CALCULATION OF VOC EMISSIONS FROM PLASTIC COMPOSITES MANUFACTURING

1. Applicability

This Procedure is applicable to any facility which produces or modifies products from plastic composites manufacturing. This includes open and closed molding, fiberglass-reinforced plastics (FRP), and non-reinforced plastic products. This applies to the use of polyester (styrene) resin applications.

2. Test Methods and Procedures

- (a) In conducting the determination of VOC as prescribed in paragraph (b), the owner or operator shall determine the composition of the VOC containing materials (VCMs) by specific weight formulation data supplied by the manufacturer of the VCM or by an analysis of each VCM using Method 311, including the ASTM standard referenced therein. The Director may require the owner or operator who uses formulation data supplied by the manufacturer of the VCM to determine the VOC content of the VCM using Method 311. The owner or operator shall determine the volume of VCM and the mass of VOC solvent used for thinning purposes from company records on the same basis as the averaging period.
- (b) The styrene emissions from the plastic products manufacturing processes shall be calculated using one or more of the following:
 - (i) Unified Emission Factors (UEF) for Open Molding of Composites provided by CFA and NMMA (attached);
 - (ii) "Empirical Model to Predict Styrene Emissions from Fiber-reinforced Plastics Fabrication Processes", as published by US EPA. A computer program version of this model developed by EPA is called FRP Program Version 1.0 and can be downloaded at http://www.epa.gov/ttn/chief/efdocs/. For all variables other than default "baseline," sufficient documentation must be maintained. In the model, "flow coater" represents non-atomized mechanical application of resin; or
 - (iii) For operations other than those addressed in (i) and (ii) (e.g. marble casting), use the values specified as follows:

Emission Factors for Uncontrolled Polyester Resin Product Fabrication Processes (weight percent of starting styrene monomer emitted)

Operation	Non-vapor suppressed resin	Vapor suppressed resin				
Continuous Lamination	7	5				
Pultrusion	7	5				
Filament Winding	10	7				
Marble Casting	3	2				
Closed Molding	3	2				

Note: These factors do not include gelcoating operations that may be associated with production.

(c) The non-styrene emissions (e.g. MEKP, MMA, DMP) from the plastic products manufacturing processes shall be calculated as follows:

Appendix H Rev. (1) 12/05 Page 2 of 3

- (i) Use UEF for Methyl Methacrylate (MMA);
- (ii) Use an emission factor of 0.001 for Dimethyl Phthalate (DMP); and
- (iii) Assume Methyl Ethyl Ketone Peroxide (MEKP) is consumed in reaction and/or none emitted.

Unified Emission Factors for Open Molding of Composites

July 23, 2001

Emission Rate in Pounds of Styrene Emitted per Ton of Resin or Gelcoat Processed

Styrene content in recin/gelocat, % (1)	<33 (2)	33	34	36	38	37	38	39	40	41	42	43	44	45	48	47	48	48	60	>60 (2)
Manual	0.128 x %alyrene x 2000	83	89	94	100	106	112	117	123	129	134	140	146	152	157	163	169	174	180	((0.286 x %atyrene) - 0.0529) x 2000
Manual W Vapor Suppressed Resin VSR (1)	10	<u>ā</u> j	Manu	at emis	ssion f	actor	listed a	bove]	x (1	- (0.50	x spe	eifie VS	R redu	ction 6	actor to	reach	resina	uppres	sant for	mutation()
Mechanical Atomized	0.169 x %alyrene x 2000	111	126	140	154	168	183	197	211	225	240	254	268	283	297	311	325	340	354	((0.714 x %styrene) - 0.18) x 2000
Mechanical Atomized with VSR (6)	100	Mech	anicat	Atomia	ed em	ission	factor	[inted	above)	x (1	- (0.4	5 x sp	ecific V	SR red	uction	factor f	or each	h resin/	suppres	sent formulation())
Mechanical Atomized Controlled Spray (6)	0.130 x %atyrene x 2000	86	97	108	119	130	141	152	163	174	185	196	207	218	229	240	251	262	273	0.77 x ((0.714 x %alyrene) - 0.18) x 2000
Mechanical Controlled Spray with VSR	Mechanical Atomized Controlled Spray emission factor (lated above) x (1 - (0.45 x specific VSR reduction factor for each resin suppressent formulation))																			
Mechanical Non-Atomized	0.107 x %atyrene x 2000	71	74	77	80	83	85	89	93	96	99	102	105	108	111	115	118	121	124	((0.157 x %atyrene) - 0.0165) x 2000
Mechanical Non-Atomized with VSR 10	10 10	Mechan	ical No	n-Aton	nized e	missi	on fact	or list	ed abo	ve) x	(1 - (0.45 x	specific	VSR	educti	on facts	or for e	ach res	in/supp	ressant formulation()
Filament application	0.184 x %atyrene x 2000	122	127	133	138	144	149	155	160	166	171	177	182	188	193	199	204	210	215	((0.2748 x %styrene) - 0.0298) x 2000
Filament application with VSR ⁽¹⁾	0.120 x %styrene x 2000	79	83	86	90	93	97	100	104	108	111	115	118	122	125	129	133	136	140	0.65 x ((0.2746 x %styrens) - 0.0298) x 2000
Gelcost Application	0.445 x %atyrene x 2000	294	315	336	356	377	398	418	439	460	481	501	522	543	564	584	605	626	646	((1.09848 x %styrene) - 0.195) x 2000
Gelcoat Controlled Spray Application H	0.325 x %atyrene x 2000	215	230	245	260	275	290	305	321	336	351	366	381	396	411	427	442	457	472	0.73 x ((1.03848 x %styrene) - 0.195) x 2000
Gelcoat Non-Atomized Application (f)	SEE Note 9 below	195	205	214	223	232	241	250	259	258	278	287	296	305	314	323	332	341	350	((0.4506 x %styrene) - 0.0505) x 2000
Covered-Cure after Roll-Out	Non-VSR process emission factor [lated above] x (0.80 for Manual -cr> 0.85 for Mechanical)																			
Covered-Cure without Roll-Out	Non-VSR process emission factor [isled above] x (0.50 for Manual <0> 0.55 for Mechanical)																			

Emission Rate in Pounds of Methyl Methacrylate Emitted per Ton of Gelcoat Processed

MMA content in gelocat, % (5)	31	2	3	4	6	е	7	8	9	10	11	12	13	14	15	18	17	18	19	≥20
Gel coat application (f)	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	0.75 x %MMA x 2000

Notes

- 1 Including styrene monomer content as supplied, plus any extre styrene monomer added by the molder, but before addition of other additives such as powders, fillers, glass,...etc.
- Formulas for materials with styrene content < 33% are based on the emission rate at 33% (constant emission factor expressed as percent of available styrene), and for styrene content > 50% on the emission rate based on the estrapolated factor equations; these are not based on test data but are believed to be conservative estimates. The value for "% styrene" in the formulas should be input as a fraction. For example, use the input value 0.30 for a resin with 30% styrene content by wt.
- 3 The VSR reduction factor is determined by testing each resin/suppressant formulation according to the procedures detailed in the CFA Vapor Suppressant Effectiveness Test.
- 4 SEE the CFA Controlled Spray Handbook for a detailed description of the controlled spray procedures.
- 5 The effect of vapor suppressents on emissions from filament winding operations is based on the Dow Filament Winding Emissions Study.
- 5 Including MMA monomer content as supplied, plus any estre MMA monomer added by the mokier, but before addition of other additives such as powders, filers, glass,...etc.
- 7 Based on pelcost data from NMMA Emission Study.
- 5 SEE the July 17, 2001 EECS report Emission Factors for Non-Atomized Application of Bel Costs used in the Open Molding of Composites for a detailed description of the non-atomized gelocal testing.
- 9 Use the equation ((0.4506 x % styrene) 0.0505) x 2000 for gelocats with styrene contents between 19% and 32% by wt., use the equation 0.185 x % styrene x 2000 for gelocats with less than 19% styrene content by wt.