Mobile Source Emissions Modeling for Macon Nonattainment Area PM2.5 Maintenance Plan Motor Vehicle Emissions Budget ### 1.0 Overview The Georgia Environmental Protection Division (EPD) worked with the Georgia Department of Transportation (GDOT) and the Macon-Bibb County Planning and Zoning Commission, the Metropolitan Planning Organization (MPO) for Macon, to develop mobile source emissions inventories for the purpose of establishing motor vehicle emissions budgets (MVEB) for the 2023 maintenance year for the Macon PM2.5 Maintenance State Implementation Plan (SIP) revision, hereinafter called the Macon PM2.5 Maintenance Plan. The 2023 mobile emissions were developed consistent with the single-run, annual-average-conditions approach described in EPA's August 9, 2005, Guidance for Creating Annual On-Road Mobile Source Emission Inventories for PM2.5 Nonattainment Areas for Use in SIPs and Conformity.² Consistent with this guidance, once this budget is found adequate or approved by EPA, subsequent emissions analyses for transportation conformity will also use the same annual-average-conditions approach used to establish the MVEB. These inventories reflect the most recent planning assumptions and emission factor model available, and the use of an updated travel demand model. The GDOT travel demand and emissions estimation modeling process was employed to estimate mobile source emission inventories to establish the MVEB for the Macon PM2.5 Maintenance Plan in a manner consistent with federal regulations for performing regional emissions analyses used in transportation conformity determinations. The alignment of methodologies for MVEB and transportation conformity emissions analyses reduces the possibility of spurious differences between motor vehicle emission budgets and transportation conformity analyses that must conform to those budgets. Effective April 5, 2005, the U.S. Environmental Protection Agency (EPA) designated Floyd County as nonattainment for the annual fine particulate (PM2.5) National Ambient Air Quality Standard. The PM2.5 standard is subject to Subpart 1 of the Clean Air Act, the more general nonattainment area planning and control requirements of the Act. The designation also defined the year 2010 as the deadline for the Macon area to attain the PM2.5 standard. Based on quality-assured and certified monitoring data for the 2007–2009 monitoring period, EPA determined that the Macon Area attained the 1997 annual PM2.5 NAAQS by the applicable attainment date of April 5, 2010, on June 2, 2011. ¹ The term "mobile" is used to describe emissions from on-road motor vehicles. ² http://epa.gov/otaq/stateresources/transconf/policy/420b05008.pdf ### 1.1 Planning Boundaries As the MPO for the Macon urbanized area, Macon Area Transportation Study (MATS) is responsible for the continuing, cooperative, and comprehensive metropolitan planning process required by Title 23 U.S.C. 134. Based on the 2000 Census, the Macon MPO boundary includes all of Bibb County plus a portion of Jones County. However, the Macon nonattainment boundary includes all of Bibb County, none of Jones County, and a very small segment of Monroe County. Figure 1.1-1 illustrates the two different boundaries. Figure 1.1-1 Macon MPO and Nonattainment Area An enlargement of the small part of Monroe County designated as nonattainment is shown in Figure 1.1-2. The area encompasses approximately 13.5 square miles and per the 2010 Census contains a population of 98. The official nonattainment area description, per the EPA Green Book3, is as follows: From the point where Bibb and Monroe Counties meet at US Hwy 23/GA Hwy 87, follow the Bibb/Monroe County line westward 150' from the US Hwy 23/GA Hwy 87 centerline, proceed northward150' west of and parallel to the US Hwy 23/ GA Hwy 87 centerline to 33° 4' 30"; proceed westward to 83° 49' 45"; proceed due south to 150' north of the GA Hwy 18 centerline, proceed eastward 150' north of and parallel to the GA Hwy 18 centerline to 1,150' west of the US Hwy 23/GA Hwy 87 centerline proceed southward 1,150' west of and parallel to the US Hwy 23/GA Hwy 87 centerline to the Monroe/Bibb County line; then follow the Monroe/Bibb County line to 150' west of the US Hwy23/GA Hwy 87 centerline. Figure 1.1-2 Detailed Map for PM2.5 Nonattainment Area in Monroe County . www.epa.gov/oar/oaqps/greenbk/7160429.html Based on consultation between representatives from Monroe County and GDOT, it was determined that GDOT would also represent Monroe County on the interagency committee. Monroe County signed a letter authorizing GDOT to represent their transportation interests throughout the conformity process under both ozone and PM2.5 standards. A copy of the signed letter is in Exhibit 1. ### 1.2 Emissions Analysis – Models and Assumptions In accordance with Section 93.105(b) of the Transportation Conformity Rule and Sections 106(g) and 106(h) of Georgia's transportation conformity SIP, all of which require interagency consultation for SIP development, a detailed listing of the procedures and planning assumptions used for the regional emissions analysis supporting development of the MVEB was distributed to the interagency consultation committee for review on September 15, 2011. The assumptions used to develop Macon's conforming Long Range Transportation Plan and Transportation Improvement Program were also used to develop the network and emissions for the Macon PM2.5 Maintenance Plan MVEB, which required emissions for the year 2023. The MOVES input files reflect all federal and state motor vehicle emission control programs. In addition, the input files were customized to reflect the specific weather conditions and vehicle registration data for the Macon nonattainment area. ### 2.0 Travel Demand Modeling Procedures Georgia DOT is responsible for the development and application of the travel demand models for the urban areas outside of Atlanta. This section summarizes the Macon model's key travel demand modeling attributes, listed below, as they relate to the most important factors in estimating emissions. - 1. Socio-economic data based on best available information - 2. Consistency between transportation alternatives and land use scenarios - 3. Modeled volumes validated against observed counts - 4. Reasonable agreement between travel times used for trip-distribution and trip assignment - 5. Reasonable sensitivity to time, cost and other factors affecting travel choices - 6. Capacity-sensitive traffic assignment methodology #### **Model Attributes 1 & 2 (Socio-Economic Data)** The primary data inputs to travel demand models are socio-economic data, such as population and employment, and transportation networks. Modeling attributes one and two deal specifically with the socio-economic data inputs to the travel demand modeling process. The first modeling attribute is that the socio-economic data be based on the best available information. In Georgia, each MPO has the responsibility of preparing socio-economic data. Georgia DOT reviews the socio-economic data for reasonableness and accuracy. The data development process and accuracy checks rely on the best available information, such as US Census data, aerial photography, land use maps, knowledge of proposed new developments and site visits (local knowledge). Other reasonableness and logic checks are made for data at the traffic zone level, such as calculating statistics including population per household, population density and employment density. The MPOs and GDOT work cooperatively, using the best available data, to insure that the data inputs to travel demand models are accurate and reasonable. The second modeling attribute is that socio-economic data reflect the transportation alternatives being considered. This relates to the fact that improved transportation accessibility can alter land use patterns. However, it is generally accepted that significant improvements in transportation accessibility are necessary to bring about relatively small changes in land use. Due to their complexity, land use models are generally utilized in only a few large metropolitan areas in the United States. Georgia's MPOs, with the exception of Atlanta, do not use land use models. Instead, usually a single forecast for future socio-economic data is made that takes into consideration planned major transportation improvements. Future forecasts are generally made by first developing regional control totals for expected growth. Allocation of expected growth is then done using known development patterns and proposals as the basis, taking into consideration planned infrastructure improvements (new highways, sewer extensions, etc.). If unanticipated major projects are evaluated during the plan update process, a revised forecast may be developed with guidance from the MPO's Technical Coordinating Committee. The population and employment forecasts for the MATS area are listed in Table 2.0-1. Table 2.0-1 Population and Employment Forecasts for MATS Area 2007 and 2023 | | 2007 | 2023 | |----------------------|---------|---------| | Total Population | 168,747 | 174,291 | | Number of Households | 67,805 | 70,196 | | Employment | 107,423 | 123,249 | #### **Model Attribute 3 (Model Validation)** The next attribute involves the validation of travel demand models against observed traffic counts. Model validation is the process of insuring travel models produce results that reasonably replicate observed travel patterns. Properly validated models not only replicate observed conditions, but they also use accurate inputs and apply reasonable calculations to do so. Georgia DOT applied multiple validation checks to each of the major steps in the Macon travel demand modeling process. In addition to socio-economic data checks, both the inputs to and outputs from the models were checked for accuracy and reasonableness during each step of the process. These inputs and outputs include transportation network attributes, trip
generation parameters and results, trip distribution parameters and average trip lengths by purpose, auto occupancy rates, and speed-volume relationships. #### **Highway Networks – Air Quality Attributes** Georgia DOT develops and maintains highway networks with MATS review and assistance. Highway network attributes are reviewed for accuracy using the state roadway characteristics database, aerial photography and site visits / local knowledge. Network link attributes include the HPMS functional classification, so that modeled and observed Vehicle Miles Traveled (VMT) can be compared by county. Networks also include GDOT traffic count station numbers, so counts for the base year model can be included in output networks for validation purposes. #### **Highway Networks - Speed** Since speeds are important for mobile emissions estimation, GDOT uses reasonable inputs and validates each of the factors that influence speed estimation; particularly the following: - Roadway capacities - Free-flow speeds - Modeled volumes - Speed-volume relationships #### Link Capacities Georgia DOT's link capacities were developed using the latest Highway Capacity Manual Software with typical parameters for various roadway classes and area types. The density of population and employment is used to classify the intensity of development patterns throughout the study area. The Macon model uses the following seven area types to classify land use. - (1) Central Business District (CBD) / High Density Urban - (2) Urban Commercial - (3) Urban Residential - (4) Suburban Commercial - (5) Suburban Residential - (6) Exurban - (7) Rural Table 2.0-2 displays the hourly capacities per lane utilized in the Macon travel demand model. Table 2.0-2 Macon Model Hourly Per Lane Capacity Matrix | | Area Type | | | | | | | | | |-------------------------------|-----------|------|------|------|------|------|------|--|--| | Facility Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | Interstate | 1900 | 1950 | 2000 | 2050 | 2100 | 2060 | 2020 | | | | Freeway | 1600 | 1660 | 1730 | 1790 | 1850 | 1820 | 1780 | | | | Expressway | 1300 | 1380 | 1450 | 1530 | 1600 | 1570 | 1540 | | | | Parkway | 1170 | 1240 | 1310 | 1370 | 1440 | 1410 | 1380 | | | | Freeway to Freeway Ramp | 1400 | 1530 | 1650 | 1780 | 1900 | 1860 | 1820 | | | | Freeway Entrance Ramp | 900 | 1030 | 1150 | 1280 | 1400 | 1370 | 1340 | | | | Freeway Exit Ramp | 800 | 810 | 810 | 820 | 820 | 810 | 790 | | | | Principal Arterial – Class I | 1000 | 1030 | 1050 | 1080 | 1100 | 1080 | 1060 | | | | Principal Arterial – Class II | 900 | 900 | 900 | 900 | 900 | 880 | 860 | | | | Minor Arterial – Class I | 800 | 810 | 810 | 820 | 820 | 810 | 790 | | | | Minor Arterial – Class II | 630 | 630 | 640 | 640 | 640 | 630 | 610 | | | | | Area Type | | | | | | | | | |--------------------|-----------|-----|-----|-----|-----|-----|-----|--|--| | Facility Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | One Way Arterial | 760 | 760 | 770 | 770 | 770 | 760 | 740 | | | | Major Collector | 520 | 530 | 540 | 550 | 560 | 550 | 540 | | | | Minor Collector | 380 | 390 | 390 | 400 | 400 | 390 | 380 | | | | One Way Collector | 460 | 470 | 470 | 480 | 480 | 470 | 460 | | | | Local Road | 340 | 350 | 360 | 370 | 380 | 370 | 360 | | | | Centroid Connector | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | #### Free-flow Speeds Assumed free-flow speeds are approximately 5 mph faster than typical speed limits for the various roadway classes and area types, taking into consideration control for delay (i.e., traffic signals) if applicable. Peak and off-peak free-flow speeds were evaluated using observed speeds obtained from a travel time study conducted in the Augusta area. An analysis of the Augusta data indicated that Augusta's characteristics and data results are appropriate for use as a base in the Macon model since the travel dynamics for these urban areas are very similar. Through the process of model calibration and validation, the speeds were revised slightly for a couple of facilities to more accurately represent travel conditions in the Macon area. Table 2.0-3 displays the free-flow speeds utilized in the Macon travel demand model. Table 2.0-3 Macon Model Free-flow Speed Matrix | | Area Type | | | | | | | | |-------------------------------|-----------|----|----|----|----|----|----|--| | Facility Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | Interstate | 55 | 60 | 60 | 60 | 60 | 70 | 70 | | | Freeway | 50 | 55 | 55 | 55 | 55 | 60 | 60 | | | Expressway | 50 | 50 | 50 | 50 | 55 | 55 | 55 | | | Parkway | 45 | 50 | 50 | 50 | 50 | 55 | 55 | | | Freeway to Freeway Ramp | 55 | 55 | 55 | 55 | 55 | 55 | 55 | | | Freeway Entrance Ramp | 45 | 50 | 50 | 50 | 50 | 55 | 55 | | | Freeway Exit Ramp | 22 | 23 | 30 | 31 | 34 | 40 | 48 | | | Principal Arterial – Class I | 22 | 28 | 33 | 34 | 37 | 47 | 52 | | | Principal Arterial – Class II | 23 | 26 | 31 | 32 | 35 | 45 | 49 | | | Minor Arterial – Class I | 22 | 23 | 30 | 31 | 34 | 40 | 47 | | | Minor Arterial – Class II | 21 | 22 | 27 | 30 | 32 | 38 | 45 | | | One Way Arterial | 23 | 26 | 30 | 32 | 35 | 42 | 48 | | | Major Collector | 17 | 18 | 21 | 27 | 29 | 34 | 42 | | | Minor Collector | 14 | 15 | 18 | 24 | 26 | 30 | 40 | | | One Way Collector | 17 | 18 | 21 | 27 | 29 | 34 | 42 | | | Local Road | 14 | 14 | 17 | 18 | 22 | 28 | 35 | | | Centroid Connector | 14 | 14 | 17 | 18 | 22 | 28 | 35 | | #### Modeled Volumes Output modeled volumes are validated against traffic counts at several levels – regional, corridors and link-by-link. Regional evaluations include VMT, Root Mean Squared Error and R-Squared calculations. Corridor evaluations are primarily screenline and cutline comparisons. Nationally recognized maximum desirable deviation standards are applied to analyze model performance at the link level. Base year external station volumes are based directly on observed traffic counts at each location. Future year external station volumes are estimated from historical trends in traffic counts at each location. Extrapolated future external station volumes are refined to insure use of reasonable annual compounded growth rates. #### Speed-Volume Relationships Georgia DOT uses speed-volume relationships that are different for various roadway types and area types. The speed-volume curves are calibrated to accurately reflect observed traffic volumes, while retaining sensible shapes to insure reasonable congested speeds. Peak-period speed data obtained from the GDOT travel time study was used as a reasonableness check in calibrating GDOT speed-volume curves. #### **Trip Generation** The GDOT trip generation process primarily uses parameters from the Augusta household survey, the Quick Response Freight Manual and US Census data. Minor adjustments are made to GDOT standard procedures to reflect unique characteristics in each area being modeled (e.g., port, military bases, etc.). Various validation checks are made to insure that trip generation results are reasonable. National data sources are used as reasonableness checks for trip generation results. #### **Trip Distribution** Trip distribution parameters are calibrated to produce reasonable average trip lengths. Expected average trip lengths are estimated from Census Journey-to-Work data and the population and geographic size of the modeled area. Travel times from trip assignment are used as input to trip distribution (i.e., feedback), which strengthens the validity of the modeled trip lengths. #### **Model Attribute 4 (Feedback of Travel Times)** The Macon model insures that there is reasonable agreement between travel times used for trip distribution and trip assignment by implementing a feedback loop. Within the feedback loop, all model steps from trip distribution to trip assignment are repeated until trip tables and link volumes change very little from one loop to the next. The Macon model includes a closure criterion for determining whether there is "reasonable agreement" in travel times for trip distribution and trip assignment. Closure is obtained if the following criterion is met: • Maximum link volume change =< 1,000 The Method of Successive Averages is used to insure that the model reaches stable conditions. ### **Model Attribute 5 (Mode Choice)** The fifth modeling attribute calls for mode choice models to be reasonably sensitive to changes in travel times and costs. The Macon travel demand model utilizes a trip-end based procedure that determines transit-oriented person trips before the region's person trips are converted to vehicle trips. This trip-end model estimates transit patronage based on socio-economic characteristics such as income or auto-ownership, rather than transportation system characteristics. #### **Model Attribute 6 (Traffic Assignment)** The sixth modeling attribute calls for the use of capacity sensitive assignment procedures. The Macon model uses a 24-hour equilibrium assignment algorithm. The traffic assignment algorithm is iterative, running through successive applications until equilibrium occurs. Equilibrium occurs when no trip can be made by an alternate path without increasing the total travel time of all trips in the network. The equilibrium assignment is an iterative process that reflects travel demand assigned to minimum time paths as well as the effects of congestion. In each assignment iteration, traffic volumes are loaded onto network links and travel times are adjusted in response to the volume to capacity relationships. Final assigned volumes are derived by summing a percentage of the loadings from each iteration. The percentages reflect congested conditions that usually influence motorists' path selection for a portion of the day, not the entire day. Georgia DOT requires multiple validation checks to each of the major steps in the travel demand modeling process. Output modeled volumes are validated against traffic counts at several levels – regional, corridors (screenlines) and link-by-link. Regional evaluations include VMT, Root Mean Squared Error and
R-Squared calculations for volume-count matching. Corridor evaluations are primarily screenline comparisons. Nationally recognized maximum desirable deviation standards are applied to analyze model performance at the link level. These include FHWA's "Calibration & Adjustment of System Planning Models", 1990, and the NCHRP Report 365: "Travel Estimation Techniques for Urban Planning", 1998. The Macon model was also validated using 24-hour counts and modeled volumes. Documentation on the development of the Macon Model is in Appendix A. ### 2.1 Travel Demand Modeling Post-Processing Procedures The Macon regional travel demand model produces daily estimates of travel and vehicle hours traveled (VHT) and a peak hour speed for each link in the highway network. The links from the daily highway assignment contain a variety of attributes such as the number of distance, lanes, speed, capacities and daily volumes. The daily VMT is determined by multiplying the daily volume by the distance for each link. In order to account for travel conditions throughout the day, VMT estimates, times and speeds by hour were produced. Other refinements to the network link data, discussed below, were performed to produce the files needed for MOVES. The procedures used in estimating emissions for the Macon model area are consistent with the procedures used for emissions modeling (including conformity analyses) in the other nonattainment areas in Georgia. #### HPMS Adjustment of VMT In order to develop the information necessary to perform emissions modeling, post-processing of the output from the travel demand model was required. First, intra-zonal VMT is normally not reflected in the daily network assignment. A procedure was used that multiplied the number of intra-zonal vehicle trips from the vehicle trip table by the zone centroid distance to calculate the intra-zonal VMT. This VMT was then added to the network in a new link and summarized in the model VMT summaries. Next, the daily VMT from the travel demand model was adjusted based on the VMT estimates that GDOT develops for the Highway Performance Monitoring System (HPMS). According to Section 3.4.2.4 of EPA's "Volume IV" guidance, "[T]he detailed VMT estimates produced by the transportation planning process should be made consistent in the aggregate with HPMS." Consistent with this long-standing SIP guidance, Section 93.122(b)(3) of the Transportation Conformity Rule, Procedures for Determining Regional Transportation Related Emissions, says: "Highway Performance Monitoring System (HPMS) estimates of vehicle miles traveled (VMT) shall be considered the primary measure of VMT within the portion of the nonattainment or maintenance area and for the functional classes of roadways included in HPMS.... For areas with network-based travel models, a factor (or factors) may be developed to reconcile and calibrate the network-based travel model estimates of VMT in the base year of its validation to the HPMS estimates for the same period. These factors may then be applied to model estimates of future VMT." The EPA guidance issued in August 2005, Guidance for Creating Annual On-Road Mobile Source Emission Inventories for PM2.5 Nonattainment Areas for Use in SIPs and Conformity, identified several approaches for preparing PM2.5 emissions. The guidance also specified that the interagency consultation process should be used to determine which approach is most appropriate for the area. The Macon interagency consultation group agreed to the Single-Run Approach recommended by EPD and GDOT for establishing the MVEB and performing subsequent conformity analyses. This methodology involves a single set of modeling runs using MOVES for each scenario year and annual average VMT. HPMS adjustment factors were developed based on the average annual daily HPMS VMT for the model calibration year of 2006. The HPMS adjustment reconciles the travel demand model link-based VMT to the average annual daily travel conditions at the aggregate functional class level. The aggregate functional classification level was used since FHWA eliminated the urban/rural area type distinction from HPMS functional classifications beginning with the 2009 data, reported in 2010. (Guidance for the Functional Classification of Highways (updated), Federal Highway Administration, October 14, 2008.) To determine the "2006 HPMS VMT" adjustment factors, the average annual daily Floyd County VMT for the year 2006 was summarized by the HPMS functional classifications from the Georgia Department of Transportation's Office of Transportation Data "445 Report." The _ ⁴ Procedures for Emission Inventory Preparation, Volume IV: Mobile Sources, EPA-420-R-92-009, US EPA, Office of Air and Radiation, Office of Mobile Sources, 1992, http://www.epa.gov/otaq/invntory/r92009.pdf. data was summarized for the Macon MPO area which consists of all of Bibb County and a portion of Jones County. The 445 report summarizes the mileage and VMT by function classification by county. Since only a portion of Jones County was included in the Macon regional travel demand model, adjustments to the HPMS VMT summaries for Jones County had to be performed. The highway mileage for Jones County by functional classification was summarized for the area within the Macon model and compared to the county summary. A factor was developed based on the percent of the highway mileage within the model compared to the total mileage for the county by functional classification. This factor was then applied to the average daily HPMS VMT by functional classification to determine the average annual daily VMT that will be used in the HPMS VMT adjustment process. Table 2.1-1 lists the highway mileage and average annual daily VMT for the entire Jones County and for the portion of the county that is included in the regional travel demand model. Table 2.1-1 Highway Mileage and Average Annual Daily VMT for Jones County | | | Highway | y Mileage | Average Annual Weekday
Adjusted VMT | | | | | | |-----------------------------|-------------------------|------------------------|--------------|--|--------------------|--|--|--|--| | Functional
Class Name | Functional
Class No. | Macon
2006
Model | GDOT
HPMS | Whole
County | Modeled
Portion | | | | | | Rural Interstate | 1 | 0.00 | 0.00 | 0 | 0 | | | | | | Rural Principal
Arterial | 2 | 2.22 | 2.39 | 14,644 | 13,603 | | | | | | Rural Minor
Arterial | 6 | 3.87 | 57.54 | 420,328 | 28,270 | | | | | | Rural Major
Collector | 7 | 35.10 | 68.06 | 132,779 | 68,477 | | | | | | Rural Minor
Collector | 8 | 20.60 | 46.32 | 85,156 | 37,872 | | | | | | Rural Local | 9 | 77.10 | 328.39 | 113,495 | 26,647 | | | | | | Urbanized
Interstate | 11 | 0.00 | 0.00 | 0 | 0 | | | | | | Urban Freeway | 12 | 0.00 | 0.00 | 0 | 0 | | | | | | Urbanized
Principal | | | | | | | | | | | Arterial | 14 | 13.50 | 3.00 | 50,912 | 229,104 | | | | | | Urbanized
Minor Arterial | 16 | 4.40 | 2.56 | 11,343 | 19,496 | | | | | | Urbanized
Collector | 17 | 10.50 | 4.05 | 8,141 | 21,106 | | | | | | Urbanized Local | 19 | 18.90 | 32.46 | 39,795 | 23,171 | | | | | | | | 186.19 | 544.77 | 876,593 | 467,745 | | | | | 11 Table 2.1-2 lists the daily VMT for the Macon MPO area from the travel demand model by county. Table 2.1-2 Summary of 2006 Daily VMT for Macon MPO Area (from the MATS travel demand model) | Functional Class | Functional | Bibb | Jones | | |-------------------------|------------|-----------|---------|-----------| | Name | Class No. | County | County | Total | | Interstates | 1,11,12 | 2,314,061 | 0 | 2,314,061 | | Principal Arterials | 2,14 | 840,422 | 140,967 | 981,389 | | Minor Arterials | 6,16 | 1,258,455 | 30,931 | 1,289,386 | | Collectors | 7,8,17 | 413,748 | 53,205 | 466,953 | | Local | 9,19 | 691,847 | 98,336 | 790,183 | | Total | | 5,518,532 | 323,440 | 5,841,972 | Table 2.1-3 lists the adjustment factors based on the comparison between the HPMS average annual daily VMT and the VMT from the regional travel demand model. These factors were applied to the VMT on each link in the highway network based on the functional classification for the years 2007 and 2023. Table 2.1-3 HPMS VMT Average Annual Daily Adjustment Factors for Macon MPO Area | Functional Class
Name | Functional
Class No. | 2006
HPMS
VMT | 2006 Model
VMT | Adjustment
Factor | |--------------------------|-------------------------|---------------------|-------------------|----------------------| | | | | | | | Interstates | 1,11,12 | 2,381,607 | 2,314,061 | 1.03 | | Principal Arterials | 2,14 | 1,012,878 | 981,389 | 1.03 | | Minor Arterials | 6,16 | 1,382,813 | 1,289,386 | 1.07 | | Collectors | 7,8,17 | 565,481 | 466,953 | 1.21 | | Local | 9,19 | 941,331 | 790,183 | 1.19 | | Total | | 6,284,109 | 5,841,972 | 1.08 | The HPMS adjustment factors were developed for the entire Macon MPO which includes a portion of Jones County to reflect the travel activity for the entire area. However, because Jones County is not part of the nonattainment area, only the travel within Bibb County was used in the preparations of emissions for conformity determination. The following equation was used to calculate the 2006 HPMS adjustment factors: HPMS Adjustment Factor_i = $(2006 \text{ HPMS VMT}_i/2006 \text{ Model VMT}_i)$ where i=HPMS functional class) The 2006 factors were applied to the VMT on each link in the highway network based on the aggregate functional classification for the year 2006. These factors were applied to the model application for 2007 and 2023. Table 2.1-4 lists the adjusted modeled VMT by year for Bibb County which was used in the emissions modeling procedures. Table 2.1-4 Average Annual Daily Modeled VMT for Bibb County (As adjusted per Table 2.1-1) | Year | VMT | |------|-----------| | 2007 | 5,865,058 | | 2023 | 7,244,222 | #### VMT Estimation by Hour Factors derived using the methodology described in the report
Speed and Delay Prediction Models for Planning Applications were used to develop VMT estimates by hour from the daily estimates. The methodology is a simplified queuing-based model (QSIM) which incorporates several key features such as the use of temporal distribution as a basis for developing hourly traffic estimates and the estimation of "peak spreading" for both arterials and freeways. Because most analytical methods consider only the effects of peak hour congestion (such as V/C ratio), a new measurement of daily congestion was used: the Average Annual Daily Traffic-to-Capacity (AADT/C) ratio, where capacity is the two-way capacity. Hourly factors were developed based on the AADT/C ratio and are listed in Table 2.1-5. These factors were applied to the daily traffic assignment to develop hourly volumes and VMT by link. Conical volume-delay curves were then used to develop hourly times and speeds by link. #### Roadtype Classification The network link data was also classified by MOVES roadtype based on functional classification. The mapping of FHWA highway functional system classifications to the appropriate MOVES roadtypes used for this modeling is listed in Table 2.1-6. Interstate and freeway ramps are functionally classified as local facilities in Georgia. Since these facilities operate with restricted access, the facility type definition variable (a unique variable in the highway network that defines the highway facilities based on their operation) was used to classify ramps as either rural or urban restricted facilities. Off-network activity is calculated within the MOVES process based on the source type (vehicle) population and is not an input from the travel demand model data. Table 2.1-6 Listing of FHWA Highway Functional Classifications Mapped to MOVES Road Types | FHWA Highway Functional System | MOVES Road Type | MOVES Value | |--------------------------------|---------------------------|-------------| | Rural interstate | Rural restricted access | 2 | | Rural other principal arterial | Rural restricted access | 2 | | Rural minor arterial | Rural unrestricted access | 3 | 13 | FHWA Highway Functional System | MOVES Road Type | MOVES Value | |--------------------------------|---------------------------|-------------| | Rural major collector | Rural unrestricted access | 3 | | Rural minor collector | Rural unrestricted access | 3 | | Rural local | Rural unrestricted access | 3 | | Urban interstate | Urban restricted access | 4 | | Urban other freeways | Urban restricted access | 4 | | Urban other principal arterial | Urban unrestricted access | 5 | | Urban minor arterial | Urban unrestricted access | 5 | | Urban collector | Urban unrestricted access | 5 | | Urban local | Urban unrestricted access | 5 | Table 2.1-5 Hourly Distribution of Daily Vehicle Miles Travelled (VMT) | | | | | | | | | | | | Hou | of Day | 7 | | | | | | | | | | | | |-----------------|------|------|------|------|----------|------|------|------|------|-----------|------|-----------|-----------|------|-----------|-----------|-----------|-----------|-----------|------|-----------|------|------|------| | AADT/C
Ratio | 1 | 2 | 3 | 4 | <u>5</u> | 6 | 7 | 8 | 9 | <u>10</u> | 11 | <u>12</u> | <u>13</u> | 14 | <u>15</u> | <u>16</u> | <u>17</u> | <u>18</u> | <u>19</u> | 20 | <u>21</u> | 22 | 23 | 24 | | <= 7 | 1.00 | 0.60 | 0.48 | 0.45 | 0.67 | 1.85 | 5.01 | 7.73 | 6.13 | 4.82 | 4.79 | 5.12 | 5.36 | 5.47 | 6.05 | 7.27 | 8.28 | 8.27 | 5.89 | 4.18 | | 3.03 | 2.44 | 1.77 | | 8 | 1.01 | 0.61 | 0.48 | 0.43 | 0.64 | 1.82 | 5.04 | 7.67 | 6.42 | 4.97 | 4.82 | 5.19 | 5.41 | 5.53 | 6.07 | 7.14 | 7.97 | 7.90 | 5.87 | 4.21 | 3.33 | 3.10 | - | 1.84 | | 9 | 1.01 | 0.61 | 0.48 | 0.42 | 0.63 | 1.81 | 5.06 | 7.64 | 6.56 | 5.05 | 4.84 | 5.22 | 5.43 | 5.56 | 6.08 | 7.08 | 7.81 | 7.71 | 5.86 | 4.22 | 3.33 | 3.13 | 2.58 | 1.88 | | 10 | 1.01 | 0.60 | 0.47 | 0.40 | 0.61 | 1.80 | 5.05 | 7.49 | 6.61 | 5.19 | 4.95 | 5.29 | 5.46 | 5.60 | 6.09 | 6.99 | 7.58 | 7.50 | 5.92 | 4.31 | 3.38 | 3.18 | 2.63 | 1.91 | | 11 | 1.01 | 0.60 | 0.45 | 0.38 | 0.58 | 1.79 | 5.05 | 7.33 | 6.65 | 5.33 | 5.06 | 5.35 | 5.50 | 5.64 | 6.11 | 6.90 | 7.34 | 7.28 | 5.98 | 4.39 | 3.43 | 3.23 | 2.68 | 1.93 | | 12 | 1.01 | 0.59 | 0.44 | 0.36 | 0.56 | 1.78 | 5.04 | 7.17 | 6.70 | 5.47 | 5.17 | 5.42 | 5.53 | 5.68 | 6.12 | 6.81 | 7.10 | 7.06 | 6.04 | 4.48 | 3.48 | 3.28 | 2.73 | 1.96 | | 13 | 1.27 | 0.89 | 0.75 | 0.68 | 0.86 | 1.98 | 4.97 | 6.92 | 6.49 | 5.36 | 5.09 | 5.32 | 5.42 | 5.55 | 5.96 | 6.59 | 6.86 | 6.82 | 5.88 | 4.45 | 3.54 | 3.35 | 2.85 | 2.14 | | 14 | 1.54 | 1.19 | 1.06 | 0.99 | 1.16 | 2.18 | 4.90 | 6.67 | 6.28 | 5.25 | 5.00 | 5.21 | 5.30 | 5.43 | 5.80 | 6.37 | 6.61 | 6.58 | 5.73 | 4.43 | 3.60 | 3.43 | 2.97 | 2.33 | | 15 | 1.80 | 1.48 | 1.37 | 1.31 | 1.46 | 2.38 | 4.82 | 6.42 | 6.07 | 5.14 | 4.92 | 5.11 | 5.19 | 5.30 | 5.63 | 6.15 | 6.37 | 6.34 | 5.57 | 4.40 | 3.65 | 3.50 | 3.09 | 2.51 | | 16 | 2.06 | 1.78 | 1.68 | 1.63 | 1.76 | 2.58 | 4.75 | 6.17 | 5.86 | 5.04 | 4.84 | 5.00 | 5.08 | 5.18 | 5.47 | 5.93 | 6.12 | 6.10 | 5.42 | 4.38 | 3.71 | 3.58 | 3.21 | 2.70 | | 17 | 2.33 | 2.08 | 1.99 | 1.95 | 2.06 | 2.77 | 4.68 | 5.92 | 5.65 | 4.93 | 4.75 | 4.90 | 4.96 | 5.05 | 5.31 | 5.71 | 5.88 | 5.86 | 5.26 | 4.35 | 3.77 | 3.65 | 3.33 | 2.88 | | 18 | 2.59 | 2.38 | 2.30 | 2.26 | 2.36 | 2.97 | 4.60 | 5.67 | 5.43 | 4.82 | 4.67 | 4.79 | 4.85 | 4.92 | 5.14 | 5.49 | 5.63 | 5.61 | 5.10 | 4.32 | 3.82 | 3.72 | 3.45 | 3.06 | | 19 | 2.85 | 2.68 | 2.61 | 2.58 | 2.66 | 3.17 | 4.53 | 5.42 | 5.22 | 4.71 | 4.59 | 4.69 | 4.74 | 4.80 | 4.98 | 5.27 | 5.39 | 5.37 | 4.95 | 4.30 | 3.88 | 3.80 | 3.57 | 3.25 | | 20 | 3.11 | 2.97 | 2.92 | 2.90 | 2.96 | 3.37 | 4.46 | 5.17 | 5.01 | 4.60 | 4.50 | 4.58 | 4.62 | 4.67 | 4.82 | 5.05 | 5.14 | 5.13 | 4.79 | 4.27 | 3.94 | 3.87 | 3.69 | 3.43 | | 21 | 3.38 | 3.27 | 3.24 | 3.22 | 3.27 | 3.57 | 4.39 | 4.92 | 4.80 | 4.49 | 4.42 | 4.48 | 4.51 | 4.55 | 4.66 | 4.83 | 4.90 | 4.89 | 4.64 | 4.25 | 4.00 | 3.95 | 3.81 | 3.62 | | 22 | 3.64 | 3.57 | 3.55 | 3.53 | 3.57 | 3.77 | 4.31 | 4.67 | 4.59 | 4.38 | 4.33 | 4.38 | 4.39 | 4.42 | 4.49 | 4.61 | 4.66 | 4.65 | 4.48 | 4.22 | 4.05 | 4.02 | 3.93 | 3.80 | | 23 | 3.90 | 3.87 | 3.86 | 3.85 | 3.87 | 3.97 | 4.24 | 4.42 | 4.38 | 4.28 | 4.25 | 4.27 | 4.28 | 4.29 | 4.33 | 4.39 | 4.41 | 4.41 | 4.32 | 4.19 | 4.11 | 4.09 | 4.05 | 3.98 | | 24 | 4.17 | Source: Speed and Delay Prediction Models for Planning Applications ### **Speed Bin Classification** The network link hourly data was also stratified by speed bin. As previously mentioned, conical volume-delay curves were used to develop hourly times and speed by link. MOVES defines 16 "speed bins" which describe the average driving speed on a roadtype or highway network link. Table 2.1-7 lists the speed bins and ranges that were assigned to the network link data by hour. **Table 2.1-7 Listing of MOVES Speed Bins** | Speed Bin | Lower Range | Upper Range | |-----------|-------------|-------------| | 1 | <= | 2.4 | | 2 | 2.5 | 7.4 | | 3 | 7.5 | 12.4 | | 4 | 12.5 | 17.4 | | 5 | 17.5 | 22.4 | | 6 | 22.5 | 27.4 | | 7 | 27.5 | 32.4 | | 8 | 32.5 | 37.4 | | 9 | 37.5 | 42.4 | | 10 | 42.5 | 47.4 | | 11 | 47.5 | 52.4 | | 12 | 52.5 | 57.4 | | 13 | 57.5 | 62.4 | | 14 | 62.5 | 67.4 | | 15 | 67.5 | 72.4 | | 16 | => | 72.5 | ### 2.2 Development of MOVES Input Files The mobile source emissions used for the Macon analysis reflect all federal and state mobile source control rules, including federal tailpipe standards and gasoline sulfur and volatility limits. #### **Interagency Consultation** To prevent transportation conformity problems, the emissions used in preparation of emission inventories for SIP MVEB development and transportation conformity analysis must be consistent. Interagency consultation helps to assure consistency between the two procedures. The MOVES input parameters for the Macon PM2.5 Maintenance Plan mobile source emissions modeling were established through interagency consultation and are listed below: 1) Emission Factor Model: MOVES2010a - Database: MOVES20100830 a. Emission Process - using MOVES in Inventory mode for a July day, which was annualized for 2007 and 2023 Maintenance Plan Inventories, and as the basis for 2023 motor vehicle emissions budgets #### 2) MOVES Inputs – - a. Temperature and relative humidity - i. 2007 data from National Mobile Inventory Model's (NMIM) default database (NCD20090531) - b. Fuel - i. Bibb County MOVES defaults for July - ii. Monroe County MOVES defaults for July - c. 2002 Regional Fleet Age Distribution - Derived from R.L. Polk & Co. registration data for the five counties in the Macon metropolitan statistical area: Bibb, Crawford, Jones, Monroe, and Twiggs - ii. Default for HDDV Class 8B - d. Regional Vehicle Population - i. Started with 2002 R.L. Polk & Co. registration data for for the five counties in the Macon MSA,, as well as the Georgia Dept. of Revenue's registration data for 2003 and 2007 - ii. Vehicles by type were grown from 2002 to 2007 using different growth factors by vehicle type based on either Census person population estimates or Georgia 2007 registration data. Methodology developed by EPD for inputs to the SMOKE-MOVES Integration Tool. - iii. 2023 data grown from 2007 based on estimated MPO population growth - iv. Vehicle population for MOVES source type 62 revised using MOVES default VMT/VPOP ratios and VMT for HPMS type 60 data - e. MOVES Default VMT fractions by source type, adjusted using GDOT count data #### **MOVES** MOVES20100830 is the latest database version for EPA's motor vehicle emissions model. MOVES requires a variety of input files. The MOVES input data files associated with travel behavior have been developed using the Macon travel demand model data, Georgia vehicle classification counts, and MOVES national defaults. Other data sources were used to develop the source type
population data, meteorology data, and fuel specifications. These data files were developed through Interagency Consultation. #### **MOVES Parameters** MOVES was run for 2007 and 2023 using the following parameters listed in Table 2.2-1. The RunSpecs are shown in Exhibit 2 and 3. Table 2.2-1 MOVES Input Parameters | Parameters | | Input Values | | |-------------------------|--------------------------------------|---|--| | Scale | Domain: County | Calculation Type: Inventory M | lode | | Time Spans Geographical | Time Aggregation: Weekday – 24 hours | Month: July | Year: 2007 or 2023 | | Boundary | Bibb County Fuels: Diesel Fuel | Source Use Types: • Combination Long-haul Truck | Selections: • Diesel Fuel - Combination Long-haul Truck | | Vehicles
Equipment | • Gasoline | Combination Short-haul Truck Intercity Bus Light Commercial Truck Motor Home Motorcycle Passenger Car Passenger Truck Refuse Truck School Bus Single Unit Long-haul Truck Single Unit Short-haul Truck Transit Bus | Diesel Fuel - Combination Short-haul Truck Diesel Fuel - Intercity Bus Diesel Fuel - Light Commercial Truck Diesel Fuel - Motor Home Diesel Fuel - Passenger Car Diesel Fuel - Passenger Truck Diesel Fuel - Refuse Truck Diesel Fuel - School Bus Diesel Fuel - Single Unit Long-haul Truck Diesel Fuel - Single Unit Short-haul Truck Diesel Fuel - Transit Bus Gasoline - Combination Short-haul Truck Gasoline - Hotor Home Gasoline - Motor Home Gasoline - Passenger Car Gasoline - Passenger Truck Gasoline - Refuse Truck Gasoline - School Bus Gasoline - Single Unit Long-haul Truck Gasoline - Single Unit Long-haul Truck Gasoline - Single Unit Short-haul Truck Gasoline - Single Unit Short-haul Truck | | <u>Parameters</u> | | <u>Input Values</u> | | |-----------------------------|------------|---|---| | | | Off-Network | | | | | • Rural Restricted Access | | | RoadType | Types: 1-5 | • Rural Unrestricted Access | | | | | • Urban Restricted Access | | | | | • Urban Unrestricted Access | | | Pollutants and
Processes | PM2.5 | Primary Exhaust PM2.5 – Total | Running Exhaust Start Exhaust Crankcase Running Exhaust Crankcase Start Exhaust Crankcase Extended Idle Exhaust Extended Idle Exhaust | | | | Primary PM2.5 – Organic Carbon | Running Exhaust Start Exhaust Crankcase Running Exhaust Crankcase Start Exhaust Crankcase Extended Idle Exhaust Extended Idle Exhaust | | | | Primary PM2.5 – Elemental
Carbon | Running Exhaust Start Exhaust Crankcase Running Exhaust Crankcase Start Exhaust Crankcase Extended Idle Exhaust Extended Idle Exhaust | | | | Primary PM 2.5 Sulfate Particulate Primary PM2.5 – Brakewear | Running Exhaust Start Exhaust Crankcase Running Exhaust Crankcase Start Exhaust Crankcase Extended Idle Exhaust Extended Idle Exhaust Breakwear | | <u>Parameters</u> | | Input Values | | | | | | | |-------------------|----------------|---|--|--|--|--|--|--| | | | Particulate | | | | | | | | | | Primary PM2.5 – Tirewear Particulate • Tirewear | | | | | | | | | | Total Energy Consumption | Running Exhaust Start Exhaust | | | | | | | | NOx | Oxides of Nitrogen (NOx) | Running Exhaust Start Exhaust Crankcase Running Exhaust Crankcase Start Exhaust Crankcase Extended Idle Exhaust Extended Idle Exhaust | | | | | | | Output | General Output | <u>Units:</u>Units: GramsEnergy Units: JoulesDistance Units: Miles | Activity: • Distance Traveled • Population | | | | | | ### Methodology to Develop MOVES Input Data The data files to run MOVES are entered via the County Data Importer. The methodologies to prepare the data files are described in Table 2.2-2 with their associated Excel Workbook and Worksheet names. The input data are shown in Exhibits 2-5 for the years 2007 and 2023. Table 2.2-2 Methodology to Prepare MOVES Input Data Files For the County Data Importer for Bibb County **Input Data from Travel Demand Model** | County Data Manager Inputs | <u>Worksheet</u> | <u>Methodology</u> | |----------------------------|----------------------|--| | AverageSpeed Distribution | avgSpeedDistribution | The weekday link hourly vehicle hours travelled (VHT) is summarized by road type and speed bin. The MOVES defaults for the 13 source types by year are used to allocate to vehicle type. The fraction of time in each speed bin for each hour based on vehicle type, road type, and average speed is calculated where the fractions sum to one for each combination of vehicle type and road type by hour. | | Ramp Fraction | RoadType | The weekday link VMT is summarized for interstate/freeway and ramp facilities by urban versus rural area type classifications. The percent of ramp VMT of the total interstate/freeway and ramp VMT is calculated by area type. | | RoadTypeDistribution | roadTypeDistribution | The weekday link hourly VMT is summarized by roadtype. The MOVES defaults for the 13 source types by year are used to allocate to vehicle type. The fraction of VMT by road type and vehicle type is calculated where the fractions sum to one for each vehicle type. | | Vehicle Type VMT | HPMSVtypeYear | The weekday VMT is summarized by MOVES roadtype and then weighted by the vehicle classification counts ⁵ for the Georgia area outside of the Atlanta 20 county area by the 6 HPMS vehicle types. The fractions for vehicle type 20 and 30 are then re-distributed based on the MOVES source vehicle defaults for the year. This is because the vehicle classification counts are collected using counters which count vehicles by the number of axles and as a result, the counts do not accurately reflect the difference between passenger cars and SUVs. The daily VMT is annualized using the EPA AADVMT Calculator Excel workbook. | | | MonthVMTFraction | MOVES National Defaults | | | DayVMTFraction | MOVES National Defaults | _ ⁵ (A summary of the vehicle classification counts and description of the methodology used is in Exhibit 5) | County Data
Manager Inputs | <u>Worksheet</u> | <u>Methodology</u> | |-------------------------------|------------------|--| | | HourVMTFraction | The weekday link hourly VMT is summarized by roadtype and hour. The MOVES defaults for the 13 source types by year are used to allocate to vehicle type. The fraction of VMT by road type and vehicle type is calculated where the fractions sum to one for each vehicle type by roadtype. The hourVMTFraction must sum to 1 for each source type-road type-type of day combination. | | Input Data from Oth | er Sources | | | County Data
Manager Inputs | <u>Worksheet</u> |
<u>Methodology</u> | |-------------------------------|---------------------------|---| | Source Type
Population | sourceTypeYear | Vehicle population by source types was developed using 2002 R.L. Polk & Co. registration data. The 2002 data were grown to 2007 using either census person population estimates or Georgia annual vehicle registration data. Vehicle population for source type 62 (long-haul trucks) was recalculated using corresponding VMT for HPMS type 60 data from the HPMSVtypeYear worksheet and national default ratios of VMT and vehicle population in order to account for activity from trucks not registered but run locally. MPO population projection was used to calculate 2023 vehicle population. | | I/M Programs | IMCoverage | No I/M Program | | Fuel Cumply | Fuel Supply | MOVES Defaults for Bibb County | | Fuel Supply | Fuel Formulation | MOVES Defaults for Bibb County | | Meteorology Data | ZoneMonthHour | NCD20090531- 2007 data for Bibb County | | Age Distribution | sourceTypeAgeDistribution | Age distributions in MOBILE6 format were derived from 2002 R.L. Polk & Co. registration data for all vehicle types, except for HDDV Class 8B where MOBILE6 defaults were used. They were converted into MOVES format using EPA converter. | ### 2.3 Procedures for Producing Emissions Using Off Model Techniques The Monroe County portion of the Macon PM2.5 Nonattainment Area is not included in the Macon MPO's study area nor in the travel demand model. The area encompasses approximately 13.5 square miles and per the 2010 Census contains a population of 98. Since the area is not modeled, emissions estimates were produced using off-model techniques. According to the Transportation Conformity Rule 93.122(a)(7), reasonable methods shall be used to estimate nonattainment or maintenance area VMT on off-network roadways within the urban transportation planning area, and on roadways outside the urban transportation planning area. The methodology to produce the mobile emissions for Monroe County, described in this section, uses reasonable methods. A combination of techniques was used to produce the emissions for the nonattainment portion of Monroe County. Georgia DOT historical traffic counts were used as the basis to estimate running emissions while the percent of the population was used to estimate non-running emissions. Figure 2.3-1, displays the relevant traffic count stations and the applicable roadway segments that are included in the off-model estimation process. Figure 2.3-1 Traffic Count Stations As Figure 2.3-1 indicates, VMT forecasts for the segment of State Route 18 were produced using historical traffic counts for GDOT count station 297. Traffic volumes projections are displayed in Table 2.3-2, and were based on a linear extrapolation of the historical counts, which are also shown in Table 2.3-2. The 1997 count for station 297 was omitted because it appears to be an outlier. If the 1997 count were included, the linear extrapolation would be declining. Table 2.3-2 Historical Traffic Counts Macon, Georgia - Off Model Emission Estimation Monroe County Portion for PM Relevant GDOT Count Stations | | AADT | | | | | | | | Projected Traffic | | | | | | | | |--|------|------|------|------|------|-------------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|-----------------------|-----------------------|----------------------|------------------------| | Station # | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2005 | 2006 | 2007 | 2008 | 2010 | 2015 | 2020 | 2023 | 2030 | | 208 | 5128 | 5467 | 5836 | 6660 | 5701 | 6560 | 6930 | 5400 | 6150 | 5990 | 6310 | 7084 | 7697 | 8311 | 8679 | 9538 | | 210 | 3800 | 3828 | 4086 | 4769 | 4325 | 5443 | 5300 | 5010 | 4870 | 5320 | 5300 | 6221 | 7135 | 8049 | 8597 | 9877 | | 212 | 2893 | 3005 | 3208 | 3737 | 3325 | 4269 | 4080 | 4330 | 4200 | 4200 | 3890 | 4945 | 5692 | 6439 | 6887 | 7933 | | 295 | 2021 | 1901 | 1942 | 1960 | 2103 | 2383 | 2410 | 2450 | 2510 | 2460 | 2340 | 2724 | 3039 | 3355 | 3544 | 3986 | 297 | 2503 | 1411 | 1373 | 1400 | 1500 | 1514 | 1470 | 1250 | 1400 | 1500 | 1400 | 1492 | 1530 | 1568 | 1591 | 1644 | | Average
208 + 210
Difference
27% of
volume | | | | | | 6,002
1,117
1,620 | 6,115
1,630
1,651 | 5,205
390
1,405 | 5,510
1,280
1,488 | 5,655
670
1,527 | 5,805
1,010
1,567 | 6,653
863
1,796 | 7,416
562
2,002 | 8,180
262
2,209 | 8,638
82
2,332 | 9,708
-339
2,621 | MOVES was run twice for Monroe County for each year. First MOVES was run in Emission Rate mode to produce emissions by roadtype and speed. The output from the Rate per Vehicle and Rate per Distance were used to estimate the running emissions. Then MOVES was run in Inventory mode. The percentage of the county population within the nonattainment area was applied to produce the non-running emissions. Table 2.3-3 lists the input files to the County Data Importer. The input data are shown in Exhibits 7-10 for the years 2007 and 2023. Table 2.3-3 Methodology to Prepare MOVES Input Data Files For the County Data Importer for Monroe County **Input Data from Travel Demand Model** | <u>County Data</u>
<u>Manager Inputs</u> | <u>Worksheet</u> | Methodology | | | | | | |---|----------------------|---|--|--|--|--|--| | AverageSpeed
Distribution | avgSpeedDistribution | MOVES National Defaults | | | | | | | Ramp Fraction | RoadType | MOVES National Defaults | | | | | | | RoadTypeDistribution | roadTypeDistribution | MOVES National Defaults | | | | | | | Vehicle Type VMT | HPMSVtypeYear | GDOT 445 Report was used to determine annual average DVMT. MOVES National Default vehicle type fractions were used to allocate to vehicle type. The daily VMT was annualized using the EPA AADVMT Calculator Excel workbook. (Future year DVMT was grown using past VMT from 445 Reports) | | | | | | | | MonthVMTFraction | MOVES National Defaults | | | | | | | | DayVMTFraction | MOVES National Defaults | | | | | | | | HourVMTFraction | MOVES National Defaults | | | | | | ## **Input Data from Other Sources** | County Data
Manager Inputs | Worksheet | <u>Methodology</u> | |-------------------------------|----------------|--| | Source Type
Population | sourceTypeYear | Vehicle population by source types was developed using 2002 R.L. Polk & Co. registration data. The 2002 data were grown to 2007 using either census person population estimates or Georgia annual vehicle registration data. Census population projection was used to calculate 2023 vehicle population. | | I/M Programs | IMCoverage | No I/M Program | | Fuel Supply | Fuel Supply | MOVES Defaults for Monroe County | | <u>County Data</u>
Manager Inputs | Worksheet | Methodology | |--------------------------------------|---------------------------|---| | | Fuel Formulation | MOVES Defaults for Monroe County | | Meteorology Data | ZoneMonthHour | NCD20090531- 2007 data for Monroe County | | | | Age distributions in MOBILE6 format were derived from 2002 R.L. Polk & | | | | Co. registration data for all vehicle types, except for HDDV Class 8B where | | | | MOBILE6 defaults were used. They were converted into MOVES format using | | Age Distribution | sourceTypeAgeDistribution | EPA converter. | Tables 2.3-4 and 2.3-5 list the summary of the emission calculations for the nonattainment area of Monroe County for 2007 and 2023. The spreadsheets are available upon request. **Table 2.3-3 Emissions for Nonattainment portion of Monroe County for 2007** | Running E | | | | | | | | | | | - | 150.5 | | 10 | |-----------------------------------|--------------------------------|------------------------|-----------------|--------|------------------------|------------|-----------|--------------|-------|--------------------|--|---|--|---| | Entry/Exit | | | | | | | | | | | <u>P</u> ! | M2.5 | <u> </u> | NOx | | Based on St | ations 208 & 2 | 10 | | | 1 | | | | 1 | | | | | | | <u>Year</u> | | HPMS
Code | MOVES Road Type | Volume | Mileage | <u>VMT</u> | No Adj | Final
VMT | | MOVES
Speed Bin | Running Emission Factor | Running Emissions (in grams) | Running Emission Factor | Running Emissions (in grams) | | 2007 | | 9 | 3 | 1,527 | 0.25 | 381.7 | 1.0000 | 381.7 | 10 | 3 | 10.3917 | 3,966.6607 | 175.8768 | 67,134.3903 | | SR
18 Faci | lity | | <u> </u> | | | | | | | | | | | | | | one station | | | | | | | | | | | | | | | V | C4-4: | HPMS Code | | \$7-1 | Milana | X/M/T | NI - A 32 | Final
VMT | S | MOVES | Running
Emission | Running
Emissions (in | Running
Emission | Running
Emissions (in | | Year
2007 | Station
297 | <u>Code</u>
7 | 3 | Volume | <u>Mileage</u>
0.25 | <u>VMT</u> | No Adj | | Speed | Speed Bin
8 | <u>Factor</u> 5.7922 | <u>grams)</u> | Factor | grams) | | 2007 | 291 | / | 3 | 1,500 | 0.25 | 375.0 | 1.0000 | 375.0 | 35 | | 5.1922 | 2,172.0656 | 109.6572 | 41,121.4667 | | Total Runr | ing Emissions | i | | | | | | | | | | 6,138.7263 | | 108,255.8569 | | Non-Runni | ng Emissions | | | | | | | | | | <u>P</u> ! | M2.5 | 1 | NOx. | | Year | Total
Vehicle
Population | Partial County Factor* | | | | | | | | | Total County Level Non- Running Emissions (in grams)** | Non-Running Emissions pro- rated by partial county factor(in grams) | Total County Level Non- Running Emissions (in grams)** | Non-Running Emissions pro- rated by partial county factor(in grams) | | 2007 | 24,426 | 0.004 | | | | | | | | | 26,933.9456 | 107.7358 | | 6,189.5293 | | | | | | | | | | | | | , | | , , | · · · · · · · · · · · · · · · · · · · | | <u>Total Daily</u>
<u>Year</u> | Emissions in | <u>Grams</u> | | | | | | | | | <u>P</u> 1 | M2.5 Total Emissions (in grams) | <u> </u> | NOx
Total Emissions
(in grams) | | 2007 | | | | | | | | | | | | 6,246.4621 | | 114,445.3862 | | | Emissions in | Tons | | | | | | | | | Pi | M2.5 | ľ | NOx | | <u>Year</u> | | | | | | | | | | | | Total Daily Emissions (in tons) | | Total Daily Emissions (in tons) | | 2007 | | | | | | | | | | | | 0.0069 | | 0.1262 | | Total Annu | al Emissions i | in Tons | | | | | | | | | Pi | M2.5 | 1 | NOx | | <u>Year</u> | | | | | | | | | | | | Total Daily Emissions (in tons) | | Total Daily Emissions (in tons) | | 2007 | | | | | | | | | | | | 2.3549 | | 43.1448 | | Note: | | | | | | | | | | | | | | | | | unty factor is b | | and of the | | tida taa da aa aa | | | | 10.0 | | | | | | Table 2.3-4 Emissions for Nonattainment portion of Monroe County for 2023 | Running | Emissions | | | | | | | | | | | | | | |--------------------------------|---|------------------------------|-------------------|------------------------|-----------------|---------------------|-------------------------|-------------------------------------|-------------|-------------------------|---|---|---|--| | Entry/Exit | | | | | | | | | | | р | M2.5 | N | 1Ox | | Based on Stations 208 & 210 | | | | | | | | | | | <u>1412.5</u> | <u> </u> | (OX | | | <u>Year</u>
2023 | | HPMS
Code | MOVES Road Type 3 | <u>Volume</u> 2,332 | Mileage
0.25 | <u>VMT</u>
583.1 | <u>No Adj</u>
1.0000 | <u>Final</u>
<u>VMT</u>
583.1 | Speed
10 | MOVES
Speed Bin
3 | Running
Emission
Factor
1.3428 | Running
Emissions (in
grams)
782.9165 | Running
Emission
Factor
17.2226 | Running
Emissions (in
grams)
10,041.8787 | | SR 18 Facili | ty | | | | | | | | | • | | | | | | Pro-rated to Year 2023 | Station
297 | HPMS
Code
7 | 3 | <u>Volume</u>
1,591 | Mileage
0.25 | <u>VMT</u>
397.8 | No Adj
1.0000 | Final
VMT
397.8 | Speed
35 | MOVES
Speed Bin
8 | Running
Emission
Factor
0.5214 | Running
Emissions (in
grams)
207.3872 | Running Emission Factor 10.5117 | Running
Emissions (in
grams)
4,181.0321 | | Total Rur | nning Emis | sions | | | | | | | | | | 990.3037 | | 14,222.9109 | | Non-Run | ning Emiss | sions | | | | | | | | | <u>P</u> : | <u>M2.5</u> | <u>1</u> | <u>lOx</u> | | | Total
Vehicle
Population
34,441
ly Emission | Partial County Factor* 0.004 | ams | | | | | | | | Total County Level Non- Running Emissions (in grams) 3,054.5299 | Non-Running Emissions pro- rated by partial county factor(in grams) 12.2181 M2.5 Total Emissions | Total County Level Non- Running Emissions (in grams) 368,397.9249 | Non-Running Emissions pro- rated by partial county factor(in grams) 1,473.5917 HOx Total Emissions | | <u>Year</u> | | | | | | | | | | | | (in grams) | | (in grams) | | 2023
Total Dai | lv Emissio | ne in To- | 26 | | | | | | | | n' | 1,002.5219
M2.5 | N | 15,696.5026
VOx | | <u>Year</u>
2023 | <u>1y 12(1118810)</u> | 16 III 10I | 10 | | | | | | | | | Total Daily Emissions (in tons) 0.0011 | <u>.</u> | Total Daily Emissions (in tons) 0.0173 | | Total Annual Emissions in Tons | | | | | | | | <u>P</u> | M2.5 | 1 | <u>lOx</u> | | | | | <u>Year</u>
2023 | | | | | | | | | | | | Total Daily Emissions (in tons) 0.3779 | | Total Daily Emissions (in tons) 5.9174 | | Note: | | | | | | | | , | 212 - | | | | | | | *Partial cou | inty factor is b | ased on pe | ercent of th | e population | within the n | non-attainn | nent area | | 010 Cen | sus | | | | | 28 ### 2.4 Nonattainment Area Emissions Analysis Summary A factor was developed to annualize the weekday emissions to include weekend activity. The factor was based on the MOVES defaults for DayVMTFractions which is being used as part of the MOVES inputs. The following formula was used: Number of weekday equivalents in a year = 365*(5/7)+365*(2/7)*MOVES Urban Weekend Adjustment Factor(.7793) = 341.9809 (rounded to 342) This is shown in cell D34 of tab "Import HPMS AADVMT and Factors" in the EPA AADVMTCalculator Excel workbook. The daily emissions are produced in grams and are converted to tons by dividing by 907,184.74. The daily emissions in tons are then multiplied by 342 to get annual emissions. Table 2.4-1 lists the results from the regional emissions analysis produced using the travel demand model in daily grams by county while Table 2.4-2 lists the emissions in annual tons. Table 2.4-1 Summary of Mobile Source Emissions for Macon Nonattainment Area (Daily Grams) | | | PM2.5 | | | Nox | | | |-------------|--------|--------------|-----------------|--------------|-----------------|-----------------|-----------------| | <u>Year</u> | County | Running | Non-
running | <u>Total</u> | Running | Non-
running | <u>Total</u> | | | Bibb | 661,868.7737 | 38,192.5713 | 700,061.3450 | 17,386,111.1673 | 2,498,616.5412 | 19,884,727.7085 | | 2007 | Monroe | 6,138.7263 | 107.7358 | 6,246.4621 | 108,255.8569 | 6,189.5293 | 114,445.3862 | | | Total | 668,007.5000 | 38,300.3071 | 706,307.8071 | 17,494,367.0242 | 2,504,806.0705 | 1,999,173.0947 | | | | | | | | | | | | | | PM2.5 | | | Nox | | | <u>Year</u> | County | Running | Non-
running | <u>Total</u> | Running | Non-
running | <u>Total</u> | | | Bibb | 172,857.1837 | 12,328.0220 | 185,185.2057 | 3,743,833.9585 | 1,522,244.4094 | 1,534,572.4314 | | 2023 | Monroe | 990.3037 | 12.2181 | 1,002.5218 | 14,222.9109 | 1,473.5917 | 15,696.5026 | | | | | | | | | | Table 2.4-2 Summary of Mobile Source Emissions for Macon Nonattainment Area (Annual Tons) | | PM2.5 | | | Nox | | | | |------|--------|----------|-----------------|----------|------------|------------------------|------------| | Year | County | Running | Non-
running | Total | Running | <u>Non-</u>
running | Total | | 2007 | Bibb | 249.5183 | 14.3983 | 263.9166 | 6,554.3982 | 941.9546 | 7,496.3528 | | | | PM2.5 | | | Nox | | | |------------------|--------------------|------------------------|---------------------|----------------------|---------------------------|------------------|----------------------------| | <u>Year</u> | County | Running | Non-
running | <u>Total</u> | Running | Non-
running | <u>Total</u> | | | Monroe | 2.3142 | 0.0406 | 2.3548 | 40.8114 | 2.3334 | 43.1448 | | | Total | 251.8325 | 14.4389 | 266.2714 | 6,595.2096 | 944.2880 | 7,539.4976 | PM2.5 | | | Nox | | | Year | County | Running | PM2.5 Non- running | <u>Total</u> | Running | Nox Non- running | Total | | <u>Year</u> | County Bibb | Running 65.1655 | Non- | <u>Total</u> 69.8131 | Running 1,411.3897 | Non- | <u>Total</u>
1,985.2614 | | Year 2023 | | | Non-
running | | | Non-
running | | A series of sensitivity tests were performed for the future years 2023, 2035 and 2040. These tests assumed different growth scenarios in the nonattainment area and were used to develop safety margins. The last major Regional Transportation Plan was developed in 2009. The update of the Regional Transportation Plan for 2040 is underway and is due in 2013. Model runs were performed for 2040 with various growth assumptions. The estimated growth rate between 2023 and 2040 is less than 10%. An alternative scenario was tested where the growth increased by 30% for the years 2023 and 2040 to account for uncertainty in the future of growth projections and implementation of transportation improvements. The test for 2023 was to account for the potential impact the Transportation Investment Act may have on travel patterns and growth for 2023. ### **Exhibit 1: Monroe County/GDOT Agreement** RECLIVED SEP 2 0 2004 MONROE COUNTY COMMISSIONERS ### Department of Transportation HAROLD E. LINNENKOHL COMMISSIONER (404) 656-5206 > PAUL V. MULLINS CHIEF ENGINEER (404) 656-5277 State of Georgia #2 Capitol Square, S.W. Atlanta, Georgia 30334-1002 September 13, 2004 LARRY E DENT DEPUTY COMMISSIONER (404) 656-5212 > TREASURER (404) 656-5224 Ben Spear, Jr., Chairman Monroe County Board of Commissioners P.O. Box 189 Forsyth, Georgia 31029-0189 Subject: Agreement for Georgia Department of Transportation to Represent the Interests of Monroe County for Transportation Conformity Purposes under Eight-Hour Ozone and PM2.5
Standards Dear Chairman Spear: On September 10, 2004, Ms. Cora Cook of the Office of Planning discussed with you transportation-related ramifications of EPA's designation of a part of Monroe County as nonattainment under the eight-hour ozone standard. EPA also recommends the same area of Monroe County be designated nonattainment under the PM2.5 standard. Although Monroe County's ozone designation and likely PM2.5 designation are due to emissions from a large stationary source, a process called "transportation conformity" will apply to that part of Monroe County designated as nonattainment. This letter confirms your discussions with Ms. Cook that Monroe County requests the Department serve as its representative throughout the transportation conformity process for ozone and PM2.5 nonattainment. By my signature below, the Department ackrowledges it will represent Monroe County and its transportation interests throughout the conformity process under both air quality standards. The Department will bring to the County Chairman's attention, issues of significance that could or would affect Monroe County's transportation interests. I have provided an area below for you to sign your concurrence with these arrangements. Please sign this letter, keep a copy for your records, and return the signed original to the attention of Ms. Cora Cook. If you have any questions about air quality issues, Ms. Cora Cook will serve as your Department contact. You may reach her at (404) 657-6687. We look forward to representing the County throughout the transportation conformity process under both ozone and PM2.5 standards. Sincerely, Harold E. Linnenkohl Commissioner HEL:CJC CONCURRENCE: Ben Spear, Monroe County Complission Chairman ### Exhibit 2: 2007 RunSpec for Bibb County ``` <runspec> <description><![CDATA[Bibb County 2007 PM2.5 maintenance plan Inventory</p> Readjust HPMS factors based 2006 model Weight vmt by type by the model vmt by road type 071411 - Run #1 091211 - Run #5 -Used Cube roadtype dstrb]]></description> <modelscale value="Inv"/> <modeldomain value="SINGLE"/> <geographicselections> <geographicselection type="COUNTY" key="13021" description="GEORGIA - Bibb County"/> </geographicselections> <timespan> <vear key="2007"/> <month id="7"/> <day id="5"/>

 d="1"/> <endhour id="24"/> <aggregateBy key="Hour"/> </timespan> <onroadvehicleselections> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="62" sourcetypename="Combination Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="41" sourcetypename="Intercity Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="43" sourcetypename="School Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="42" sourcetypename="Transit Bus"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="11" sourcetypename="Motorcycle"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="43" sourcetypename="School Bus"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> ``` ``` <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="42" sourcetypename="Transit Bus"/> </orroadvehicleselections> <offroadvehicleselections> </offroadvehicleselections> <offroadvehiclesccs> </offroadvehiclesccs> <roadtypes> <roadtype roadtypeid="1" roadtypename="Off-Network"/> <roadtype roadtypeid="2" roadtypename="Rural Restricted Access"/> <roadtype roadtypeid="3" roadtypename="Rural Unrestricted Access"/> <roadtype roadtypeid="4" roadtypename="Urban Restricted Access"/> <roadtype roadtypeid="5" roadtypename="Urban Unrestricted Access"/> </roadtypes> <pollutantprocessassociations> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Start Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="1" processname="Running Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="16" processname="Crankcase Start Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="90" processname="Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="116" pollutantname="Primary PM2.5 - Brakewear Particulate" processkey="9" processname="Brakewear"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="16" processname="Crankcase Start</p> Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="1" processname="Running Exhaust"/> ``` ``` <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="15" processname="Crankcase Running</p> Exhaust"/> Exhaust"/> Exhaust"/> pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="17" processname="Crankcase Extended</p> Idle Exhaust"/> Exhaust"/> pollutantprocessassociation pollutantkey="117" pollutantname="Primary PM2.5 - Tirewear Particulate" processkey="10" processname="Tirewear"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="16" processname="Crankcase Start Exhaust"/> <pollutantprocessassociation pollutantkey="31"
pollutantname="Sulfur Dioxide (SO2)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="90" processname="Extended Idle Exhaust"/> </pollutantprocessassociations> <databaseselections> <databaseselection servername="" databasename="bibb 2007 pm inventory input5" description=""/> </databaseselections> <internalcontrolstrategies> <internalcontrolstrategy classname="gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.rateofprogress.RateOfProgressStrategy"><![CDATA] useParameters]]></internalcontrolstrategy> </internalcontrolstrategies> <inputdatabase servername="" databasename="" description=""/> <uncertaintyparameters uncertaintymodeenabled="false" number of runspersimulation="0" number of simulations="0"/> <geographicoutputdetail description="COUNTY"/> <outputemissionsbreakdownselection> <modelyear selected="false"/> <fueltype selected="false"/> ``` ``` <emissionprocess selected="true"/> <onroadoffroad selected="true"/> <roadtype selected="true"/> <sourceusetype selected="false"/> <movesvehicletype selected="false"/> <onroadscc selected="false"/> <offroadscc selected="false"/> <estimateuncertainty selected="false" numberOfIterations="2" keepSampledData="false" keepIterations="false"/> <sector selected="false"/> <engtechid selected="false"/> <hpclass selected="false"/> </outputemissionsbreakdownselection> <outputdatabase servername="" databasename="bibb 2007 pm SO2 output5" description=""/> <outputtimestep value="Hour"/> <output/vmtdata value="true"/> <outputsho value="false"/> <outputsh value="false"/> <outputshp value="false"/> <outputshidling value="false"/> <outputstarts value="false"/> <outputpopulation value="true"/> <scaleinputdatabase servername="localhost" databasename="bibb 2007 pm inventory input5" description=""/> <pmsize value="0"/> <outputfactors> <timefactors selected="true" units="Hours"/> <distancefactors selected="true" units="Miles"/> <massfactors selected="true" units="Grams" energyunits="Joules"/> </outputfactors> <savedata> </savedata> <donotexecute> </donotexecute> <generatordatabase shouldsave="false" servername="" databasename="" description=""/> <donotperformfinalaggregation selected="false"/> <lookuptableflags scenarioid="bibb_2007" truncateoutput="false" truncateactivity="false"/> </runspec> ``` Exhibit 2: MOVES Input Data for Bibb County Emissions for PM2.5 SIP Budget – 2007 Ramp Fraction | roadTypeID | RampFraction | |------------|--------------| | 2 | 0 | | 4 | 0.0400 | Sample Average Speed Distribution | sourceTypeid | roadTypeID | hourDayID | AvgSpeedBinID | AvgSpeedFraction | |--------------|------------|-----------|---------------|------------------| | 11 | 3 | 115 | 8 | 0.29629 | | 21 | 3 | 115 | 8 | 0.29629 | | 31 | 3 | 115 | 8 | 0.29629 | | 32 | 3 | 115 | 8 | 0.29629 | | 41 | 3 | 115 | 8 | 0.29629 | | 42 | 3 | 115 | 8 | 0.29629 | | 43 | 3 | 115 | 8 | 0.29629 | | 51 | 3 | 115 | 8 | 0.29629 | | 52 | 3 | 115 | 8 | 0.29629 | | 53 | 3 | 115 | 8 | 0.29629 | | 54 | 3 | 115 | 8 | 0.29629 | | 61 | 3 | 115 | 8 | 0.29629 | | 62 | 3 | 115 | 8 | 0.29629 | | 11 | 3 | 115 | 9 | 0.20783 | | 21 | 3 | 115 | 9 | 0.20783 | | 31 | 3 | 115 | 9 | 0.20783 | | 32 | 3 | 115 | 9 | 0.20783 | | 41 | 3 | 115 | 9 | 0.20783 | | 42 | 3 | 115 | 9 | 0.20783 | | 43 | 3 | 115 | 9 | 0.20783 | | 51 | 3 | 115 | 9 | 0.20783 | | 52 | 3 | 115 | 9 | 0.20783 | | 53 | 3 | 115 | 9 | 0.20783 | | 54 | 3 | 115 | 9 | 0.20783 | | 61 | 3 | 115 | 9 | 0.20783 | | 62 | 3 | 115 | 9 | 0.20783 | | 11 | 3 | 115 | 10 | 0.26139 | | 21 | 3 | 115 | 10 | 0.26139 | | 31 | 3 | 115 | 10 | 0.26139 | | sourceTypeid | roadTypeID | hourDayID | AvgSpeedBinID | AvgSpeedFraction | |--------------|------------|-----------|---------------|------------------| | 32 | 3 | 115 | 10 | 0.26139 | | 41 | 3 | 115 | 10 | 0.26139 | | 42 | 3 | 115 | 10 | 0.26139 | | 43 | 3 | 115 | 10 | 0.26139 | | 51 | 3 | 115 | 10 | 0.26139 | | 52 | 3 | 115 | 10 | 0.26139 | | 53 | 3 | 115 | 10 | 0.26139 | | 54 | 3 | 115 | 10 | 0.26139 | | 61 | 3 | 115 | 10 | 0.26139 | | 62 | 3 | 115 | 10 | 0.26139 | Note: File contains19,969 records and is available on request Road Type Distribution | sourceTypeid | roadTypeID | RoadTypeVMTFraction | |--------------|------------|---------------------| | 11 | 1 | 0.00000 | | 11 | 2 | 0.00192 | | 11 | 3 | 0.08081 | | 11 | 4 | 0.42909 | | 11 | 5 | 0.48818 | | 21 | 1 | 0.00000 | | 21 | 2 | 0.00192 | | 21 | 3 | 0.08081 | | 21 | 4 | 0.42909 | | 21 | 5 | 0.48818 | | 31 | 1 | 0.00000 | | 31 | 2 | 0.00192 | | 31 | 3 | 0.08081 | | 31 | 4 | 0.42909 | | 31 | 5 | 0.48818 | | 32 | 1 | 0.00000 | | 32 | 2 | 0.00192 | | 32 | 3 | 0.08081 | | 32 | 4 | 0.42909 | | 32 | 5 | 0.48818 | | 41 | 1 | 0.00000 | | 41 | 2 | 0.00192 | | 41 | 3 | 0.08081 | | 41 | 4 | 0.42909 | | 41 | 5 | 0.48818 | | 42 | 1 | 0.00000 | | sourceTypeid | roadTypeID | RoadTypeVMTFraction | |--------------|------------|---------------------| | 42 | 2 | 0.00192 | | 42 | 3 | 0.08081 | | 42 | 4 | 0.42909 | | 42 | 5 | 0.48818 | | 43 | 1 | 0.00000 | | 43 | 2 | 0.00192 | | 43 | 3 | 0.08081 | | 43 | 4 | 0.42909 | | 43 | 5 | 0.48818 | | 51 | 1 | 0.00000 | | 51 | 2 | 0.00192 | | 51 | 3 | 0.08081 | | 51 | 4 | 0.42909 | | 51 | 5 | 0.48818 | | 52 | 1 | 0.00000 | | 52 | 2 | 0.00192 | | 52 | 3 | 0.08081 | | 52 | 4 | 0.42909 | | 52 | 5 | 0.48818 | | 53 | 1 | 0.00000 | | 53 | 2 | 0.00192 | | 53 | 3 | 0.08081 | | 53 | 4 | 0.42909 | | 53 | 5 | 0.48818 | | 54 | 1 | 0.00000 | | 54 | 2 | 0.00192 | | 54 | 3 | 0.08081 | | 54 | 4 | 0.42909 | Source Type Population | 71 | Ť. | | |--------|--------------|----------------------| | yearID | sourceTypeID | sourceTypePopulation | | 2007 | 11 | 2256 | | 2007 | 21 | 74020 | | 2007 | 31 | 39305 | | 2007 | 32 | 12921 | | 2007 | 41 | 46 | | 2007 | 42 | 28 | | 2007 | 43 | 455 | | 2007 | 51 | 65 | | yearID | sourceTypeID | sourceTypePopulation | |--------|--------------|----------------------| | 2007 | 52 | 2434 | | 2007 | 53 | 174 | | 2007 | 54 | 269 | | 2007 | 61 | 1031 | | 2007 | 62 | 1142 | | | | <u> </u> | | |-------------|--------|-----------------|-------------------| | HPMSVtypeID | yearID | HPMSBaseYearVMT | baseYearOffNetVMT | | 10 | 2007 | 6089363.468 | 0 | | 20 | 2007 | 1131933964 | 0 | | 30 | 2007 | 671602403.6 | 0 | | 40 | 2007 | 10356630.66 | 0 | | 50 | 2007 | 62908806.1 | 0 | | 60 | 2007 | 122846433.9 | 0 | Vehicle Type VMT – Sample HourVMTFraction | sourceTypeid | roadTypeID | dayID | hourID | HourVMTFraction | |--------------|------------|-------|--------|-----------------| | 11 | 2 | 5 | 1 | 0.01000 | | 11 | 2 | 5 | 2 | 0.00600 | | 11 | 2 | 5 | 3 | 0.00480 | | 11 | 2 | 5 | 4 | 0.00450 | | 11 | 2 | 5 | 5 | 0.00670 | | 11 | 2 | 5 | 6 | 0.01850 | | 11 | 2 | 5 | 7 | 0.05011 | | 11 | 2 | 5 | 8 | 0.07732 | | 11 | 2 | 5 | 9 | 0.06131 | | 11 | 2 | 5 | 10 | 0.04821 | | 11 | 2 | 5 | 11 | 0.04791 | | 11 | 2 | 5 | 12 | 0.05121 | | 11 | 2 | 5 | 13 | 0.05361 | | 11 | 2 | 5 | 14 | 0.05471 | | 11 | 2 | 5 | 15 | 0.06051 | | 11 | 2 | 5 | 16 | 0.07271 | | 11 | 2 | 5 | 17 | 0.08282 | | 11 | 2 | 5 | 18 | 0.08272 | | 11 | 2 | 5 | 19 | 0.05891 | | 11 | 2 | 5 | 20 | 0.04181 | | 11 | 2 | 5 | 21 | 0.03321 | | 11 | 2 | 5 | 22 | 0.03031 | | 11 | 2 | 5 | 23 | 0.02440 | | sourceTypeid | roadTypeID | dayID | hourID | HourVMTFraction | |--------------|------------|-------|--------|-----------------| | 11 | 2 | 5 | 24 | 0.01771 | | 11 | 3 | 5 | 1 | 0.01000 | | 11 | 3 | 5 | 2 | 0.00600 | | 11 | 3 | 5 | 3 | 0.00480 | | 11 | 3 | 5 | 4 | 0.00450 | | 11 | 3 | 5 | 5 | 0.00670 | | 11 | 3 | 5 | 6 | 0.01850 | | 11 | 3 | 5 | 7 | 0.05011 | | 11 | 3 | 5 | 8 | 0.07730 | | 11 | 3 | 5 | 9 | 0.06136 | | 11 | 3 | 5 | 10 | 0.04824 | | 11 | 3 | 5 | 11 | 0.04791 | | 11 | 3 | 5 | 12 | 0.05122 | | 11 | 3 | 5 | 13 | 0.05362 | | 11 | 3 | 5 | 14 | 0.05472 | | 11 | 3 | 5 | 15 | 0.06052 | | 11 | 3 | 5 | 16 | 0.07269 | | 11 | 3 | 5 | 17 | 0.08276 | | 11 | 3 | 5 | 18 | 0.08265 | | 11 | 3 | 5 | 19 | 0.05891 | | 11 | 3 | 5 | 20 | 0.04181 | | 11 | 3 | 5 | 21 | 0.03321 | | 11 | 3 | 5 | 22 | 0.03032 | | 11 | 3 | 5 | 23 | 0.02442 | | 11 | 3 | 5 | 24 | 0.01773 | | 11 | 4 | 5 | 1 | 0.01009 | | 11 | 4 | 5 | 2 | 0.00609 | | 11 | 4 | 5 | 3 | 0.00487 | | 11 | 4 | 5 | 4 | 0.00453 | | 11 | 4 | 5 | 5 | 0.00671 | | 11 | 4 | 5 | 6 | 0.01849 | | 11 | 4 | 5 | 7 | 0.05014 | | 11 | 4 | 5 | 8 | 0.07698 | | 11 | 4 | 5 | 9 | 0.06182 | | 11 | 4 | 5 | 10 | 0.04859 | | 11 | 4 | 5 | 11 | 0.04805 | | 11 | 4 | 5 | 12 | 0.05137 | | 11 | 4 | 5 | 13 | 0.05370 | | 11 | 4 | 5 | 14 | 0.05482 | | 11 | 4 | 5 | 15 | 0.06052 | | sourceTypeid | roadTypeID | dayID | hourID | HourVMTFraction | |--------------|------------|-------|--------|-----------------| | 11 | 4 | 5 | 16 | 0.07234 | | 11 | 4 | 5 | 17 | 0.08196 | | 11 | 4 | 5 | 18 | 0.08177 | | 11 | 4 | 5 | 19 | 0.05889 | | 11 | 4 | 5 | 20 | 0.04194 | | 11 | 4 | 5 | 21 | 0.03329 | | 11 | 4 | 5 | 22 | 0.03050 | | 11 | 4 | 5 | 23 | 0.02465 | | 11 | 4 | 5 | 24 | 0.01789 | Note: File contains 1,561 records and is available on request Meteorology Data | monthID | zoneID | HourID | temperature | relHumidity | |---------|--------|--------|-------------|-------------| | 7 | 130210 | 1 | 57.417 | 76.100 | | 7 | 130210 | 2 | 56.317 | 78.308 | | 7 | 130210 | 3 | 55.308 | 79.892 | | 7 | 130210 | 4 | 54.308 | 81.383 | | 7 | 130210 | 5 | 53.467 | 82.650 | | 7 | 130210 | 6 | 52.692 | 83.733 | | 7 | 130210 | 7 | 52.117 | 84.350 | | 7 | 130210 | 8 | 52.833 | 83.592 | | 7 | 130210 | 9 | 55.942 | 79.233 | | 7 | 130210 | 10 | 60.933 | 70.883 | | 7 | 130210 | 11 | 65.750 | 61.967 | | 7 | 130210 | 12 | 69.800
 54.733 | | 7 | 130210 | 13 | 72.967 | 49.625 | | 7 | 130210 | 14 | 75.108 | 46.183 | | 7 | 130210 | 15 | 76.467 | 44.058 | | 7 | 130210 | 16 | 77.117 | 42.958 | | 7 | 130210 | 17 | 77.017 | 42.900 | | 7 | 130210 | 18 | 75.733 | 44.617 | | 7 | 130210 | 19 | 72.508 | 49.658 | | 7 | 130210 | 20 | 68.200 | 57.167 | | 7 | 130210 | 21 | 64.433 | 64.017 | | 7 | 130210 | 22 | 61.942 | 68.467 | | 7 | 130210 | 23 | 60.175 | 71.458 | | 7 | 130210 | 24 | 58.633 | 74.117 | Age Distribution - Sample | Age Distribution | yearID | 1 | o a c Erro ation | |------------------|--------|-------|---------------------| | sourceTypeID | • | ageID | ageFraction 0.01120 | | 21 | 2007 | 0 | | | 21 | 2007 | 1 | 0.04500 | | 21 | 2007 | 2 | 0.04950 | | 21 | 2007 | 3 | 0.06050 | | 21 | 2007 | 4 | 0.05960 | | 21 | 2007 | 5 | 0.05660 | | 21 | 2007 | 6 | 0.06200 | | 21 | 2007 | 7 | 0.06170 | | 21 | 2007 | 8 | 0.07150 | | 21 | 2007 | 9 | 0.06340 | | 21 | 2007 | 10 | 0.05760 | | 21 | 2007 | 11 | 0.05230 | | 21 | 2007 | 12 | 0.04650 | | 21 | 2007 | 13 | 0.04440 | | 21 | 2007 | 14 | 0.04280 | | 21 | 2007 | 15 | 0.03620 | | 21 | 2007 | 16 | 0.03170 | | 21 | 2007 | 17 | 0.02650 | | 21 | 2007 | 18 | 0.02350 | | 21 | 2007 | 19 | 0.01910 | | 21 | 2007 | 20 | 0.01140 | | 21 | 2007 | 21 | 0.00690 | | 21 | 2007 | 22 | 0.00670 | | 21 | 2007 | 23 | 0.00530 | | 21 | 2007 | 24 | 0.00419 | | 21 | 2007 | 25 | 0.00332 | | 21 | 2007 | 26 | 0.00262 | | 21 | 2007 | 27 | 0.00208 | | 21 | 2007 | 28 | 0.00164 | | 21 | 2007 | 29 | 0.00130 | | 21 | 2007 | 30 | 0.03295 | | 31 | 2007 | 0 | 0.01547 | | 31 | 2007 | 1 | 0.03961 | | 31 | 2007 | 2 | 0.03701 | | 31 | 2007 | 3 | 0.04777 | | 31 | 2007 | 4 | 0.04773 | | 31 | 2007 | 5 | 0.04774 | | 31 | 2007 | 6 | 0.05304 | | 31 | 2007 | 7 | 0.00438 | | 31 | 2007 | 8 | 0.02940 | | 31 | 2007 | 9 | 0.03980 | | | | | | | 31 | 2007 | 10 | 0.04906 | | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 31 | 2007 | 11 | 0.04226 | | 31 | 2007 | 12 | 0.03997 | | 31 | 2007 | 13 | 0.05252 | | 31 | 2007 | 14 | 0.05539 | | 31 | 2007 | 15 | 0.05388 | | 31 | 2007 | 16 | 0.04229 | | 31 | 2007 | 17 | 0.05027 | | 31 | 2007 | 18 | 0.04733 | | 31 | 2007 | 19 | 0.04471 | | 31 | 2007 | 20 | 0.03223 | | 31 | 2007 | 21 | 0.02617 | | 31 | 2007 | 22 | 0.02961 | | 31 | 2007 | 23 | 0.00046 | | 31 | 2007 | 24 | 0.00039 | | 31 | 2007 | 25 | 0.00036 | | 31 | 2007 | 26 | 0.00032 | | 31 | 2007 | 27 | 0.00028 | | 31 | 2007 | 28 | 0.00025 | | 31 | 2007 | 29 | 0.00023 | | 31 | 2007 | 30 | 0.00378 | Note: File contains 373 records and is available on request ## Exhibit 3: 2023 RunSpec ``` <runspec> <description><![CDATA[Bibb County 2023 PM2.5 maintenance plan Inventory</p> Readjust HPMS factors based 2006 model Rerun using scripts similar to ARC's Weight vmt by type by the model vmt by road type Run#5 - Used Cube scripts - 091211]]></description> <modelscale value="Inv"/> <modeldomain value="SINGLE"/> <geographicselections> <geographicselection type="COUNTY" key="13021" description="GEORGIA - Bibb County"/> </geographicselections> <timespan> <year key="2023"/> <month id="7"/> <day id="5"/>

 d="1"/> <endhour id="24"/> <aggregateBy key="Hour"/> </timespan> <onroadvehicleselections> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="62" sourcetypename="Combination Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="41" sourcetypename="Intercity Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="43" sourcetypename="School Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="42" sourcetypename="Transit Bus"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="11" sourcetypename="Motorcycle"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="43" sourcetypename="School Bus"/> ``` ``` <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="42" sourcetypename="Transit Bus"/> </orroadvehicleselections> <offroadvehicleselections> </offroadvehicleselections> <offroadvehiclesccs> </offroadvehiclesccs> <roadtypes> <roadtype roadtypeid="1" roadtypename="Off-Network"/> <roadtype roadtypeid="2" roadtypename="Rural Restricted Access"/> <roadtype roadtypeid="3" roadtypename="Rural Unrestricted Access"/> <roadtype roadtypeid="4" roadtypename="Urban Restricted Access"/> <roadtype roadtypeid="5" roadtypename="Urban Unrestricted Access"/> </roadtypes> <pollutantprocessassociations> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="15" processname="Crankcase Running Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Start Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="16" processname="Crankcase Start Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="17" processname="Crankcase Extended Idle</p> Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="116" pollutantname="Primary PM2.5 - Brakewear Particulate" processkey="9" processname="Brakewear"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="17" processname="Crankcase Extended Idle Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="1" processname="Running Exhaust"/> ``` ``` pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="90" processname="Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="1" processname="Running Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> Idle Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation
pollutantkey="117" pollutantname="Primary PM2.5 - Tirewear Particulate" processkey="10" processname="Tirewear"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="16" processname="Crankcase Start Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="90" processname="Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="90" processname="Extended Idle Exhaust"/> </pollutantprocessassociations> <databaseselections> <databaseselection servername="" databasename="bibb 2023 pm inventory input5" description=""/> </databaseselections> <internalcontrolstrategies> <internalcontrolstrategy classname="gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.rateofprogress.RateOfProgressStrategy"><![CDATA] useParameters No]]></internalcontrolstrategy> </internalcontrolstrategies> <inputdatabase servername="" databasename="" description=""/> <uncertaintyparameters uncertaintymodeenabled="false" numberofrunspersimulation="0" numberofsimulations="0"/> <geographicoutputdetail description="NATION"/> <outputemissionsbreakdownselection> <modelyear selected="false"/> ``` ``` <fueltype selected="false"/> <emissionprocess selected="true"/> <onroadoffroad selected="true"/> <roadtype selected="true"/> <sourceusetype selected="false"/> <movesvehicletype selected="false"/> <onroadscc selected="false"/> <offroadscc selected="false"/> <estimateuncertainty selected="false" numberOfIterations="2" keepSampledData="false" keepIterations="false"/> <sector selected="false"/> <engtechid selected="false"/> <hpclass selected="false"/> </outputemissionsbreakdownselection> <outputdatabase servername="" databasename="bibb_2023_pm_inventory_output5" description=""/> <outputtimestep value="Hour"/> <output/vmtdata value="true"/> <outputsho value="false"/> <outputsh value="false"/> <outputshp value="false"/> <outputshidling value="false"/> <outputstarts value="false"/> <outputpopulation value="true"/> <scaleinputdatabase servername="localhost" databasename="bibb_2023_pm_inventory_input5" description=""/> cpmsize value="0"/> <outputfactors> <timefactors selected="true" units="Hours"/> <distancefactors selected="true" units="Miles"/> <massfactors selected="true" units="Grams" energyunits="Joules"/> </outputfactors> <savedata> </savedata> <donotexecute> </donotexecute> <generatordatabase shouldsave="false" servername="" databasename="" description=""/> <donotperformfinalaggregation selected="false"/> <lookuptableflags scenarioid="bibb_2023" truncateoutput="false" truncateactivity="false"/> </runspec> ``` Exhibit 4: MOVES Input Data for Bibb County Emissions for PM2.5 SIP Budget – 2023 Ramp Fraction | roadTypeID | RampFraction | |------------|--------------| | 2 | 0 | | 4 | 0.0800 | Sample Average Speed Distribution | sourceTypeid | roadTypeID | hourDayID | AvgSpeedBinID | AvgSpeedFraction | |--------------|------------|-----------|---------------|------------------| | 11 | 3 | 15 | 8 | 0.23614 | | 21 | 3 | 15 | 8 | 0.23614 | | 31 | 3 | 15 | 8 | 0.23614 | | 32 | 3 | 15 | 8 | 0.23614 | | 41 | 3 | 15 | 8 | 0.23614 | | 42 | 3 | 15 | 8 | 0.23614 | | 43 | 3 | 15 | 8 | 0.23614 | | 51 | 3 | 15 | 8 | 0.23614 | | 52 | 3 | 15 | 8 | 0.23614 | | 53 | 3 | 15 | 8 | 0.23614 | | 54 | 3 | 15 | 8 | 0.23614 | | 61 | 3 | 15 | 8 | 0.23614 | | 62 | 3 | 15 | 8 | 0.23614 | | 11 | 3 | 15 | 9 | 0.30415 | | 21 | 3 | 15 | 9 | 0.30415 | | 31 | 3 | 15 | 9 | 0.30415 | | 32 | 3 | 15 | 9 | 0.30415 | | 41 | 3 | 15 | 9 | 0.30415 | | 42 | 3 | 15 | 9 | 0.30415 | | 43 | 3 | 15 | 9 | 0.30415 | | 51 | 3 | 15 | 9 | 0.30415 | | 52 | 3 | 15 | 9 | 0.30415 | | 53 | 3 | 15 | 9 | 0.30415 | | 54 | 3 | 15 | 9 | 0.30415 | | 61 | 3 | 15 | 9 | 0.30415 | | 62 | 3 | 15 | 9 | 0.30415 | | 11 | 3 | 15 | 10 | 0.14167 | | 21 | 3 | 15 | 10 | 0.14167 | | 31 | 3 | 15 | 10 | 0.14167 | | 32 | 3 | 15 | 10 | 0.14167 | | 41 | 3 | 15 | 10 | 0.14167 | | sourceTypeid | roadTypeID | hourDayID | AvgSpeedBinID | AvgSpeedFraction | |--------------|------------|-----------|---------------|------------------| | 42 | 3 | 15 | 10 | 0.14167 | | 43 | 3 | 15 | 10 | 0.14167 | | 51 | 3 | 15 | 10 | 0.14167 | | 52 | 3 | 15 | 10 | 0.14167 | | 53 | 3 | 15 | 10 | 0.14167 | | 54 | 3 | 15 | 10 | 0.14167 | | 61 | 3 | 15 | 10 | 0.14167 | | 62 | 3 | 15 | 10 | 0.14167 | Note: File contains19,969 records and is available on request Road Type Distribution | sourceTypeid | roadTypeID | RoadTypeVMTFraction | |--------------|------------|---------------------| | 11 | 1 | 0.00000 | | 11 | 2 | 0.00216 | | 11 | 3 | 0.08445 | | 11 | 4 | 0.47367 | | 11 | 5 | 0.43971 | | 21 | 1 | 0.00000 | | 21 | 2 | 0.00216 | | 21 | 3 | 0.08445 | | 21 | 4 | 0.47367 | | 21 | 5 | 0.43971 | | 31 | 1 | 0.00000 | | 31 | 2 | 0.00216 | | 31 | 3 | 0.08445 | | 31 | 4 | 0.47367 | | 31 | 5 | 0.43971 | | 32 | 1 | 0.00000 | | 32 | 2 | 0.00216 | | 32 | 3 | 0.08445 | | 32 | 4 | 0.47367 | | 32 | 5 | 0.43971 | | 41 | 1 | 0.00000 | | 41 | 2 | 0.00216 | | 41 | 3 | 0.08445 | | 41 | 4 | 0.47367 | | 41 | 5 | 0.43971 | | 42 | 1 | 0.00000 | | 42 | 2 | 0.00216 | | 42 | 3 | 0.08445 | | 42 | 4 | 0.47367 | | sourceTypeid | roadTypeID | RoadTypeVMTFraction | |--------------|------------|---------------------| | 42 | 5 | 0.43971 | | 43 | 1 | 0.00000 | | 43 | 2 | 0.00216 | | 43 | 3 | 0.08445 | | 43 | 4 | 0.47367 | | 43 | 5 | 0.43971 | | 51 | 1 | 0.00000 | | 51 | 2 | 0.00216 | | 51 | 3 | 0.08445 | | 51 | 4 | 0.47367 | | 51 | 5 | 0.43971 | | 52 | 1 | 0.00000 | | 52 | 2 | 0.00216 | | 52 | 3 | 0.08445 | | 52 | 4 | 0.47367 | | 52 | 5 | 0.43971 | | 53 | 1 | 0.00000 | | 53 | 2 | 0.00216 | | 53 | 3 | 0.08445 | | 53 | 4 | 0.47367 | | 53 | 5 | 0.43971 | | 54 | 1 | 0.00000 | | 54 | 2 | 0.00216 | | 54 | 3 | 0.08445 | | 54 | 4 | 0.47367 | | 54 | 5 | 0.43971 | | 61 | 1 | 0.00000 | | 61 | 2 | 0.00216 | | 61 | 3 | 0.08445 | | 61 | 4 | 0.47367 | | 61 | 5 | 0.43971 | | 62 | 1 | 0.00000 | | 62 | 2 | 0.00216 | | 62 | 3 | 0.08445 | | 62 | 4 | 0.47367 | | 62 | 5 | 0.43971 | Source Type Population | yearID | sourceTypeID | sourceTypePopulation | |--------|--------------|----------------------| | 2023 | 11 | 2347 | | 2023 | 21 | 76988 | | 2023 | 31 | 40881 | | 2023 | 32 | 13439 | | 2023 | 41 | 48 | | 2023 | 42 | 29 | | 2023 | 43 | 474 | | 2023 | 51 | 68 | | 2023 | 52 | 2531 | | 2023 | 53 | 181 | | 2023 | 54 | 279 | | 2023 | 61 | 1073 | | 2023 | 62 | 1454 | Vehicle Type VMT – HPMSVtypeYear Worksheet | HPMSVtypeID | yearID | HPMSBaseYearVMT | baseYearOffNetVMT | |-------------|--------|------------------|-------------------| | 10 | 2023 | 7,569,538.22 | 0.00 | | 20 | 2023 | 1,442,340,512.78 | 0.00 | | 30 | 2023 | 774,433,109.86 | 0.00 | | 40 | 2023 | 13,120,109.04 | 0.00 | | 50 | 2023 | 78,086,337.55 | 0.00 | | 60 | 2023 | 161,836,266.26 | 0.00 | | 71 | 1 | | | | |--------------|------------|-------|--------|-----------------| | sourceTypeid | roadTypeID | dayID | hourID | HourVMTFraction | | 11 | 2 | 5 | 1 | 0.01004 | | 11 | 2 | 5 | 2 | 0.00603 | | 11 | 2 | 5 | 3 | 0.00479 | | 11 | 2 | 5 | 4 | 0.00437 | | 11 | 2 | 5 | 5 | 0.00653 | | 11 | 2 | 5 | 6 | 0.01834 | | 11 | 2 | 5 | 7 | 0.05030 | | 11 | 2 | 5 | 8 | 0.07686 | | 11 | 2 | 5 | 9 | 0.06306 | | 11 | 2 | 5 | 10 | 0.04921 | | 11 | 2 | 5 | 11 | 0.04817 | | 11 | 2 | 5 | 12 | 0.05165 | | 11 | 2 | 5 | 13 | 0.05390 | | sourceTypeid | roadTypeID | dayID | hourID | HourVMTFraction | |--------------|------------|-------|--------|-----------------| | 11 | 2 | 5 | 14 | 0.05509 | | 11 | 2 | 5 | 15 | 0.06063 | | 11 | 2 | 5 | 16 | 0.07190 | | 11 | 2 | 5 | 17 | 0.08080 | | 11 | 2 | 5 | 18 | 0.08035 | | 11 | 2 | 5 | 19 | 0.05882 | | 11 | 2 | 5 | 20 | 0.04202 | | 11 | 2 | 5 | 21 | 0.03327 | | 11 | 2 | 5 | 22 | 0.03073 | | 11 | 2 | 5 | 23 | 0.02499 | | 11 | 2 | 5 | 24 | 0.01815 | | 11 | 3 | 5 | 1 | 0.01002 | | 11 | 3 | 5 | 2 | 0.00601 | | 11 | 3 | 5 | 3 | 0.00481 | | 11 | 3 | 5 | 4 | 0.00449 | | 11 | 3 | 5 | 5 | 0.00668 | | 11 | 3 | 5 | 6 | 0.01848 | | 11 | 3 | 5 | 7 | 0.05013 | | 11 | 3 | 5 | 8 | 0.07720 | | 11 | 3 | 5 | 9 | 0.06154 | | 11 | 3 | 5 | 10 | 0.04837 | | 11 | 3 | 5 | 11 | 0.04797 | | 11 | 3 | 5 | 12 | 0.05128 | | 11 | 3 | 5 | 13 | 0.05365 | | 11 | 3 | 5 | 14 | 0.05477 | | 11 | 3 | 5 | 15 | 0.06053 | | 11 | 3 | 5 | 16 | 0.07258 | | 11 | 3 | 5 | 17 | 0.08249 | | 11 | 3 | 5 | 18 | 0.08235 | | 11 | 3 | 5 | 19 | 0.05891 | | 11 | 3 | 5 | 20 | 0.04186 | | 11 | 3 | 5 | 21 | 0.03323 | | 11 | 3 | 5 | 22 | 0.03038 | | 11 | 3 | 5 | 23 | 0.02450 | | 11 | 3 | 5 | 24 | 0.01777 | | 11 | 4 | 5 | 1 | 0.01005 | | 11 | 4 | 5 | 2 | 0.00604 | | 11 | 4 | 5 | 3 | 0.00482 | | 11 | 4 | 5 | 4 | 0.00447 | | 11 | 4 | 5 | 5 | 0.00665 | | sourceTypeid | roadTypeID | dayID | hourID | HourVMTFraction | |--------------|------------|-------|--------|-----------------| | 11 | 4 | 5 | 6 | 0.01845 | | 11 | 4 | 5 | 7 | 0.05016 | | 11 | 4 | 5 | 8 | 0.07702 | | 11 | 4 | 5 | 9 | 0.06196 | | 11 | 4 | 5 | 10 | 0.04865 | | 11 | 4 | 5 | 11 | 0.04806 | | 11 | 4 | 5 | 12 | 0.05141 | | 11 | 4 | 5 | 13 | 0.05373 | | 11 | 4 | 5 | 14 | 0.05486 | | 11 | 4 | 5 | 15 | 0.06055 | | 11 | 4 | 5 | 16 | 0.07233 | | 11 | 4 | 5 | 17 | 0.08190 | | 11 | 4 | 5 |
18 | 0.08169 | | 11 | 4 | 5 | 19 | 0.05890 | | 11 | 4 | 5 | 20 | 0.04194 | | 11 | 4 | 5 | 21 | 0.03327 | | 11 | 4 | 5 | 22 | 0.03050 | | 11 | 4 | 5 | 23 | 0.02466 | | 11 | 4 | 5 | 24 | 0.01793 | Note: File contains 1,561 records and is available on request Meteorology Data | monthID | zoneID | HourID | temperature | relHumidity | |---------|--------|--------|-------------|-------------| | 7 | 130210 | 1 | 57.417 | 76.100 | | 7 | 130210 | 2 | 56.317 | 78.308 | | 7 | 130210 | 3 | 55.308 | 79.892 | | 7 | 130210 | 4 | 54.308 | 81.383 | | 7 | 130210 | 5 | 53.467 | 82.650 | | 7 | 130210 | 6 | 52.692 | 83.733 | | 7 | 130210 | 7 | 52.117 | 84.350 | | 7 | 130210 | 8 | 52.833 | 83.592 | | 7 | 130210 | 9 | 55.942 | 79.233 | | 7 | 130210 | 10 | 60.933 | 70.883 | | 7 | 130210 | 11 | 65.750 | 61.967 | | 7 | 130210 | 12 | 69.800 | 54.733 | | 7 | 130210 | 13 | 72.967 | 49.625 | | 7 | 130210 | 14 | 75.108 | 46.183 | | 7 | 130210 | 15 | 76.467 | 44.058 | | 7 | 130210 | 16 | 77.117 | 42.958 | | 7 | 130210 | 17 | 77.017 | 42.900 | | 7 | 130210 | 18 | 75.733 | 44.617 | | 7 | 130210 | 19 | 72.508 | 49.658 | | monthID | zoneID | HourID | temperature | relHumidity | |---------|--------|--------|-------------|-------------| | 7 | 130210 | 20 | 68.200 | 57.167 | | 7 | 130210 | 21 | 64.433 | 64.017 | | 7 | 130210 | 22 | 61.942 | 68.467 | | 7 | 130210 | 23 | 60.175 | 71.458 | | 7 | 130210 | 24 | 58.633 | 74.117 | Age Distribution - Sample | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|------------|-------------| | 21 | 2023 | ageiD
0 | 0.01120 | | | | | | | 21 | 2023 | 1 | 0.04500 | | 21 | 2023 | 2 | 0.04950 | | 21 | 2023 | 3 | 0.06050 | | 21 | 2023 | 4 | 0.05960 | | 21 | 2023 | 5 | 0.05660 | | 21 | 2023 | 6 | 0.06200 | | 21 | 2023 | 7 | 0.06170 | | 21 | 2023 | 8 | 0.07150 | | 21 | 2023 | 9 | 0.06340 | | 21 | 2023 | 10 | 0.05760 | | 21 | 2023 | 11 | 0.05230 | | 21 | 2023 | 12 | 0.04650 | | 21 | 2023 | 13 | 0.04440 | | 21 | 2023 | 14 | 0.04280 | | 21 | 2023 | 15 | 0.03620 | | 21 | 2023 | 16 | 0.03170 | | 21 | 2023 | 17 | 0.02650 | | 21 | 2023 | 18 | 0.02350 | | 21 | 2023 | 19 | 0.01910 | | 21 | 2023 | 20 | 0.01140 | | 21 | 2023 | 21 | 0.00690 | | 21 | 2023 | 22 | 0.00670 | | 21 | 2023 | 23 | 0.00530 | | 21 | 2023 | 24 | 0.00419 | | 21 | 2023 | 25 | 0.00332 | | 21 | 2023 | 26 | 0.00262 | | 21 | 2023 | 27 | 0.00208 | | 21 | 2023 | 28 | 0.00164 | | 21 | 2023 | 29 | 0.00130 | | 21 | 2023 | 30 | 0.03295 | | 31 | 2023 | 0 | 0.01547 | | 31 | 2023 | 1 | 0.03961 | | 31 | 2023 | 2 | 0.04477 | | 31 | 2023 | 3 | 0.04793 | | | _0_0 | , | 5.5.775 | | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 31 | 2023 | 4 | 0.04774 | | 31 | 2023 | 5 | 0.05304 | | 31 | 2023 | 6 | 0.06438 | | 31 | 2023 | 7 | 0.02946 | | 31 | 2023 | 8 | 0.03986 | | 31 | 2023 | 9 | 0.04598 | | 31 | 2023 | 10 | 0.04906 | | 31 | 2023 | 11 | 0.04226 | | 31 | 2023 | 12 | 0.03997 | | 31 | 2023 | 13 | 0.05252 | | 31 | 2023 | 14 | 0.05539 | | 31 | 2023 | 15 | 0.05388 | | 31 | 2023 | 16 | 0.04229 | | 31 | 2023 | 17 | 0.05027 | | 31 | 2023 | 18 | 0.04733 | | 31 | 2023 | 19 | 0.04471 | | 31 | 2023 | 20 | 0.03223 | | 31 | 2023 | 21 | 0.02617 | | 31 | 2023 | 22 | 0.02961 | | 31 | 2023 | 23 | 0.00046 | | 31 | 2023 | 24 | 0.00039 | | 31 | 2023 | 25 | 0.00036 | | 31 | 2023 | 26 | 0.00032 | | 31 | 2023 | 27 | 0.00028 | | 31 | 2023 | 28 | 0.00025 | | 31 | 2023 | 29 | 0.00023 | | 31 | 2023 | 30 | 0.00378 | Note: File contains 373 records and is available on request #### **Exhibit 5: Vehicle Classification Counts** Weekday vehicle classification counts from GDOT were obtained for the years 2008 through 2010 for the entire state of Georgia. The counts for the 13 county nonattainment Atlanta MPO area were eliminated from the calculations. The vehicle classification counts collected were stratified based on the FHWA vehicle classifications. The counts were then summarized into the 6 HPMS vehicle type categories based the FHWA vehicle classifications. The percent by vehicle type by road type based on functional classification was calculated by year and then averaged for the three years. Table1 list the counts by year. Table 2 lists the final factors for VMT by vehicle type by road type based on the counts. These values were used to weight the VMT from the travel demand model by road type by vehicle type for input into AADVMT worksheet.. Table 1 GDOT Vehicle Classification Counts | 2008 Sta | tewide minus ARC 13 Cour | nty MPO A | rea | | | | | | | | |----------|------------------------------|------------|---------------|--------------|-------------|--------------|------------|--------------|-------------|--------------| | | | | | NA/a alida | . Counts | | | Downsont b | Dood Tone | | | | | | | Weekda | | l | D 1 | | y Road Type | Livi | | | | | | Rural | Urban | Urban | Rural | Rural | Urban | Urban | | | | | Rural | Unrestricted | Restricted | | | | Restricted | Unrestricted | | | | FHWA | Restricted | Access | Code | HPMS Vehicle Type | Veh Class | Access (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | | 10 | Motorcycles | Class 1 | 415,477 | 276,557 | 703,762 | 273,810 | 0.3% | 0.4% | 0.3% | 0.3% | | 20 | Passenger Cars | Class 2 | 78,146,859 | 45,813,738 | 134,370,835 | 70,721,022 | 55.0% | 64.5% | 65.4% | 74.5% | | 30 | Other 2 axle-4 tire vehicles | Class 3 | 23,048,320 | 16,181,222 | 37,536,241 | 19,040,830 | 16.2% | 22.8% | 18.3% | 20.1% | | 40 | Buses | Class 4 | 1,348,962 | 412,115 | 1,464,298 | 372,563 | 0.9% | 0.6% | 0.7% | 0.4% | | 50 | Single Unit Trucks | Class 5-7 | 5,177,758 | 3,054,596 | 6,643,091 | 2,735,728 | 3.6% | 4.3% | 3.2% | 2.9% | | 60 | Combination Trucks | Class 8-13 | 33,983,937 | 5,320,479 | 24,746,197 | 1,724,995 | 23.9% | 7.5% | 12.0% | 1.8% | | | | | 142,121,313 | 71,058,707 | 205,464,424 | 94,868,948 | 100% | 100% | 100% | 100% | | 2009 Sta | tewide minus ARC 13 Cour | nty MPO A | rea | | | | | | | | | | | | | | | | | 1 | 1 | ' | | | | | | Weekda | y Counts | | | Percent b | y Road Type | | | | | | | Rural | Urban | Urban | Rural | Rural | Urban | Urban | | | | | Rural | Unrestricted | Restricted | Unrestricted | Restricted | Unrestricted | Restricted | Unrestricted | | | | FHWA | Restricted | Access | Code | HPMS Vehicle Type | Veh Class | Access (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | | 10 | Motorcycles | Class 1 | 543,569 | 380,461 | 552,296 | 334,712 | 0.3% | 0.3% | 0.3% | 0.3% | | 20 | Passenger Cars | Class 2 | 99,860,922 | 74,033,369 | 123,617,071 | 92,974,090 | 57.6% | 65.0% | 66.5% | 73.4% | | 30 | Other 2 axle-4 tire vehicles | Class 3 | 29,013,174 | | | | | 22.2% | 18.9% | 21.0% | | 40 | Buses | Class 4 | 1,445,231 | 636,498 | 1,260,763 | 480,718 | 0.8% | 0.6% | 0.7% | 0.4% | | 50 | Single Unit Trucks | Class 5-7 | 5,931,816 | 4,577,695 | 5,977,298 | 3,774,967 | 3.4% | 4.0% | 3.2% | 3.0% | | 60 | Combination Trucks | Class 8-13 | 36,572,792 | 9,058,107 | 19,363,526 | 2,566,080 | 21.1% | 7.9% | 10.4% | 2.0% | | | | | 173,367,504 | 113,943,372 | 185,924,943 | 126,711,564 | 100% | 100% | 100% | 100% | Table 1 GDOT Vehicle Classification Counts (continued) | 2010 Statewide minus ARC 13 County MPO Area | | | | | | | | | | | | |---|--|------------|---------------|----------------|-------------|--------------|------------|----------------------|------------|--------------|--| | | | | | Weekday | y Counts | | | Percent by Road Type | | | | | | | | | Rural | Urban | Urban | Rural | Rural | Urban | Urban | | | | | | Rural | Unrestricted | Restricted | Unrestricted | Restricted | Unrestricted | Restricted | Unrestricted | | | | | FHWA | Restricted | Access | | Code | HPMS Vehicle Type | Veh Class | Access (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | | | 10 | Motorcycles | Class 1 | 531,781 | 465,637 | 767,240 | 413,477 | 0.3% | 0.3% | 0.3% | 0.3% | | | 20 | Passenger Cars | Class 2 | 115,785,383 | 90,783,273 | 163,511,794 | 103,655,999 | 58.1% | 64.4% | 68.1% | 73.3% | | | 30 | Other 2 axle-4 tire vehicles | Class 3 | 33,029,619 | 31,077,060 | 45,607,435 | 29,985,205 | 16.6% | 22.1% | 19.0% | 21.2% | | | 40 | Buses | Class 4 | 1,648,242 | 837,435 | 1,403,597 | 520,635 | 0.8% | 0.6% | 0.6% | 0.4% | | | 50 | Single Unit Trucks | Class 5-7 | 6,527,272 | 5,527,587 | 7,477,099 | 4,162,187 | 3.3% | 3.9% | 3.1% | 2.9% | | | 60 | Combination Trucks | Class 8-13 | 41,728,831 | 12,222,357 | 21,492,738 | 2,746,397 | 20.9% | 8.7% | 8.9% | 1.9% | | | | Total | | 199,251,128 | 140,913,349 | 240,259,903 | 141,483,900 | 100% | 100% | 100% | 100% | | | 2008-201 | 2008-2010 Statewide minus ARC 13 County MPO Area Sur | | | | | | | | | | | | | | | | Weekday Counts | | | Percent b | y Road Type | Road Type | | | | | | | | Rural | Urban | Urban | Rural | Rural | Urban | Urban | | | | | | Rural | Unrestricted | Restricted | Unrestricted | Restricted | Unrestricted | Restricted | Unrestricted | | | | | FHWA | Restricted | Access | | Code | HPMS Vehicle Type | Veh Class | Access (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | (FC=1) | (FC=2-7) | (FC=11-12) | (FC=14-19) | | | 10 | Motorcycles | Class 1 | 1,490,827 | 1,122,655 | 2,023,298 | 1,021,999 | 0.3% | 0.3% | 0.2% | 0.2% | | | 20 | Passenger Cars | Class 2 | 293,793,164 | 210,630,380 | 421,499,700 | 267,351,111 | 57.7% | 67.7% | 73.5% | 76.6% | | | 30 | Other 2 axle-4 tire vehicles | Class 3 | 85,091,113 | 72,515,524 | 118,297,665 | 75,607,032 | 16.7% | 20.7% | 16.5% | 18.6% | | | 40 | Buses | Class 4 | 4,442,435 | 1,886,048 | 4,128,658 | 1,373,916 | 0.9% | 0.6% | 0.7% | 0.5% | | | | Single Unit Trucks | Class 5-7 | 17,636,846 | 13,159,878 | 20,097,488 | 10,672,882 | 3.4% | 3.8% | 3.0% | 2.7% | | | 50 | Single Offic Trucks | C1833 3-7 | 17,000,010 | 13,133,070 | | <u> </u> | | | | | | | 60 | Combination Trucks | Class 8-13 |
112,285,560 | | | | 21.0% | 6.9% | 6.2% | | | Table 2 Final Factors for VMT by Vehicle Type by Road Type | Code | HPMS Vehicle
Type | FHWA
Veh
Class | Rural
Restricted
Access
Factor | Rural
Unrestricted
Access
Factor | Urban
Restricted
Access
Factor | Urban
Unrestricte
d Access
Factor | |------|------------------------------|---------------------------|---|---|---|--| | 10 | Motorcycles | Class 1 | 0.002909 | 0.003512 | 0.003196 | 0.002817 | | 20 | Passenger Cars | Class 2 | 0.568990 | 0.646239 | 0.666475 | 0.737280 | | 30 | Other 2 axle-4 tire vehicles | Class 3 | 0.165098 | 0.223307 | 0.187197 | 0.207472 | | 40 | Buses | Class 4 | 0.008700 | 0.005776 | 0.006583 | 0.003800 | | 50 | Single Unit Trucks | Class 5-
7
Class 8- | 0.034469 | 0.040796 | 0.031867 | 0.029349 | | 60 | Combination Trucks Total | 13 | 0.219834
1.000000 | 0.080369
1.000000 | 0.104681
1.000000 | 0.019282
1.000000 | Since the vehicle classification counts are collected using counters that do not adequately distinguish between passenger cars and SUVs, the MOVES defaults for vehicle types 20 and 30 by road type were used to redistribute the VMT. The MOVES Defaults are listed in Table 3. Table 3 MOVES Defaults Percent VMT by Vehicle Type Vehicle Type | <u>Year</u> | <u>10</u> | <u>20</u> | <u>30</u> | <u>40</u> | <u>50</u> | <u>60</u> | |-------------|-----------|-----------|-----------|-----------|-----------|-----------| | 1999 | 0.00390 | 0.58310 | 0.33480 | 0.00280 | 0.02610 | 0.04920 | | 2000 | 0.00380 | 0.58250 | 0.33600 | 0.00280 | 0.02570 | 0.04920 | | 2001 | 0.00340 | 0.58240 | 0.33740 | 0.00250 | 0.02590 | 0.04850 | | 2002 | 0.00330 | 0.58110 | 0.33850 | 0.00240 | 0.02660 | 0.04820 | | 2003 | 0.00330 | 0.57880 | 0.34060 | 0.00230 | 0.02690 | 0.04810 | | 2004 | 0.00340 | 0.57260 | 0.34600 | 0.00220 | 0.02730 | 0.04850 | | 2005 | 0.00360 | 0.57060 | 0.34770 | 0.00220 | 0.02710 | 0.04870 | | 2006 | 0.00400 | 0.55990 | 0.35850 | 0.00220 | 0.02750 | 0.04780 | | 2007 | 0.00450 | 0.55070 | 0.36630 | 0.00220 | 0.02790 | 0.04840 | | 2008 | 0.00510 | 0.54610 | 0.36980 | 0.00230 | 0.02870 | 0.04800 | | 2009 | 0.00530 | 0.54760 | 0.37480 | 0.00210 | 0.02660 | 0.04370 | | 2010 | 0.00530 | 0.54360 | 0.37770 | 0.00220 | 0.02770 | 0.04350 | | 2011 | 0.00530 | 0.53940 | 0.37830 | 0.00240 | 0.02970 | 0.04500 | | 2012 | 0.00530 | 0.53700 | 0.37740 | 0.00250 | 0.03140 | 0.04640 | **Vehicle Type** | | venicie Type | | | | | | | |-------------|--------------|-----------|-----------|-----------|-----------|-----------|--| | <u>Year</u> | <u>10</u> | <u>20</u> | <u>30</u> | <u>40</u> | <u>50</u> | <u>60</u> | | | 2013 | 0.00520 | 0.53640 | 0.37610 | 0.00260 | 0.03240 | 0.04730 | | | 2014 | 0.00520 | 0.53780 | 0.37370 | 0.00260 | 0.03310 | 0.04760 | | | 2015 | 0.00511 | 0.54185 | 0.36926 | 0.00266 | 0.03358 | 0.04754 | | | 2016 | 0.00505 | 0.54655 | 0.36414 | 0.00270 | 0.03413 | 0.04743 | | | 2017 | 0.00500 | 0.55148 | 0.35868 | 0.00274 | 0.03465 | 0.04744 | | | 2018 | 0.00495 | 0.55719 | 0.35240 | 0.00278 | 0.03509 | 0.04759 | | | 2019 | 0.00490 | 0.56346 | 0.34559 | 0.00281 | 0.03548 | 0.04777 | | | 2020 | 0.00484 | 0.57033 | 0.33840 | 0.00283 | 0.03581 | 0.04779 | | | 2021 | 0.00479 | 0.57743 | 0.33138 | 0.00285 | 0.03599 | 0.04755 | | | 2022 | 0.00475 | 0.58459 | 0.32444 | 0.00286 | 0.03613 | 0.04723 | | | 2023 | 0.00471 | 0.59142 | 0.31755 | 0.00288 | 0.03639 | 0.04705 | | | 2024 | 0.00466 | 0.59782 | 0.31089 | 0.00291 | 0.03674 | 0.04698 | | | 2025 | 0.00462 | 0.60374 | 0.30470 | 0.00294 | 0.03709 | 0.04692 | | | 2026 | 0.00458 | 0.60921 | 0.29896 | 0.00296 | 0.03745 | 0.04684 | | | 2027 | 0.00455 | 0.61410 | 0.29377 | 0.00300 | 0.03784 | 0.04674 | | | 2028 | 0.00452 | 0.61852 | 0.28903 | 0.00303 | 0.03828 | 0.04662 | | | 2029 | 0.00450 | 0.62265 | 0.28449 | 0.00307 | 0.03876 | 0.04652 | | | 2030 | 0.00448 | 0.62625 | 0.28038 | 0.00311 | 0.03930 | 0.04648 | | | 2031 | 0.00444 | 0.62984 | 0.27688 | 0.00313 | 0.03959 | 0.04611 | | | 2032 | 0.00440 | 0.63303 | 0.27380 | 0.00316 | 0.03987 | 0.04574 | | | 2033 | 0.00436 | 0.63573 | 0.27104 | 0.00319 | 0.04023 | 0.04545 | | | 2034 | 0.00432 | 0.63812 | 0.26857 | 0.00321 | 0.04058 | 0.04519 | | | 2035 | 0.00429 | 0.64015 | 0.26636 | 0.00324 | 0.04096 | 0.04501 | | | 2036 | 0.00425 | 0.64184 | 0.26447 | 0.00327 | 0.04134 | 0.04483 | | | 2037 | 0.00421 | 0.64323 | 0.26287 | 0.00330 | 0.04173 | 0.04465 | | | 2038 | 0.00418 | 0.64417 | 0.26173 | 0.00333 | 0.04211 | 0.04447 | | | 2039 | 0.00414 | 0.64476 | 0.26096 | 0.00336 | 0.04249 | 0.04428 | | | 2040 | 0.00411 | 0.64532 | 0.26017 | 0.00340 | 0.04289 | 0.04411 | | | 2041 | 0.00407 | 0.64586 | 0.25937 | 0.00343 | 0.04331 | 0.04396 | | | 2042 | 0.00404 | 0.64630 | 0.25864 | 0.00346 | 0.04374 | 0.04381 | | | 2043 | 0.00401 | 0.64666 | 0.25799 | 0.00350 | 0.04418 | 0.04366 | | | 2044 | 0.00398 | 0.64693 | 0.25741 | 0.00353 | 0.04462 | 0.04352 | | | 2045 | 0.00395 | 0.64711 | 0.25692 | 0.00357 | 0.04507 | 0.04338 | | | 2046 | 0.00392 | 0.64719 | 0.25653 | 0.00360 | 0.04552 | 0.04324 | | | 2047 | 0.00389 | 0.64720 | 0.25620 | 0.00364 | 0.04598 | 0.04310 | | | 2048 | 0.00386 | 0.64715 | 0.25593 | 0.00368 | 0.04643 | 0.04295 | | | 2049 | 0.00383 | 0.64704 | 0.25572 | 0.00371 | 0.04690 | 0.04281 | | | 2050 | 0.00380 | 0.64689 | 0.25554 | 0.00375 | 0.04736 | 0.04266 | | ## **Exhibit 5: Vehicle Registration Data** #### Georgia's Revised Registration Distribution by Age #### **Overview** R.L. Polk & Co. (Polk) maintains databases encompassing all registered vehicles in operation by state. Polk acquires the source registration data from the states and then processes and enhances the data. Key data elements Polk used for grouping vehicle registered in Georgia by their appropriate composite (i.e., gasoline and diesel) vehicle types were: vehicle make, vehicle model, engine make, engine model, fuel type, cab type, bed length, wheel configuration, vehicle type, gross vehicle weight rating (GVWR)⁶ class, model year, and registration geography (i.e., county). Vehicle characteristic data elements used by Polk are derived from the unique 17 position vehicle identification number (VIN) assigned to every vehicle. Vehicle geography is assigned based on the registration address linked to each VIN. In order to assign a MOBILE6 category to all registered vehicles, Polk constructed a master vehicle workfile using data from Polk's TIPNet and NVPP databases. This master vehicle workfile accounts for all registered vehicles, including: cars, vans, sport utility vehicles, trucks, buses, school buses, and motorcycles (GVWR classes 1-8 + motorcycle). The GVWR classes are: ``` Class 1 0 - 6,000 lbs. Class 2 6.001 - 10.000 lbs. Class 3 10,001 - 14,000 lbs. Class 4 14,001 - 16,000 lbs. 16,001 - 19,500 lbs. Class 5 Class 6 19,501 - 26,000 lbs. Class 7 26,001 - 33,000 lbs. Class 8 33,001 - 150,000 lbs. ``` The TIPNet database contains vehicles from full-size pickups/vans through class 8 (GVWR classes 1c-8), and is structured to serve the commercial vehicle market. The NVPP database contains vehicles GVWR classes 1-3 and is designed to serve the car, light truck/van, and motorcycle aftermarket. ⁶ The GVWR is the maximum weight of the vehicle when it is fully loaded, as specified by the manufacturer. Using the data elements listed above, Polk assigned one of the 16 MOBILE6 categories to each of the vehicles in the workfile. Care was taken to assure that no makes and models are duplicated between the two databases. Note that the unit volume for same make/model vehicles can be divided among two or more MOBILE6 categories due to varying vehicle types and GVWR classes within a specific make/model. TIPNet data supplies GVWR classes 1c-8 (full-size pickups/vans & heavier), while NVPP data provides passenger car, motorcycle, light truck, and light vans from GVWR class 1. The 16 composite MOBILE6 vehicle types are listed and defined below, with examples of the types of vehicles they include. # Number Abbreviation Description LDV Light-Duty (LD) Vehicles (Passenger Cars) - Class 1 GVWR - Include: Passenger Cars - Fuel: All Types - Source: R.L. Polk NVPP as of October 2002 ## 2 LDT1 LD Trucks 1 (0-6,000 lbs. GVWR, 0- 3,750 lbs. LVW⁷) - Class 1 GVWR - Trucks, SUVs, & Vans - Exclude Full-Size Pickups & Vans - Fuel: All Types - Source: R.L. Polk NVPP as of October 2002 # 3 LDT2 LD Trucks 2 (0-6,000 lbs. GVWR, 3,751-5,750 lbs. LVW) - Class 1 GVWR - Trucks, SUVs, & Vans - Fuel: All Types - Include all Full-Size Pickups & Vans (e.g. 150/1500 series vehicles: F150, C/K 1500, E150, Ram 1500 etc.) - Include Vehicle Types: Incomplete Pickup + Cab Chassis - Exclude Vehicle Types: School Bus + Bus Non-School (Coach) - Source: R.L. Polk TIPNet as of March 2003 & NVPP as of October 2002 ## 4 LDT3 LD Trucks 3 (6,001-8,500 lbs. GVWR, 0-5,750 lbs. ALVW⁸) - Class 2 GVWR - Trucks, SUVs, & Vans - GVWR: 6,001-8,000 for Ford, Chevy, Dodge, plus all Toyota Tundra Models ⁷ Loaded vehicle weight, the weight of vehicle sitting empty (curb weight) plus 300 pounds. ⁸ Adjusted loaded vehicle weight, average of the gross vehicle weight and the curb weight. #### **Number Abbreviation Description** - Fuel: All Types - Exclude: Pickups with Long Bed or Vans with Extended Length (Except Tundra) - Exclude Vehicle Types: Incomplete Pickup + Cab Chassis + Incomplete Vehicle + Straight Truck + School Bus + Bus Non-School (Coach) - Source: R.L. Polk TIPNet as of March 2003 & NVPP as of October 2002 # 5 LDT4 Light-Duty Trucks 4 (6,001-8,500 lbs. GVWR, >5,750 lbs. ALVW) - Class 2 GVWR - Trucks, SUVs, & Vans - GVWR: 6,001-8,000 for Ford, Chevy, & Dodge - Exclude: all Toyota Tundra Models - Fuel: All Types - Include: Pickups with Long Bed or Vans with Extended Length - Include Vehicle Types: Incomplete Pickup + Cab Chassis + Incomplete
Vehicle + Straight Truck - Exclude Vehicle Types: School Bus + Bus Non-School (Coach) - Source: R.L. Polk TIPNet as of March 2003 # 6 HDV2B Class 2b Heavy-Duty Vehicles (8,501-10,000 lbs. GVWR) - Class 2 GVWR - Trucks, SUVs, & Vans - GVWR: 8,001-10,000 for Ford, Chevy, & Dodge - Exclude: All Toyota Tundra Models - Fuel: All Types - Include: Pickups with Long Bed or Vans with Extended Length - Include Vehicle Types: Incomplete Pickup + Cab Chassis + Incomplete Vehicle + Straight Truck - Exclude Vehicle Types: School Bus + Bus Non-School (Coach) - Source: R.L. Polk TIPNet as of March 2003 # 7 HDV3 Class 3 Heavy-Duty Vehicles (10,001-14,000 lbs. GVWR) - Class 3 GVWR - Trucks, SUVs, & Vans - Fuel: All Types - Exclude Vehicle Types: School Bus + Bus Non-School (Coach) - Source: R.L. Polk TIPNet as of March 2003 | Number | | Abbreviation | Description | |--------|---|-----------------------|--| | 8 | | HDV4 | Class 4 Heavy-Duty Vehicles (14,001-16,000 lbs. | | | | GVWR) | | | | - | Class 4 GVWR | | | | - | Trucks, SUVs, & | Vans | | | - | Fuel: All Types | | | | - | | Types: School Bus + Bus Non-School (Coach) | | | - | Source: R.L. Polk | x TIPNet as of March 2003 | | 9 | | HDV5 | Class 5 Heavy-Duty Gasoline Vehicles (16,001-19,500 lbs. GVWR) | | | - | Class 5 GVWR | | | | - | Trucks, SUVs, & | Vans | | | - | Fuel: All Types | | | | - | | Types: School Bus + Bus Non-School (Coach) | | | - | Source: R.L. Polk | x TIPNet as of March 2003 | | 10 | | HDV6 | Class 6 Heavy-Duty Vehicles (19,501-26,000 lbs. GVWR) | | | - | Class 6 GVWR | , | | | - | Trucks, SUVs, & | Vans | | | - | Fuel: All Types | | | | - | | Types: School Bus + Bus Non-School (Coach) | | | - | Source: R.L. Polk | x TIPNet as of March 2003 | | 11 | | HDV7 | Class 7 Heavy-Duty Vehicles (26,001-33,000 lbs. GVWR) | | | - | Class 7 GVWR | | | | - | Trucks, SUVs, & | Vans | | | - | Fuel: All Types | | | | - | | Types: School Bus + Bus Non-School (Coach) | | | - | Source: R.L. Polk | TIPNet as of March 2003 | | 12 | | HDV8A | Class 8a Heavy-Duty Vehicles (33,001-60,000 lbs. GVWR) | | | _ | Class 8 GVWR | , | | | - | Trucks, SUVs, & | Vans | | | - | Fuel: All Types | | | | - | Exclude Vehicle T | Types: School Bus + Bus Non-School (Coach) | | | - | | ypes: 4x2 Non-Tractor Vehicles + All Tractors + Motor | | | | Home Chassis | TTD11 | | | | Varrage, D. I. D. 11. | TIDNAL on of March 2002 | Source: R.L. Polk TIPNet as of March 2003 # 13 HDV8B Class 8b Heavy-Duty Vehicles (>60,000 lbs. GVWR) - Class 8 GVWR - Trucks, SUVs, & Vans - Fuel: All Types - Exclude Vehicle Types: All Tractors + School Bus + Bus Non-School (Coach) - Exclude Wheels: 4x2 - Source: R.L. Polk TIPNet as of March 2003 #### 14 HDBS School Buses - Include Vehicle Type: School Bus - Fuel: All Types - Source: R.L. Polk TIPNet as of March 2003 ## Number Abbreviation Description #### 15 HDBT Transit & Urban Buses - Include Vehicle Type: Bus Non-School (Coach) - Fuel: All Types - Source: R.L. Polk TIPNet as of March 2003 ### 16 MC Motorcycles (All) - Fuel: All Types - Source: R.L. Polk NVPP as of October 2002 The data acquired from Polk was queried to determine the number of vehicles registered in the Macon-Floyd metropolitan statistical area by age and vehicle type. Results of this query were used to develop Registration distribution by age inputs. For each of the 16 composite vehicle types, the fraction of all vehicles of that type which are zero-to-one model year old, two model years old, three model years old, etc., up to the oldest category, 25-model-years-and-older, was determined. The resulting input data is shown on the following two pages. Note that the Polk-derived distribution for Class 8b vehicles (vehicle type 13) is commented out; in accordance with EPA guidance, defaults were used for this vehicle type. ## **Exhibit 6: Source Type Population Input Data Preparation** #### 1) Date sources 2002-2003 Polk's data: Registration data from R. L. Polk & Co.'s National Vehicle Population Profile ® (current as of October 2002) and R. L. Polk & Co.'s TIPNet ® (current as of March 2003) are used. This database includes number of vehicles by age and 16 vehicle types in each Georgia county, and has been used to develop age distribution. Georgia registration data (2003 and 2007): These registration data were obtained from www.georgiastats.uga.edu. This database includes number of vehicles by passenger vehicles, trucks, trailers, motorcycles, buses and others in each county as explained on the Georgia Department of Revenue website (http://motor.etax.dor.ga.gov/stats/renewalsstats.aspx). Passenger Vehicles include Ambulances, Convertibles, Coupes, Hearses, Jeeps, Limousines, Mixers, Motor Homes, Multi-Purpose Vehicles, Roadsters, Station Wagons, Touring Cars, Vans, 2 Doors, 3 Doors, and 4 Doors. Trucks include Truck Tractors, Trucks, and Wreckers. ### 2) Methodology The Polk's data were summarized by 16 vehicles types in each county and then grown to 2007 using different growth factors by vehicle types (Table 1). The number of HDBS, HDBT and MC in Polk's data is comparable to Georgia registration data (Table 2 and Table 3). Therefore, the numbers of HDBS and HDBT were grown to 2007 by multiplying ratios of the number of buses in Georgia motor vehicle registration data in 2007 and 2003. The number of MC was grown to 2007 by multiplying ratios of the number of motor cycles in Georgia motor vehicle registration data in 2007 and 2003. The number of the rest of vehicle types was grown to 2007 by multiplying ratios of human population in 2007 and 2002. The Georgia motor vehicle registration data were not used for these vehicle types due to the difficulty to match the vehicle type used in Georgia motor vehicle registration data to the 16 vehicle types as used in the Polk's data. Since the ratios of 2007 and 2003 passenger cars and trucks in motor vehicle registration data are comparable to the ratios of population data (Table 4), population data were used as the growth indicator. Table 1. List of different growth factors used by vehicle types | Vehicle types | Growth factor | |---------------|--| | HDBS | Georgia registration data (2003 and 2007), Buses | | HDBT | Georgia registration data (2003 and 2007), Buses | | HDV2B | Population 2002 and 2007 | | HDV3 | Population 2002 and 2007 | | HDV4 | Population 2002 and 2007 | | HDV5 | Population 2002 and 2007 | | HDV6 | Population 2002 and 2007 | | HDV7 | Population 2002 and 2007 | | HDV8A | Population 2002 and 2007 | | HDV8B | Population 2002 and 2007 | | LDT1 | Population 2002 and 2007 | | LDT2 | Population 2002 and 2007 | | LDT3 | Population 2002 and 2007 | | LDT4 | Population 2002 and 2007 | | LDV | Population 2002 and 2007 | | MC | Georgia registration data | (2003 and 2007), Motor cycles | |----|---------------------------|-------------------------------| | | | | Table 2. Summary of 2002-2003 Polk's data by 16 mobile vehicle types in four Georgia regions | Vehicle types | ATL13 | ATL7 | GAGAS | GAOTHER | Total | |---------------|-----------|---------|----------------------|---------------------|----------------------| | HDBS | 7,854 | 1,333 | 2,032 | 8,221 | 19,440 | | HDBT | 1,362 | 102 | 139 | 540 | 2,143 | | HDV2B | 56,809 | 11,761 | 15,405 | 49,039 | 133,014 | | HDV3 | 27,628 | 5,996 | 7,822 | 23,797 | 65,243 | | HDV4 | 13,623 | 2,262 | 2,850 | 10,351 | 29,086 | | HDV5 | 6,005 | 1,162 | 1,550 | 5,577 | 14,294 | | HDV6 | 19,294 | 4,088 | 5,932 | 21,688 | 51,002 | | HDV7 | 16,380 | 2,528 | 3,838 | 15,309 | 38,055 | | HDV8A | 37,555 | 4,307 | 6,619 | 31,883 | 80,364 | | HDV8B | 14,449 | 2,201 | 3,061 | 10,926 | 30,637 | | LDT1 | 722,044 | 131,873 | 181,393 | 607,189 | 1,642,499 | | LDT2 | 95,101 | 28,933 | 37,692 | 156,187 | 317,913 | | LDT3 | 302,139 | 62,530 | 75,409 | 284,851 | 724,929 | | LDT4 | 43,616 | 8,019 | 9,721 | 39,432 | 100,788 | | LDV | 1,723,769 | 255,647 | 346,907 | 1,383,696 | 3,710,019 | | MC | 50,081 | 10,657 | 13,76 <mark>7</mark> | <mark>41,123</mark> | <mark>115,628</mark> | Table 3. Summary of 2003 Georgia registration data by 4 mobile vehicle types | Vehicle types | ATL13 | ATL7 | GAGAS | GAOTHER | Total | |--------------------|---------------------|---------|---------------------|---------------------|-----------| | Buses | 10,676 | 1,559 | 2,434 | 9,797 | 21,237 | | Trucks | 558,496 | 168,930 | 237,022 | 823,867 | 1,788,315 | | Passenger Cars | 2,259,027 | 339,456 | 449,177 | 1,744,474 | 4,792,134 | | Motorcycles | <mark>46,836</mark> | 10,203 | <mark>13,124</mark> | <mark>38,561</mark> | 108,724 | **Table 4. Comparison between different growth factors** | | C 4. Comparis | | | Ratios | | |--------------------------------|------------------|-------------|-----------------|-----------|-----------| | | 2002 | 2003 | 2007 | 2007/2002 | 2007/2003 | | Motor vehicle registration | _ | | | | | | Passenger Car | | 4,792,134 | 5,330,256 | | 1.112 | | Trucks | | 1,788,315 | 1,952,470 | | 1.092 | | Motor Cycle | | 108,724 | 174,617 | | 1.606 | | Bus | | 21,237 | 35,124 | | 1.654 | | Population in Georgia, U.S. Ce | ensus | | | | | | Population | 8,585,535 | 8,735,259 | 9,533,761 | 1.110 | 1.091 | | Total Average Annual Daily VI | MT in Georgia, C | | 5 report, miles | | | | VMT | 292,562,380 | 296,810,994 | 305,327,543 | 1.044 | 1.029 | | MOVES national SALESGRO | WTH factor defa | ults | | | | | Motorcycle | | | | 1.383 | 1.311 | | Passenger Car | | | | 0.940 | 1.001 | | Passenger Truck | | | | 0.972 | 0.948 | | Light Commercial Truck | | | | 0.972 | 0.948 | | Intercity Bus | | | | 1.353 | 1.268 | | Transit Bus | | | | 1.353 | 1.268 | | School Bus | | | | 1.353 | 1.268 | | Refuse Truck | | | | 1.353 | 1.268 | | Single Unit Short-haul Truck | | | | 1.353 | 1.268 | | Single Unit Long-haul Truck | | | | 1.353 | 1.268 | | Motor Home | | | | 1.353 | 1.268 | | Combination Short-haul Truck | | | | 1.464 |
1.405 | | Combination Long-haul Truck | | | | 1.464 | 1.405 | The projected 2007 vehicle population by 16 vehicle types in each county were then converted to 32 vehicles types, which were matched with 28 vehicle types and 12 vehicle types (corresponding to 12 SCC codes) as shown in the EPA MOVES converter tool. The EPA MOVES converter tool was also used to convert vehicle population in MOVES format by each of the four reference counties. These populations are the sum of populations of all counties sharing the same reference counties. ## **Exhibit 7: 2007 RunSpec for Monroe County** ``` <runspec> <description><![CDATA[Monroe County 2007 PM2.5 maintenance plan lookups</p> Using HPMS vmt factored by road type Defaults for average speed distribution and vmt by hour Run #3 - Use 2007 yearly average meterology data - 090911 Run#4 - Revised vmtby type using HPMS data in spreadsheet - 090911- Lookups Run for SO2 in inventory mode]]></description> <modelscale value="Inv"/> <modeldomain value="SINGLE"/> <geographicselections> <geographicselection type="COUNTY" key="13207" description="GEORGIA - Monroe County"/> </geographicselections> <timespan> <vear kev="2007"/> <month id="7"/> <day id="5"/>

 d="1"/> <endhour id="24"/> <aggregateBy key="Hour"/> </timespan> <onroadvehicleselections> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="62" sourcetypename="Combination Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="41" sourcetypename="Intercity Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="43" sourcetypename="School Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="42" sourcetypename="Transit Bus"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="11" sourcetypename="Motorcycle"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="43" sourcetypename="School Bus"/> ``` ``` <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="42" sourcetypename="Transit Bus"/> </orroadvehicleselections> <offroadvehicleselections> </offroadvehicleselections> <offroadvehiclesccs> </offroadvehiclesccs> <roadtypes> <roadtype roadtypeid="1" roadtypename="Off-Network"/> <roadtype roadtypeid="2" roadtypename="Rural Restricted Access"/> <roadtype roadtypeid="3" roadtypename="Rural Unrestricted Access"/> <roadtype roadtypeid="4" roadtypename="Urban Restricted Access"/> <roadtype roadtypeid="5" roadtypename="Urban Unrestricted Access"/> </roadtypes> <pollutantprocessassociations> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="15" processname="Crankcase Running Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Start Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="16" processname="Crankcase Start Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="17" processname="Crankcase Extended Idle</p> Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="116" pollutantname="Primary PM2.5 - Brakewear Particulate" processkey="9" processname="Brakewear"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="17" processname="Crankcase Extended Idle Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="1" processname="Running Exhaust"/> ``` ``` pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="90" processname="Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="1" processname="Running Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> Idle Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="117" pollutantname="Primary PM2.5 - Tirewear Particulate" processkey="10" processname="Tirewear"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="16" processname="Crankcase Start Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="90" processname="Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="90" processname="Extended Idle Exhaust"/> </pollutantprocessassociations> <databaseselections> <databaseselection servername="" databasename="monroe 2007 pm25 lookups input1" description=""/> </databaseselections> <internalcontrolstrategies> <internalcontrolstrategy classname="gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.rateofprogress.RateOfProgressStrategy"><![CDATA] useParameters No]]></internalcontrolstrategy> </internalcontrolstrategies> <inputdatabase servername="" databasename="" description=""/> <uncertaintyparameters uncertaintymodeenabled="false" numberofrunspersimulation="0"
numberofsimulations="0"/> <geographicoutputdetail description="NATION"/> <outputemissionsbreakdownselection> <modelyear selected="false"/> ``` ``` <fueltype selected="false"/> <emissionprocess selected="true"/> <onroadoffroad selected="true"/> <roadtype selected="true"/> <sourceusetype selected="true"/> <movesvehicletype selected="false"/> <onroadscc selected="false"/> <offroadscc selected="false"/> <estimateuncertainty selected="false" numberOfIterations="2" keepSampledData="false" keepIterations="false"/> <sector selected="false"/> <engtechid selected="false"/> <hpclass selected="false"/> </outputemissionsbreakdownselection> <outputdatabase servername="" databasename="monroe_2007_pm25_SO2_output4" description=""/> <outputtimestep value="Hour"/> <output/vmtdata value="true"/> <outputsho value="false"/> <outputsh value="false"/> <outputshp value="false"/> <outputshidling value="false"/> <outputstarts value="false"/> <outputpopulation value="true"/> <scaleinputdatabase servername="localhost" databasename="monroe_2007_pm25_lookups_input1" description=""/> cpmsize value="0"/> <outputfactors> <timefactors selected="true" units="Hours"/> <distancefactors selected="true" units="Miles"/> <massfactors selected="true" units="Grams" energyunits="Joules"/> </outputfactors> <savedata> </savedata> <donotexecute> </donotexecute> <generatordatabase shouldsave="false" servername="" databasename="" description=""/> <donotperformfinalaggregation selected="false"/> <lookuptableflags scenarioid="Monroe_2007" truncateoutput="false" truncateactivity="false"/> </runspec> ``` Exhibit 8: MOVES Input Data for Monroe County Emissions for PM2.5 SIP Budget – 2007 Source Type Population | ID | T ID | T D 1. | |--------|--------------|----------------------| | yearID | sourceTypeID | sourceTypePopulation | | 2007 | 11 | 700 | | 2007 | 21 | 12384 | | 2007 | 31 | 7717 | | 2007 | 32 | 2494 | | 2007 | 41 | 0 | | 2007 | 42 | 0 | | 2007 | 43 | 78 | | 2007 | 51 | 11 | | 2007 | 52 | 345 | | 2007 | 53 | 24 | | 2007 | 54 | 35 | | 2007 | 61 | 172 | | 2007 | 62 | 466 | Vehicle Type VMT – HPMSVtypeYear Worksheet | HPMSVtypeID | yearID | HPMSBaseYearVMT | baseYearOffNetVMT | |-------------|--------|-----------------|-------------------| | 10 | 2007 | 2,783,976.15 | 0.00 | | 20 | 2007 | 433,560,565.63 | 0.00 | | 30 | 2007 | 265,025,409.86 | 0.00 | | 40 | 2007 | 7,214,859.49 | 0.00 | | 50 | 2007 | 32,794,066.07 | 0.00 | | 60 | 2007 | 166,893,725.63 | 0.00 | Meteorology Data | mo | onthID | zoneID | HourID | temperature | relHumidity | |----|--------|--------|--------|-------------|-------------| | | 7 | 132070 | 1 | 56.458 | 75.367 | | monthID | zoneID | HourID | temperature | relHumidity | |---------|--------|--------|-------------|-------------| | 7 | 132070 | 2 | 55.400 | 77.358 | | 7 | 132070 | 3 | 54.325 | 79.117 | | 7 | 132070 | 4 | 53.358 | 80.600 | | 7 | 132070 | 5 | 52.542 | 81.750 | | 7 | 132070 | 6 | 51.775 | 82.850 | | 7 | 132070 | 7 | 51.267 | 83.342 | | 7 | 132070 | 8 | 51.958 | 82.633 | | 7 | 132070 | 9 | 55.083 | 78.308 | | 7 | 132070 | 10 | 59.967 | 70.342 | | 7 | 132070 | 11 | 64.742 | 61.875 | | 7 | 132070 | 12 | 68.775 | 54.933 | | 7 | 132070 | 13 | 71.908 | 49.917 | | 7 | 132070 | 14 | 74.092 | 46.550 | | 7 | 132070 | 15 | 75.533 | 44.317 | | 7 | 132070 | 16 | 76.242 | 43.175 | | 7 | 132070 | 17 | 76.033 | 43.242 | | 7 | 132070 | 18 | 74.758 | 44.800 | | 7 | 132070 | 19 | 71.625 | 49.558 | | 7 | 132070 | 20 | 67.333 | 56.758 | | 7 | 132070 | 21 | 63.600 | 63.300 | | 7 | 132070 | 22 | 61.025 | 67.758 | | 7 | 132070 | 23 | 59.250 | 70.717 | | 7 | 132070 | 24 | 57.742 | 73.283 | Age Distribution - Sample | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 21 | 2007 | 0 | 0.01120 | | 21 | 2007 | 1 | 0.04500 | | 21 | 2007 | 2 | 0.04950 | | 21 | 2007 | 3 | 0.06050 | | 21 | 2007 | 4 | 0.05960 | | 21 | 2007 | 5 | 0.05660 | | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 21 | 2007 | 6 | 0.06200 | | 21 | 2007 | 7 | 0.06170 | | 21 | 2007 | 8 | 0.07150 | | 21 | 2007 | 9 | 0.06340 | | 21 | 2007 | 10 | 0.05760 | | 21 | 2007 | 11 | 0.05230 | | 21 | 2007 | 12 | 0.04650 | | 21 | 2007 | 13 | 0.04440 | | 21 | 2007 | 14 | 0.04280 | | 21 | 2007 | 15 | 0.03620 | | 21 | 2007 | 16 | 0.03170 | | 21 | 2007 | 17 | 0.02650 | | 21 | 2007 | 18 | 0.02350 | | 21 | 2007 | 19 | 0.01910 | | 21 | 2007 | 20 | 0.01140 | | 21 | 2007 | 21 | 0.00690 | | 21 | 2007 | 22 | 0.00670 | | 21 | 2007 | 23 | 0.00530 | | 21 | 2007 | 24 | 0.00419 | | 21 | 2007 | 25 | 0.00332 | | 21 | 2007 | 26 | 0.00262 | | 21 | 2007 | 27 | 0.00208 | | 21 | 2007 | 28 | 0.00164 | | 21 | 2007 | 29 | 0.00130 | | 21 | 2007 | 30 | 0.03295 | | 31 | 2007 | 0 | 0.01547 | | 31 | 2007 | 1 | 0.03961 | | 31 | 2007 | 2 | 0.04477 | | 31 | 2007 | 3 | 0.04793 | | 31 | 2007 | 4 | 0.04774 | | 31 | 2007 | 5 | 0.05304 | | 31 | 2007 | 6 | 0.06438 | | 31 | 2007 | 7 | 0.02946 | | | | l | | | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 31 | 2007 | 8 | 0.03986 | | 31 | 2007 | 9 | 0.04598 | | 31 | 2007 | 10 | 0.04906 | | 31 | 2007 | 11 | 0.04226 | | 31 | 2007 | 12 | 0.03997 | | 31 | 2007 | 13 | 0.05252 | | 31 | 2007 | 14 | 0.05539 | | 31 | 2007 | 15 | 0.05388 | | 31 | 2007 | 16 | 0.04229 | | 31 | 2007 | 17 | 0.05027 | | 31 | 2007 | 18 | 0.04733 | | 31 | 2007 | 19 | 0.04471 | | 31 | 2007 | 20 | 0.03223 | | 31 | 2007 | 21 | 0.02617 | | 31 | 2007 | 22 | 0.02961 | | 31 | 2007 | 23 | 0.00046 | | 31 | 2007 | 24 | 0.00039 | | 31 | 2007 | 25 | 0.00036 | | 31 | 2007 | 26 | 0.00032 | | 31 | 2007 | 27 | 0.00028 | | 31 | 2007 | 28 | 0.00025 | | 31 | 2007 | 29 | 0.00023 | | 31 | 2007 | 30 | 0.00378 | Note: File contains 373 records and is available on request ## **Exhibit 9: 2023 RunSpec for Monroe County** ``` <runspec> <description><![CDATA[Monroe County - PM2.5 Lookup for Maintenance SIP - -</p> Run #4 - Re run with new weather - 091211 - plus re-run with MOVESdefault files and revised source population] ></description> <modelscale value="Rates"/> <modeldomain value="SINGLE"/> <geographicselections> <geographicselection type="COUNTY" key="13207" description="GEORGIA - Monroe County"/> </geographicselections> <timespan> <vear key="2023"/> <month id="7"/> <day id="5"/>

 d="1"/> <endhour id="24"/> <aggregateBy key="Hour"/> </timespan> <onroadvehicleselections> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="62" sourcetypename="Combination Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="41" sourcetypename="Intercity Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="43" sourcetypename="School Bus"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="42" sourcetypename="Transit Bus"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="32" sourcetypename="Light Commercial Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="54" sourcetypename="Motor Home"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="11" sourcetypename="Motorcycle"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="21" sourcetypename="Passenger Car"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="31" sourcetypename="Passenger Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="51" sourcetypename="Refuse Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="43" sourcetypename="School Bus"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="42" sourcetypename="Transit Bus"/> </orroadvehicleselections> ``` ``` <offroadvehicleselections> </offroadvehicleselections> <offroadvehiclesccs> </offroadvehiclesccs> <roadtypes> <roadtype roadtypeid="1" roadtypename="Off-Network"/> <roadtype roadtypeid="2" roadtypename="Rural Restricted Access"/> <roadtype roadtypeid="3" roadtypename="Rural Unrestricted Access"/> <roadtype roadtypeid="4" roadtypename="Urban Restricted Access"/> <roadtype roadtypeid="5" roadtypename="Urban Unrestricted Access"/> </roadtypes> <pollutantprocessassociations> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="3"
pollutantname="Oxides of Nitrogen (NOx)" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Start Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="1" processname="Running Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="15" processname="Crankcase Running Exhaust"/> <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="16" processname="Crankcase Start Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="17" processname="Crankcase Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" processkey="90" processname="Extended Idle Exhaust"/> pollutantprocessassociation pollutantkey="116" pollutantname="Primary PM2.5 - Brakewear Particulate" processkey="9" processname="Brakewear"/> <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - Elemental Carbon" processkey="17" processname="Crankcase Extended Idle Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="1" processname="Running Exhaust"/> pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="15" processname="Crankcase Running Exhaust"/> ``` ``` <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="16" processname="Crankcase Start</p> Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - Organic Carbon" processkey="90" processname="Extended Idle Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="2" processname="Start Exhaust"/> pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="15" processname="Crankcase Running Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - Sulfate Particulate" processkey="17" processname="Crankcase Extended</p> Idle Exhaust"/> Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="1" processname="Running Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="2" processname="Start Exhaust"/> <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" processkey="90" processname="Extended Idle Exhaust"/> </pollutantprocessassociations> <databaseselections> <databaseselection servername="" databasename="monroe 2023 pm input4" description=""/> </databaseselections> <internalcontrolstrategies> <internalcontrolstrategy classname="gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.rateofprogress.RateOfProgressStrategy"><![CDATA] useParameters No]]></internalcontrolstrategy> </internalcontrolstrategies> <inputdatabase servername="" databasename="" description=""/> <uncertaintyparameters uncertaintymodeenabled="false" number of runspersimulation="0" number of simulations="0"/> <geographicoutputdetail description="LINK"/> <outputemissionsbreakdownselection> <modelyear selected="false"/> <fueltype selected="false"/> <emissionprocess selected="true"/> <onroadoffroad selected="true"/> <roadtype selected="true"/> <sourceusetype selected="true"/> <movesvehicletype selected="false"/> <onroadscc selected="false"/> <offroadscc selected="false"/> <estimateuncertainty selected="false" numberOfIterations="2" keepSampledData="false" keepIterations="false"/> ``` ``` <sector selected="false"/> <engtechid selected="false"/> <hpclass selected="false"/> </outputemissionsbreakdownselection> <outputdatabase servername="" databasename="monroe_2023_pm25_lookups_output4" description=""/> <outputtimestep value="Hour"/> <output/vmtdata value="true"/> <outputsho value="false"/> <outputsh value="false"/> <outputshp value="false"/> <outputshidling value="false"/> <outputstarts value="false"/> <outputpopulation value="true"/> <scaleinputdatabase servername="localhost" databasename="Monroe_2023_pm_input4" description=""/> cpmsize value="0"/> <outputfactors> <timefactors selected="true" units="Hours"/> <distancefactors selected="true" units="Miles"/> <massfactors selected="true" units="Grams" energyunits="Joules"/> </outputfactors> <savedata> </savedata> <donotexecute> </donotexecute> <generatordatabase shouldsave="false" servername="" databasename="" description=""/> <donotperformfinalaggregation selected="false"/> <lookuptableflags scenarioid="monroe 2023 1" truncateoutput="false" truncateactivity="false"/> </runspec> ``` Exhibit 10: MOVES Input Data for Monroe County Emissions for PM2.5 SIP Budget – 2023 Source Type Population | yearID | sourceTypeID | sourceTypePopulation | |--------|--------------|----------------------| | 2023 | 11 | 987 | | 2023 | 21 | 17461 | | 2023 | 31 | 10881 | | 2023 | 32 | 3516 | | 2023 | 41 | 0 | | 2023 | 42 | 0 | | 2023 | 43 | 111 | | 2023 | 51 | 15 | | 2023 | 52 | 486 | | 2023 | 53 | 34 | | 2023 | 54 | 50 | | 2023 | 61 | 243 | | 2023 | 62 | 657 | Vehicle Type VMT – HPMSVtypeYear Worksheet | HPMSVtypeID | yearID | HPMSBaseYearVMT | baseYearOffNetVMT | |-------------|--------|-----------------|-------------------| | 10 | 2023 | 3,273,420.87 | 0.00 | | 20 | 2023 | 411,263,213.35 | 0.00 | | 30 | 2023 | 220,821,301.48 | 0.00 | | 40 | 2023 | 2,003,423.42 | 0.00 | | 50 | 2023 | 25,306,731.87 | 0.00 | | 60 | 2023 | 32,714,715.77 | 0.00 | Meteorology Data | monthID | zoneID | HourID | temperature | relHumidity | |---------|--------|--------|-------------|-------------| | 7 | 132070 | 1 | 56.458 | 75.367 | | 7 | 132070 | 2 | 55.400 | 77.358 | | 7 | 132070 | 3 | 54.325 | 79.117 | | 7 | 132070 | 4 | 53.358 | 80.600 | | 7 | 132070 | 5 | 52.542 | 81.750 | | 7 | 132070 | 6 | 51.775 | 82.850 | | 7 | 132070 | 7 | 51.267 | 83.342 | | 7 | 132070 | 8 | 51.958 | 82.633 | | 7 | 132070 | 9 | 55.083 | 78.308 | | 7 | 132070 | 10 | 59.967 | 70.342 | | 7 | 132070 | 11 | 64.742 | 61.875 | | monthID | zoneID | HourID | temperature | relHumidity | |---------|--------|--------|-------------|-------------| | 7 | 132070 | 12 | 68.775 | 54.933 | | 7 | 132070 | 13 | 71.908 | 49.917 | | 7 | 132070 | 14 | 74.092 | 46.550 | | 7 | 132070 | 15 | 75.533 | 44.317 | | 7 | 132070 | 16 | 76.242 | 43.175 | | 7 | 132070 | 17 | 76.033 | 43.242 | | 7 | 132070 | 18 | 74.758 | 44.800 | | 7 | 132070 | 19 | 71.625 | 49.558 | | 7 | 132070 | 20 | 67.333 | 56.758 | | 7 | 132070 | 21 | 63.600 | 63.300 | | 7 | 132070 | 22 | 61.025 | 67.758 | | 7 | 132070 | 23 | 59.250 | 70.717 | | 7 | 132070 | 24 | 57.742 | 73.283 | Age Distribution - Sample | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 21 | 2023 | 0 | 0.01120 | | 21 | 2023 | 1 | 0.04500 | | 21 | 2023 | 2 | 0.04950 | | 21 | 2023 | 3 | 0.06050 | | 21 | 2023 | 4 | 0.05960 | | 21 | 2023 | 5 | 0.05660 | | 21 | 2023 | 6 | 0.06200 | | 21 | 2023 | 7 | 0.06170 | | 21 | 2023 | 8 | 0.07150 | | 21 | 2023 | 9 | 0.06340 | | 21 | 2023 | 10 | 0.05760 | | 21 | 2023 | 11 | 0.05230 | | 21 | 2023 | 12 | 0.04650 | | 21 | 2023 | 13 | 0.04440 | | 21 | 2023 | 14 | 0.04280 | | 21 | 2023 | 15 | 0.03620 | | 21 | 2023 | 16 | 0.03170 | | 21 | 2023 | 17 | 0.02650 | | 21 | 2023 | 18 | 0.02350 | | 21 | 2023 | 19 | 0.01910 | | 21 | 2023 | 20 | 0.01140 | | 21 | 2023 | 21 | 0.00690 | | 21 | 2023 | 22 | 0.00670 | | 21 | 2023 | 23 | 0.00530 | | 21 | 2023 | 24 | 0.00419 | | 21 | 2023 | 25 | 0.00332 | | sourceTypeID | yearID | ageID | ageFraction | |--------------|--------|-------|-------------| | 21 | 2023 | 26 | 0.00262 | | 21 | 2023 | 27 | 0.00208 | | 21 | 2023 | 28 | 0.00164 | | 21 | 2023 | 29 | 0.00130 | | 21 | 2023 | 30 | 0.03295 | | 31 | 2023 | 0 | 0.01547 | | 31 | 2023 | 1 | 0.03961 | | 31 | 2023 | 2 | 0.04477 | | 31 | 2023 | 3 | 0.04793 | | 31 | 2023 | 4 | 0.04774 | | 31 | 2023 | 5 | 0.05304 | | 31 | 2023 | 6 | 0.06438 | | 31 | 2023 | 7 | 0.02946 | | 31 | 2023 | 8 | 0.03986 | | 31 | 2023 | 9 | 0.04598 | | 31 | 2023 | 10 | 0.04906 | | 31 | 2023 | 11 | 0.04226 | | 31 | 2023 | 12 | 0.03997 | | 31 | 2023 | 13 | 0.05252 | | 31 | 2023 | 14 | 0.05539 | | 31 | 2023 | 15 | 0.05388 | | 31 | 2023 | 16 | 0.04229 | | 31 | 2023 | 17 | 0.05027 | | 31 | 2023 | 18 | 0.04733 | | 31 | 2023 | 19 | 0.04471 | | 31 | 2023 | 20 | 0.03223 | | 31 | 2023 | 21 | 0.02617 | | 31 | 2023 | 22 | 0.02961 | | 31 | 2023 | 23 | 0.00046 | | 31 | 2023 | 24 | 0.00039 | | 31 | 2023 | 25 | 0.00036 | | 31 | 2023 | 26 | 0.00032 | | 31 | 2023 | 27 | 0.00028 | | 31 | 2023 | 28 | 0.00025 | | 31 | 2023 | 29 | 0.00023 | | 31 | 2023 | 30 | 0.00378 | Note:
File contains 373 records and is available on request