of sodium hypochlorite addition, equalization tank, pH adjustment, followed by solids separation by flocculation/clarification, and finally effluent quality control monitoring. Solids from the clarifier will be returned to the dewatered ash pond to be incorporated as part of the overall ash pond closure process. Figure 1 provides a description of the Treatment System. ### Location The Treatment System will be located adjacent to and within the drainage area of Plant Branch's ash ponds during closure. Location of the Treatment System in this area assures that, in the unlikely event of an overflow, any water from the Treatment System remains within the NPDES wastewater drainage area of the ash pond and will not be discharged except in compliance with this Plan and the NPDES permit. The Treatment System will operate on an as-needed basis up to 24 hour per day. Under initial operation, the Treatment System will be configured to treat 2,500 gpm; however, the Treatment System may be upgraded to treat a maximum of 4,000 gpm. In accordance with the NPDES permit, GPC will provide EPD with advanced notice of any treatment system upgrades. ### Influent As shown by Figure 2, wastewater from Ash Ponds C, D and E flows to Ash Pond B. Wastewater can then be pumped to the Treatment System directly from Ash Pond B. The figure also notes that the wastewater from any of the ash ponds could be pumped directly to the Treatment System and includes an option to install flow equalization storage. The intake for the influent pump is operated to minimize solids inflow to the Treatment System. As the water level in the ash pond drops, treatment operations may cease until the volume of water in the pond is adequate for operations, or other measures may be implemented to provide sufficient water volume for pumping to the Treatment System. Water levels in the ash ponds fluctuate based upon storm water inflows, upstream ash pond management, and dewatering activities. As overall water volumes in the ash ponds decrease, operation of the Treatment System may be intermittent and on an "as needed" basis, although continuous operation may be utilized in response to wet weather conditions. GPC will monitor the influent for pH and turbidity. These parameters will be used as a guide for treatment requirements. Influent flow rates will be managed to limit ash pond draw-down at a rate of no greater than one foot per week or a rate to ensure structural integrity of the impoundment as determined by the Dam Safety Engineer. ### Sodium Hypochlorite Addition All water pumped to the Treatment System will be treated with sodium hypochlorite to control biological growth in the Treatment System. Treating the water for biological growth improves the Treatment System efficiency and reduces maintenance. Based upon the demand for chlorine in the water being pumped into the Treatment System, sodium hypochlorite addition will be adjusted. The dosage rate for sodium hypochlorite will depend upon the flow rate, sediment load, and water temperature. Residence time will be provided in the equalization tank. #### pH & Coagulant After the equalization tank pH adjustment is performed, the pH of the water pumped to the Treatment System will be continuously tested before it enters the clarifier. Based upon the pH measurement, the pH is adjusted to the optimal range for coagulation. Following pH adjustment, a coagulant and polymer may be injected into the flow to aid in flocculation prior to entering the clarifier section. The dosage rates for all chemicals will depend upon the flow rates, sediment loads, and inlet pH. Dosage rates will be documented and kept on-site. ### Clarifier The treated water will then flow into a clarifier and the flocculated material will settle to the bottom of the clarifier. A pump will pull the underflow at the bottom of the clarifier towards the underflow discharge point and will be pumped to a tank for return to the ash pond. Clarified water will flow in an upward direction over a set of weirs and into the clearwell tanks. ### Clearwell Tanks The clearwell tanks will gravity-fill from the weir overflows. The clearwell will be tested for oxidation reduction potential (ORP) so the free chlorine residual from the sodium hypochlorite feed on the inlet is removed before water leaves the Treatment System. As water moves through the Treatment System, some of the free chlorine will be consumed and any remaining chlorine will be neutralized in the clearwell. Sodium bisulfite will be maintained on site, as a backup, to remove any residual chlorine. Continuous effluent monitoring will also be performed to verify the absence of total residual chlorine. Each tank will have a set of instrumentation that checks the quality of the treated water. During operation, effluent from the clearwell will be continuously tested for flow, pH and turbidity, and this information will be used to monitor the Treatment System operation. If an inline instrument detects a reading above a quality standard set point, the effluent will not be discharged and instead will be diverted back to the ash pond. Upon initial startup of the Treatment System, samples of the treated water will be tested to verify the Treatment System is operating as designed. In the event any system issues are identified, the treated effluent will be recycled back to the ash pond until the treatment system efficacy is established. Only after initial treatment efficacy is established will treated effluent will be routed to Outfall 03. ### **Operation** The operational oversight of the Treatment System will be performed by a certified wastewater treatment plant operator in accordance with the certification requirements of the Georgia water and wastewater treatment plant operator's and laboratory analysts rule. FIGURE 1 Plant Branch Treatment System Schematic # **FIGURE 2** Note: Wastewater from any of the ash ponds can be pumped directly to the Treatment System which includes an option to install flow equalization storage (Figure 1). ## **Process Control Monitoring** Each day following Treatment System startup, pH and turbidity of the influent and effluent of the Treatment System will be verified prior to discharge of treated water to the permitted outfall. During discharge operations, pH, chlorine and turbidity are continuously measured at the Effluent Quality Standards (EQSs) sampling point and the discharge will be visually inspected. Upon verification the Treatment System performs as expected, the discharge will be routed to Outfall 03. The sampling point will be labeled as ESP (Effluent Sampling Point). If the treated effluent indicates a change during operations, discharge to the permitted outfall will be automatically diverted and the treated water will be recycled to the ash pond while adjustments are made. After any issues are resolved, the Treatment System will be returned to normal operation with discharge to Outfall 03 following verification the system performs as expected. ### Maintenance Instrumentation for use on the site will be maintained to ensure optimal performance and provide accurate results. Each piece of technical equipment will be calibrated at the manufacturer's recommended intervals and more often if deemed necessary by on-site personnel. The instrumentation includes a turbidity meter, a pH meter, flow meters, and the chemical feed pumps. ### Testina Samples are collected from both the influent (ash pond or optional flow equalization storage) and the Treatment System ESP to guide system operation and compare against the EQSs listed below. The results will be used to verify that the Treatment System is performing optimally, as well as to obtain data to establish and update the correlation between the total suspended solids (TSS) and turbidity of the Treatment System effluent. TSS/turbidity control is an indicator of treatment system efficient operation that is correlated to metals removal efficiencies as further confirmed by weekly monitoring results. The initial TSS and turbidity correlation curve and EQSs results will be provided to EPD prior to commencement of dewatering activities. All EQSs results including TSS and turbidity correlation curves will be available onsite for EPD review. TSS correlation to turbidity will be used to establish a turbidity set-point for the effluent. Effluent reaching this set-point will be recycled back to the ash pond for additional treatment. ### Effluent Quality Standards (EQSs) - pH: 6.4 to 8.6 operational limits - Turbidity: Determined by TSS correlation - Flow rate: 2,500 gpm initial (4,000 gpm upgrade max) - Total Suspended Solids (TSS): <26 mg/L; determined by turbidity correlation - Oil & Grease: <15 mg/L daily average with 20 mg/L daily maximum over a monthly Period - Total Residual Chlorine: Zero ### **Analytical Instrument Description** The following instrumentation (or equivalent) will be used: - pH: Hach DPD1P1 pH probe with a Hach SC200 transmitter - Turbidity: Hach 1720E Turbidimeter with a Hach SC200 transmitter - Chlorine: Wallace and Tiernan SFC/ Analyzer with a Hach SC200 transmitter - Flow rate: Siemens Mag 5100 W 8" magnetic flow meter with Siemens Mag5000 transmitter # **Monitoring and Reporting** # Lake Monitoring | Effluent
Characteristics
mg/L or (Units) | Requirement | Measurement
Frequency | Sample Type | Sample Location | |--|-------------|--------------------------|-------------|------------------------| | pH (s.u.) | Report | 2/Month | Grab | Upstream & Downstream* | | TSS | Report | 2/Month | Grab | Upstream & Downstream* | | Oil & Grease | Report | 2/Month | Grab | Upstream & Downstream* | | Turbidity (NTU) | Report | 2/Month | Grab | Upstream & Downstream* | | TDS | Report | 2/Month | Grab | Upstream & Downstream* | | BOD _{5-day} | Report | 2/Month | Grab | Upstream & Downstream* | | Copper, total | Report | 2/Month | Grab | Upstream & Downstream* | | Selenium, total | Report | 2/Month | Grab | Upstream & Downstream* | | Arsenic, total | Report | 2/Month | Grab | Upstream & Downstream* | | Mercury, total | Report | 2/Month | Grab | Upstream & Downstream* | | Chromium, total | Report | 2/Month | Grab | Upstream & Downstream* | | Lead, total | Report | 2/Month | Grab | Upstream & Downstream* | | Cadmium, total | Report | 2/Month | Grab | Upstream & Downstream* | | Zinc, total | Report | 2/Month | Grab | Upstream & Downstream* | | Nickel, total | Report | 2/Month | Grab | Upstream & Downstream* | | Ammonia-N | Report | 2/Month | Grab | Upstream & Downstream* | | TKN | Report | 2/Month | Grab | Upstream & Downstream* | | Nitrate/Nitrite | Report | 2/Month | Grab | Upstream & Downstream* | | Organic Nitrogen | Report | 2/Month | Grab | Upstream & Downstream* | | Phosphorus, total | Report | 2/Month | Grab | Upstream & Downstream* | | Orthophosphate-P | Report | 2/Month | Grab | Upstream & Downstream* | | Hardness | Report | 2/Month | Grab | Upstream & Downstream* | Sampling and monitoring to be performed using standard methods as provided for in 40 CFR Part 136, which will be sufficiently sensitive. ^{*} Downstream lake sampling shall occur near Latitude: 33.196636 and Longitude: -83.295389; Upstream (background) lake sampling shall occur near Longitude: 33.180392 and Longitude: -83.322964. ### **Effluent Monitoring** | Effluent
Characteristics
mg/L or (Units) | Monthly
Average | Daily
Maximum | Measure
Frequency | Sample Type | Sample
Location | |--|--------------------|------------------|----------------------|-------------|--------------------| | Flow (MGD) | Report | Report | Daily | Continuous | Final Effluent | | pH (s.u.) | Report | Report | Daily | Continuous | Final Effluent | | TSS | Report | Report | Weekly | Grab | Final Effluent | | Oil & Grease | Report | Report | Weekly | Grab | Final Effluent | | Turbidity (NTU) | Report | Report | Daily | Continuous | Final Effluent | | TDS | Report | Report | Weekly | Grab | Final Effluent | | TRC | Report | Report | Daily | Continuous | Final Effluent | | BOD _{5-day} | Report | Report | Weekly | Grab | Final Effluent | | Copper, total | Report | Report | Weekly | Grab | Final Effluent | | Selenium, total | Report | Report | Weekly | Grab | Final Effluent | | Arsenic, total | Report | Report | Weekly | Grab | Final Effluent | | Mercury, total | Report | Report | Weekly | Grab | Final Effluent | | Chromium, total | Report | Report | Weekly | Grab | Final Effluent | | Lead, total | Report | Report | Weekly | Grab | Final Effluent | | Cadmium, total | Report | Report | Weekly | Grab | Final Effluent | | Zinc, total | Report | Report | Weekly | Grab | Final Effluent | | Nickel, total | Report | Report | Weekly | Grab | Final Effluent | | Ammonia-N | Report | Report | Weekly | Grab | Final Effluent | | TKN | Report | Report | Weekly | Grab | Final Effluent | | Nitrate/Nitrite | Report | Report | Weekly | Grab | Final Effluent | | Organic Nitrogen | Report | Report | Weekly | Grab | Final Effluent | | Phosphorus, total | Report | Report | Weekly | Grab | Final Effluent | | Orthophosphate-P | Report | Report | Weekly | Grab | Final Effluent | | Hardness | Report | Report | Weekly | Grab | Final Effluent | Sampling and monitoring to be performed using standard methods as provided for in 40 CFR Part 136, which will be sufficiently sensitive. ### Reporting and Notification Effluent and instream monitoring results will be submitted to EPD via e-mail by the 15th day of the month following the sampling period. Results shall be submitted in an Excel spreadsheet to both the EPD compliance office and the EPD industrial permitting unit. Laboratory analysis and data sheets shall be retained on site. The first report will be submitted the month following Treatment System startup. Immediate (within 24 hours) notification to both the EPD compliance office and industrial permitting unit will occur and a corrective action plan implemented if any of the EQSs for pH, total residual chlorine, or turbidity are not achieved, and the automatic recirculation system fails.