Prepared for:

CSI REALTY, LLC 2680 Lakeland Road Dalton, GA 30721

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT (HSI #10831) Color Spectrum 29 Probasco Street LaFayette, GA 30728

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

November 2014

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT (HSI #10831)

COLOR SPECTRUM

29 Probasco Street LaFayette, GA 30728

Prepared for:

CSI REALTY, LLC

2680 Lakeland Road Dalton, Georgia 30721

Prepared By:.

EPS

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338

Tel: 404-315-9113

Justin Vickery, PG Associate

November 2014

November 2014

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT (HSI #10831)

COLOR SPECTRUM 29 Probasco Street LaFayette, GA 30728 November 2014

GROUNDWATER SCIENTIST STATEMENT				
1	INTRODUCTION			
	1.1	Background	2	
	1.2	Site Location and Description		
	1.3	Site Use and Development History		
	1.4	Description of Adjacent Properties	3	
	1.5	Source Description and Constituents of Interest	4	
2	SITE INVESTIGATIVE HISTORY			
	2.1	Overview	5	
	2.2	Historical Investigations and Monitoring	5	
		2.2.1 October 11, 2005 Sampling Event		
		2.2.2 October 24, 2005 Sampling Event	5	
		2.2.3 HSRA Notification		
		2.2.4 July 2006 Sampling Event	6	
		2.2.5 December 19-20, 2006 Sampling Event	7	
		2.2.6 June 21-28, 2007 Sampling Event	8	
		2.2.7 October 6-7, 2009 Sampling Event	8	
		2.2.8 August/November 2011 Sampling Events	9	
		2.2.9 March 2013 Monitoring Well Installation	10	
		2.2.10 Quarterly Groundwater Monitoring Events	10	
	2.3	Recent Field Investigation	11	
		2.3.1 August 2014 Monitoring Well Installation and Sampling	11	
		2.3.2 Well Sampling Results	12	
3	Con	CONCEPTUAL SITE MODEL		
	3.1	Geology and Hydrogeology	13	
		3.1.1 Overview	13	
		3.1.2 Regional Physiography and Topography	13	
		3.1.3 Site Topography	13	

i

DCN: SYNTVRP4004

		3.1.4 Regional and Site Geology	14	
		3.1.5 Regional and Site Hydrogeology	15	
		3.1.6 Groundwater Flow Direction and Gradient	16	
		3.1.7 Hydraulic Conductivity Data	16	
		3.1.8 Groundwater Flow Velocity	17	
	3.2	Risk Reduction Standards	18	
		3.2.1 Soil RRS	18	
		3.2.2 Groundwater RRSs	18	
	3.3	Potential Receptors and Exposure Pathways	18	
		3.3.1 Potential Environmental Receptors	18	
		3.3.2 Potential Human Receptors	20	
4	GROUNDWATER COMPLIANCE			
	4.1	Groundwater Delineation	23	
	4.2	Compliance with Residential and Non-Residential RRSs		
	4.3	Groundwater Modeling		
	1.0	4.3.1 Introduction		
		4.3.2 Model Development and Calibration		
		4.3.3 Sensitivity Analysis		
		4.3.4 PCE Results		
		4.3.5 Conclusions	_	
	4.4	Vapor Intrusion Assessment		
		4.4.1 Non-Residential Exposure Modeling		
		4.4.2 Residential Exposure Modeling		
	4.5	Institutional Controls		
5	Per	ERENCES	28	
•	1/6	-I\LITULU		

APPENDICES

Appendix A: Groundwater Model

Appendix B: Figures

Figure 1 Site Location Map Figure 2 Site Plan and Site Vicinity Map Figure 3 **USGS** Quadrangle Map Figure 4A Historical Soil Boring Groundwater Results Figure 4B Historical Monitoring Well Results Figure 4C Groundwater Sampling Results (March 2013) Figure 4D Groundwater Sampling Results (June 2013) Groundwater Sampling Results (August 2013) Figure 4E Figure 4F Groundwater Sampling Results (December 2013) Figure 5 Soil Analytical Results Figure 6 Geologic Map of the Georgia Ridge and Valley Figure 7A Geologic Cross-Section Location Map Figure 7B Cross-Section A-A' Cross-Section B-B' Figure 7C

Figure 8 F Appendix C: Tables

Table 1 Summary of Groundwater Analytical Results
Table 2 Summary of Soil Analytical Results

Potentiometric Surface Map (December 2013)

Table 3 Groundwater Elevations

Table 4 Summary of Vapor Intrusion Modeling Results

Appendix D: Laboratory Analytical Reports

Appendix E: Well Development and Well Sampling Forms

Appendix F: Boring Logs and Well Diagrams

Appendix G:Slug Test Data

Appendix H: Risk Reduction Standards Calculations

Appendix I: Wildlife Resources Division Letter

Appendix J: Vapor Intrusion Model

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT (HSI #10831)

COLOR SPECTRUM 29 Probasco Street LaFayette, GA 30728 November 2014

GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified groundwater scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in ground water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this Voluntary Remediation Program Compliance Status Report for Color Spectrum, HSI #10831, was prepared by me and appropriate qualified subordinates working under my direction.

Certified by:

Justin D. Vickery, P.G. Associate

No. 1745

Date: 11-20-14

DCN: SYNTVRP4004 1 November 2014

1 Introduction

1.1 Background

EPS has prepared this Voluntary Remediation Program Compliance Status Report (CSR) on behalf of CSI Realty, LLC for the property located at 29 Probasco Street, LaFayette, Walker County, Georgia, referred to herein as the "Site". The purpose of this CSR is to demonstrate compliance with the Risk Reduction Standards (RRSs) through the use of a Uniform Environmental Covenant (UEC) and a groundwater model (Appendix A) in order to request that the Site be de-listed from the Hazardous Site Inventory (HSI). The Site was listed on the HSI (#10831) in a letter from the Georgia Environmental Protection Division (GA EPD) dated February 10, 2006 due to a release of volatile organic compounds (VOCs) to groundwater, which occurred prior to CSI Realty's acquisition of the property. Title to the property is currently held by the Walker County Development Authority as part of a tax abatement agreement with CSI Realty. Numerous investigations have been conducted at the Site, and it has been determined that the Site is in compliance with applicable RRSs. In a letter dated June 24, 2011, the GA EPD concurred that the Site was in compliance with Type 1 RRSs for soil, and therefore, this CSR addresses groundwater compliance.

Although this CSR demonstrates compliance with the RRSs, a Certification of Compliance is not included. The Certification will be submitted with a CSR Addendum once the UEC has been recorded with Walker County.

1.2 Site Location and Description

The Site is located at 29 Probasco Street in LaFayette, Walker County, Georgia at latitude 34° 42' 45" N and 85° 17' 19" W, and according to the Walker County Tax Assessor Office, consists of two parcels as follows:

- 1. Walker County Tax Parcel ID # 1023087, 1.38 Acres; and
- 2. Portions of the Chattooga and Chickamauga Railway Right-of-Way.

The Site contact is:

CSI Realty, LLC
Tom Watters
P.O. Box 5695
Rome, Georgia 30162
706-290-4179 direct
tomwatters@syntecind.com

The Site is developed with one building, totaling approximately 74,000 square feet, which is used for winding and heat setting yarn. A loading dock and dumpster are located on the east side of the building. A pond is located in the northeastern portion of the Site, and a small stream, the headwaters of the Chattooga River, flows out of the pond to the east of the Site. A Site Location Map is included as Figure 1 (all figures are included in Appendix B), and a Site Vicinity Map, showing the Site and the surrounding properties, is included as Figure 2.

1.3 Site Use and Development History

The first known development of the Site was as a cotton mill which operated from the late 1800s until around 1980 when it was damaged by fire. The operations on the Site were then converted to twisting and heat setting of carpet yarns which has continued to the present day.

Historically, two fuel oil above ground storage tanks (ASTs) and one gasoline underground storage tank (UST) were utilized at the Site. The UST was used for fueling facility vehicles. The ASTs were used as a secondary fuel source for the facility's steam boilers. All tanks were removed in 2006, in accordance with EPD regulations.

The building is located in the area of the property where the former cotton mill was originally constructed. Several expansions have occurred with the most recent being the addition of the warehouse in the mid-1990s.

1.4 Description of Adjacent Properties

Properties immediately adjacent to the Site as shown on Figure 2 are as follows:

- Towards the North: Vacant land, West Indiana Street, and the City of LaFayette maintenance department.
- Towards the South: A related manufacturing facility, followed by a vacant lot and a school (Head Start).
- Towards the East: A railroad right-of-way followed by a wooded, low lying area with an unnamed tributary.

• Towards the West: Residential to the northwest and west, an auto repair shop and auto salvage yard, fire station, and residences to the southwest.

Topographic elevations of the Site and surrounding properties are depicted on a U.S.G.S. Quadrangle Map included as Figure 3.

1.5 Source Description and Constituents of Interest

Based on the location of the groundwater plume, the historical source of impacts appears to have occurred before the current building was constructed, in the vicinity of the current dumpster and the portion of the yarn twisting adjacent to the dumpster. The only known use of chlorinated solvents at the facility were associated with a parts cleaner, which was previously located in the maintenance area. The machine utilized Safety Kleen 105, which was a recycled cleaning solution that may contain up to 0.2 % tetrachloroethene (PCE). However, there has been no record of releases from the parts cleaner, all waste is picked up and recycled by the vendor, and samples in the vicinity of the parts cleaner do not indicate that it is a potential source. Therefore, the source of the VOCs is likely to be historical releases in connection with operations conducted in this area prior to construction of the current building.

Soil and groundwater samples have been collected for analysis of VOCs, polynuclear aromatic hydrocarbon (PAHs), arsenic, and lead. PAH constituents detected were related to a petroleum release from the former ASTs which held diesel fuel. The release from the ASTs was addressed in cooperation with the EPD Water Resources Branch and is not addressed in this CSR. Regulated substances detected in groundwater at the Site consist of 1,1,1-trichloroethane (TCA), 1,1-dichloroethane (DCA), 1,1-dichloroethane (DCE), acetone, Freon-113, Freon-12, isopropylbenzene (IPB), PCE), and lead. The one lead detection in groundwater appears to be a naturally occurring background concentration and not indicative of a release. These constituents and their associated results are summarize on Table 1 (Tables 1 through 4 are included in Appendix C).

2 SITE INVESTIGATIVE HISTORY

2.1 Overview

The findings of the subsurface investigation and monitoring conducted by EPS from October 2005 to August 2014 are discussed in this section. EPS is not aware of any previous environmental investigations performed at the Site. Site sampling was conducted in accordance with the United States Environmental Protection Agency's Field Branches Quality System and Technical Procedures (FBQSTP). Field methods for historical investigations were discussed in previous report submittals. Field methods for the August 2014 work are discussed in Section 2.3.

2.2 Historical Investigations and Monitoring

2.2.1 October 11, 2005 Sampling Event

On October 11, 2005, five soil borings, referred to as SB-1 through SB-5, were advanced to the water table on the Site and an adjacent parcel (refer to Figure 4A). The soil borings were advanced using a truck-mounted direct push drilling device. Soil borings SB-1 through SB-3 were located topographically downgradient (east) of the two primary buildings. Boring SB-4 was located near the southern property boundary and SB-5 was located near the western property boundary, upgradient of the buildings.

A groundwater sample was collected from each soil boring. A surface water sample was also collected from the pond. All samples were analyzed by an independent laboratory for VOCs using EPA Method 8260B.

The laboratory detected TCA, DCA, and PCE in the groundwater sample collected from SB-1 at concentrations of 23 micrograms per liter (μ g/L), 5.6 μ g/L, and 6.4 μ g/L, respectively. VOCs were not detected in the groundwater samples collected from SB-2 through SB-5, or in the pond sample. Sample results are shown on Figure 4A and summarized in Table 1.

2.2.2 October 24, 2005 Sampling Event

On October 24, 2005, six soil borings (SB-6 through SB-11) were advanced near the fuel tanks by direct push technology to assess the extent of the VOC impacts in groundwater detected in the October 11th sampling event. During advancement of the soil borings, No. 2 fuel oil was

observed in the groundwater samples collected from three of the borings. The release of the No. 2 fuel oil was attributed to the ASTs, was addressed in cooperation with Water Resources Branch and is not included as part of this CSR. Each of the six samples collected were analyzed for VOCs. Three of the samples were analyzed for PAHs using EPA Method 8270C. Laboratory results are as follows:

- TCA was detected in three samples, SB-6, SB-9, and SB-10 at concentrations below the Type 1 RRS.
- DCA was detected in SB-11 below the Type 1 RRS.
- Freon-113 was detected in all six samples in concentrations below the Type 1 RRS.
- PAHs were not detected in any samples.

Sample results are shown on Figure 4A and summarized in Table 1.

2.2.3 HSRA Notification

On December 2, 2005, a HSRA Release Notification was submitted for the Site by CSI Realty following its acquisition in November 2005. On February 10, 2006, the Site was added to the HSI.

2.2.4 July 2006 Sampling Event

On July 27, 2006, eight soil borings (SB-12 through SB-19) were advanced by direct push technology to further delineate VOCs in groundwater (refer to Figure 4A). Laboratory results are as follows:

- Freon-113 was detected in SB-13 and SB-15 through SB-18, with the highest concentration being 1,800 µg/L, which is below the Type 1 RRS.
- TCA and DCA detections were below the Type 1 RRS.
- DCE was detected in SB-13 and SB-17 at concentrations of 9.0 μ g/L and 7.1 μ g/L, respectively, which are both above the Type 1 RRS but below the Type 2 RRS.
- PCE was detected in SB-13 and SB-16 at 7.6 μ g/L and 20 μ g/L, respectively, which are both above the Type 1 RRS. The detection in SB-16 is above the Type 2 RRS but below the Type 4 RRS.

VOCs were not detected in SB-12 and SB-14. A groundwater sample could not be collected from SB-19. Sample results are shown on Figure 4A and summarized in Table 1. Based on the presence of regulated compounds in the groundwater above laboratory detection limits, additional groundwater delineation was required.

2.2.5 December 19-20, 2006 Sampling Event

On December 19-20, 2006 nine soil borings (SB-20 through SB-28) were advanced by direct push technology to the groundwater table (refer to Figure 4A). Borings (SB-20 through SB-26) were advanced indoors in the vicinity of the maintenance area which housed a parts cleaner until 2009. Borings SB-27 and SB-28 were advanced outdoors to delineate the plume to the north and south. Temporary wells were constructed in borings SB-20 through SB-23, and SB-26 through SB-28 to determine groundwater flow direction. At each well and at three existing monitoring wells, MW-1 through MW-3 (installed to assess the AST fuel oil release), the top-of-casing elevation and groundwater depths were measured. The groundwater flow direction was determined to be to the east-southeast with a hydraulic gradient of 0.04 feet/foot.

After completing the groundwater depth measurements, groundwater samples were collected from each temporary well and MW-1 through MW-3 and analyzed for VOCs. Laboratory results are as follows:

- Freon-113 was detected in all ten samples with a maximum concentration of 27,000 μg/L, which is below the Type 1 RRS.
- TCA was detected in two samples below the Type 1 RRS. TCA was detected in SB-23 at 2,100 µg/L, which is above the Type 1 RRS but below the Type 2 RRS.
- DCA was detected in four samples below the Type 1 RRS.
- DCE was detected in four samples: two of which are below the Type 1 RRS and two of which are above the Type 2 RRS but below the Type 4 RRS.
- PCE was detected in in one sample below the Type 2 RRS and in two samples above the Type 4 RRS.

Sample results are shown on Figure 4A and summarized in Table 1.

During the December 2006 sampling event, soil samples were collected from three boring locations (SB-24, SB-25, SB-26) located adjacent to the PCE parts cleaner, a potential source area. Soil samples were collected continuously from these borings and field screened for VOCs using a photoionization detector (PID). A soil sample was collected for laboratory analysis from each boring where the highest VOC concentration was measured. In borings where VOCs were not detected with a PID, a sample was collected immediately above the water table. Soil borings DMW-1, MW-4 through MW-9, TW-1, and TW-2 were not screened with a PID. VOCs were not detected in any of the samples above background and therefore, samples were collected from 7 feet below the ground surface (ft-bgs), immediately above the groundwater table. Soil sampling results are shown on Figure 5 and are summarized on Table 2.

After completion of the sampling, all temporary wells and soil borings were properly plugged and abandoned.

2.2.6 June 21-28, 2007 Sampling Event

In July 2007, six monitoring wells (MW-4 through MW-9), three temporary wells (TW-1 through TW-3), and one deep well (DW-1) were installed to complete horizontal and vertical delineation of the VOCs in groundwater (refer to Figure 4B and Table 1). The wells were installed by direct push, hand auger, hollow stem auger, or air rotary drilling. Groundwater elevations were measured in monitoring wells MW-1 through MW-9, DW-1, TW-1, and TW-2 to determine groundwater flow direction. TW-3 was advanced off-site in the low-lying area to the east of the railroad right-of-way. Groundwater samples were then collected from each well for VOC analysis. Laboratory results were as follows:

- Freon-113 was detected in seven groundwater samples with a maximum concentration of 3,900 μg/L, which is below the Type 1 RRS.
- TCA and DCA were each detected in two samples at concentrations below the respective Type 1 RRSs.
- DCE was detected in one sample below the Type 2 RRS.
- PCE was detected in two samples below the Type 2 RRS.
- IPB was detected in one sample below the Type 2 RRS.

Twenty soil samples were collected by direct push technology from ten borings (SB-29 through SB-37 and MW-7) to further delineate VOCs in soil. During boring installation, soil cores were continuously collected and field screened with a PID for VOCs. In each boring soil samples were collected from 1 ft-bgs and at an intermediate depth between the ground surface and the water table. Soil sampling results are shown on Figure 5 and summarized in Table 2.

Monitoring well top-of-casing elevations were measured on July 9, 2007 by Wardlaw Land Surveying of LaFayette, Georgia. Horizontal locations were surveyed relative to the state plain coordinates and the elevations were referenced to the National Geodetic Vertical Datum. Top-of-casing elevation data is summarized on Table 3.

2.2.7 October 6-7, 2009 Sampling Event

At the request of the GA EPD, in October 2009, a nested monitoring well pair, MW-10 and MW-11, was installed in the apparent source area to investigate the potential for Freon-113 dense non-aqueous phase liquid (DNAPL) in this area. The wells were installed using hollow stem auger methods. Well MW-10 was screened near the water table (10 - 12.5 ft-bgs) and MW-11 was screened on top of bedrock (17.5 - 20 ft-bgs). The well locations are shown on Figure 4B. Freon-113 was detected in the shallow well at $6,100 \mu \text{g/L}$ and in the deeper well at $15,000 \mu \text{g/L}$. These elevated concentrations suggested the potential presence of DNAPL¹ in this

 $^{^{1}}$ Freon-113 has a solubility of 170,000 μ g/L. As a rule of thumb, DNAPL is potentially present when concentrations exceed 1% of the solubility, or 1,700 μ g/L for Freon-113.

area; however, the concentrations are below the Type 1 RRS and no Freon-113 was detected in nearby deep well DW-1.

The groundwater samples were analyzed for VOCs, arsenic, and lead. Constituents detected in the groundwater samples included the following:

- TCA and DCA were detected in MW-10 and MW-11 below the Type 1 RRSs.
- DCE was detected in MW-10 and MW-11 below the Type 2 RRS.
- PCE was detected in MW-10 at a concentration below the Type 4 RRS and in MW-11 at a concentration above the Type 4 RRS.
- IPB was detected in MW-10 and MW-11 below the Type 2 RRS.
- Arsenic was not detected in either groundwater sample. In response to Comment #11 from the GA EPD's letter dated March 30, 2012, the original laboratory report for the samples collected on October 7, 2009 had an arsenic detection limit of 50 μg/L while the Type 1 RRS for arsenic is 10 μg/L. Included in Appendix D are revised data sheets from the original laboratory report showing results down to the method detection limits (MDLs). Arsenic was not detected at an MDL of 4.4 μg/L.
- Lead was detected in MW-11 at 15.6 μg/L; however, due to slow recharge, the well could not be properly developed and the turbidity level was 800 NTUs. The sample is, therefore, not considered to be valid. A filtered sampled was also collected from this well and no lead was detected.

Groundwater sample results are shown on Figure 4B and summarized in Table 1.

Six soil samples were collected by direct push technology from six borings (SO-1 through SO-6) to further delineate VOCs in soil. During boring installation, soil samples were continuously collected and field screened with a PID for VOCs. In each boring, soil samples were collected at depths above the water table where PID readings indicated the highest potential VOC concentrations. Soil sampling results are shown on Figure 5 and summarized on Table 2.

2.2.8 August/November 2011 Sampling Events

In August 2011, the groundwater monitoring wells MW-1 through MW-11, DW-1, TW-1 and TW-2 were sampled and analyzed for VOCs. No VOCs were detected in DW-1, MW-4, MW-6, TW-1 and TW-2. Detections in other wells include the following:

- TCA was detected in MW-5, MW-7, MW-8, and MW-10 at concentrations below the Type 1 RRS.
- DCA was detected in MW-8 and MW-10 at concentrations below the Type 1 RRS.
- DCE was detected in MW-5, MW-7, MW-8, and MW-10 at concentrations above the Type 1 RRS but below the Type 4 RRS.

- Freon-113 was detected in MW-1, MW-2, MW-3, MW-5, MW-7, MW-8, MW-9, MW-10, and MW-11 at concentrations below the Type 1 RRS.
- Freon-12 was detected in MW-8 and MW-10 at concentrations below the Type 1 RRS.
- PCE was detected in MW-3, MW-5, MW-7, MW-8, and MW-10. Each of these detections is below the Type 4 RRS with the exception of MW-10.
- IPB was detected in MW-10 at a concentration of below the Type 2 RRS.

There was a significant difference in the Freon-113 concentration in MW-11 from the October 2009 event to the August 2011 event. Thus, on November 15, 2011, MW-10 and MW-11 were re-sampled to confirm the presence or absence of Freon-113 in these wells. No VOCs (including Freon-113) were detected in the deeper of the two wells, MW-11, indicating the absence of a DNAPL. TCA, DCA, DCE, Freon-113, PCE and IPB were detected in MW-10 at concentrations similar to previous detections.

Groundwater sampling results are shown on Figure 4B and summarized in Table 1. In accordance with Comment #7 from the GA EPD's March 30, 2012 letter, monitoring well sampling logs from November 2011 are included in Appendix E.

2.2.9 March 2013 Monitoring Well Installation

On March 6, 2013, two monitoring wells, MW-12 and MW-13, were installed on the Site in accordance with Comment #1 of the GA EPD's letter dated March 30, 2012. The wells were installed using hollow stem auger methods. The locations of these wells were specified in the GA EPD letter and were intended to capture the center of the VOC plume migrating toward the property boundary in the two different groundwater flow directions.

2.2.10 Quarterly Groundwater Monitoring Events

Quarterly groundwater monitoring events were conducted in March 2013, June 2013, August 2013, and December 2013. During these events, monitoring wells MW-2, MW-5, MW-10, TW-1, and newly installed wells MW-12 and MW-13 were sampled.

- VOCs detected in source area well MW-10 included TCA, DCA, DCE, acetone, Freon-113, Freon-12, IPB, and PCE. DCE concentrations were above the Type 2 RRS of 103 μg/L but below the Type 4 of 520 μg/L. PCE was detected above the Type 4 RRS of 98 μg/L.
- VOCs detected in mid-plume well MW-5 included TCA, Freon-113, and PCE. TCA and Freon-133 concentrations were all below the Type 1 RRSs, and PCE was below the Type 2 RRS.
- For downgradient wells MW-2, MW-12, MW-13, and TW-1, no VOCs were detected in MW-2, MW-12, or TW-1 with the exception of some minor Freon-113 detections in

MW-2 and MW-12. TCA and Freon-113 were detected in MW-13 below the Type 1 RRSs. PCE was detected in MW-13 at concentrations below the Type 2 RRS.

VOC concentrations for all wells sampled during the quarterly sampling events remained relatively steady throughout the sampling period. This data is summarized on Table 1 and on Figures 4C, 4D, 4E, and 4F for each of the four events.

2.3 Recent Field Investigation

2.3.1 August 2014 Monitoring Well Installation and Sampling

2.3.1.1 Well Installation

During the 2013 quarterly groundwater sampling events, PCE was detected in well MW-13 at concentrations slightly above the delineation criteria (Type 1 RRS). On August 6, 2014, monitoring well MW-14 was installed downgradient of MW-13 on City of LaFayette property across the Chattooga and Chickamauga Railway Right-of-Way from the Site. Because the location was not accessible with a drill rig, the well was installed using hand auger methods. The proposed well location was due east of MW-13. During the well installation, this area was underwater and the well location was offset to the south. Four hand auger borings reached refusal at a gravel layer at or very near to the water table. After several offsets, the well was finally installed approximately 25 feet south of its proposed location.

The hand auger boring was advanced to 8 ft-bgs. Monitoring well MW-14 was constructed with 5 feet of 2-inch diameter, 0.010-inch slotted PVC screen and 2-inch PVC riser installed to a depth of 8 ft-bgs. Sand was placed in the well annulus from 8 ft-bgs up to 2¼ ft-bgs, and a bentonite seal was placed in the well annulus from 2¼ ft-bgs to 1½ ft-bgs and hydrated. A stick-up well vault was set at 1½ ft-bgs and grouted in place, and a concrete pad was constructed around the stick-up vault. A well cap was placed on the well, and a lock was placed on the vault. The well location and top-of-casing elevation were surveyed.

On August 15, 2014, MW-14 was developed by pumping the well until it was free of visible sediment and until pH, temperature, turbidity, and specific conductivity stabilized. A total of 8½ gallons of water were purged from the well during development. A well development log is included in Appendix E.

2.3.1.2 Well Sampling

On August 22, 2014, MW-14 was purged and sampled. Prior to purging, the groundwater depth was measured in the well with a water level meter to determine the purge volume.

MW-14 was purged and sampled using a peristaltic pump. Well purging was considered complete when, for three consecutive readings, pH was constant within 0.1 Standard Units,

DCN: SYNTVRP4004 11 November 2014

specific conductance varied no more than 5 percent, and turbidity stabilized below 10 Nephelometric Turbidity Units. A well sampling form is included in Appendix E.

Once the parameters stabilized, the sample was collected using the "soda straw" method. The tubing in the well was filled with groundwater, and the pump was turned off. The tubing was then pulled out of the well and the groundwater in the tubing was drained into the sample bottles. The groundwater sample was collected for VOC analysis in two 40-milliliter glass vials preserved with hydrochloric acid. The sample was placed on ice in a cooler, logged under standard chain-of-custody procedures, and delivered to Analytical Environmental Services in Atlanta, Georgia for VOC analysis by method 8260B.

2.3.2 Well Sampling Results

No VOCs were detected in MW-14 in August 2014. Laboratory analytical results are summarized on Table 1. Figure 4F shows the August 2014 sampling results for MW-14 along with the most recent (December 2013) sampling results from the other wells. The laboratory analytical report is included in Appendix D.

3 CONCEPTUAL SITE MODEL

3.1 Geology and Hydrogeology

3.1.1 Overview

The geologic and hydrogeologic characteristics of the Site and surrounding area are described in this section. This section also includes a discussion of regional physiography and Site topography. The discussion of regional characteristics was derived from published sources. Site specific characteristics were determined based on a review of field data.

3.1.2 Regional Physiography and Topography

A review of the *Physiographic Map of Georgia* (Clark and Zisa, 1976) indicates that Walker County is located in the northwestern portion of the Valley and Ridge Physiographic Province (Figure 6). This physiographic province is generally characterized by a series of linear ridges with elevations in lowland areas about 200 - 800 ft above sea level, but the higher ridges may be above 1,600 ft. Plant species vary from area to area based on local soil type, elevation, moisture, and disturbances (Holder, 1986).

The Ridge and Valley Province is bounded on the south by the Piedmont Province, to the east by the Blue Ridge Province, and on the north and west by the Appalachian Plateau Province. The Valley and Ridge province consists of Paleozoic sedimentary rocks that have been folded and faulted to cause long northeast-southwest trending valleys and ridges that give the region its name.

3.1.3 Site Topography

The topography of the property and surrounding areas was reviewed on a United States Geological Survey (USGS) Quadrangle Map for the LaFayette Quadrangle (Figure 3). The map shows the elevation of the property ranging from 240 to 250 feet above mean sea level. The high point of the Site is located at the western property boundary adjacent to Probasco Street. The grade slopes gently down the parking lots to the eastern property boundary to the drainage ditch on the Chattooga and Chickamauga Railway property. The storm water drainage flows as sheet flow across the property to the drainage ditch. Storm water from the roofs of the two buildings is controlled by gutters/downspouts where it's directed towards the drainage ditch on the eastern

portion of the property. The drainage ditch flows into a small stream which forms the headwaters of the Chattooga River.

The pond located in the northern portion of the property discharges to a small stream which forms the headwaters to the Chattooga River.

3.1.4 Regional and Site Geology

Regional Geology

The strata of the Valley and Ridge include numerous carbonate units, such as the Cambro-Ordovcian Knox Dolostone and the Ordovician Chickamauga Limestone, and thus caves and karst terrain exist across large parts of the region. The Chickamauga Valley District is characterized by a series of gently rolling, discontinuous, northeast-trending valleys interrupted by low, linear, parallel ridges. The valley floors are predominantly limestone and dolomite of Cambro-Ordovician age while the ridges are capped by the more resistant cherty units of the Knox Group, also of Cambro-Ordovician age. The ridge tops are approximately 1000 feet in elevation and stand 200-300 feet above the intervening valleys. Rectangular drainage patterns in this district are indicative of structural control.

Residual soils in the Ridge and Valley Province are composed predominantly of Udults with some Ochrepts. Paleudults dominate upland areas underlain by limestone. Hapludults are in valleys underlain by shale. Dystrochrepts are common on side slopes of ridges. Hapludolls and Eutrochrepts are on bottom lands. Soils have an udic moisture regime and thermic or mesic temperature regime. Almost all soils are well drained. Soils range from shallow on sandstone and shale formations to very deep on limestone formations (US Forest Service, 1993). Soils grade into a saprolite or partially weathered bedrock with depth.

A review of the *Geologic Map of Georgia (Georgia Geological Survey, 1976)* indicates that the bedrock underlying LaFayette and nearby areas consists of a Conasauga Group dolostone. Dolostone is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite. It is usually referred to as dolomite rock. Most dolostone formed as a magnesium replacement of limestone or lime mud prior to lithification. It is resistant to erosion and can either contain bedded layers or unbedded layers. It is less soluble than limestone in weakly acidic groundwater, but it can still develop solution features over time.

Site Geology

The Site geology has been investigated through the advancement of soil borings and the installation of shallow and deep monitoring wells. The shallow monitoring wells were installed at depths ranging from 13 ft-bgs to 16 ft-bgs through soil and saprolite residuum. The deep well (DW-1) was installed to a depth of 44 ft-bgs. Boring logs are included in Appendix F.

To illustrate the subsurface geology of the Site, two vertical cross-sections were created using information obtained from the boring logs. Figure 7A shows the locations of cross-section lines A-A' and B-B'. Cross-section A-A' and B-B' are shown on Figures 7B and 7C, respectively. Cross-section A-A' was prepared in an east-west orientation while cross-section B-B' was prepared in a southwest-northeast orientation.

A review of the boring logs and associated cross-sections indicate that the subsurface geology consists of multi-colored clays with some gravel grading to the bedrock. Bedrock was reached in DW-1 at approximately 20 ft-bgs. Based on the hardness of the soils in other borings at the Site, it appears that bedrock exists approximately 20 ft-bgs across the Site.

3.1.5 Regional and Site Hydrogeology

Regional Hydrogeology

The upper boundary of unconfined groundwater in the Ridge and Valley is formed by the water table or surficial water bearing zones. The water table can be loosely defined as the boundary between saturated and unsaturated soil zones. The depth to the water table may range from a few ft-bgs to up to 50 ft-bgs along mountainous terrain. In the Ridge and Valley province, the water table is usually situated within the soil-saprolite residuum and the upper portion of the fractured dolomite bedrock. In areas where saprolite thicknesses are minimal, the water table may reside almost entirely in fractured bedrock. The soil-saprolite residuum generally has a relatively large storage capacity with a moderate transmissivity. The bedrock fracture system generally has a relatively low storage capacity with a high transmissivity where fracture systems are interconnected. If bedrock fracturing is significant, a hydraulic connection between the surficial water bearing zone and deeper groundwater aquifers may occur at varying depths within the bedrock.

Groundwater flow in the soil-saprolite/fractured bedrock zone often mimics the ground surface topography except where controlled by subsurface geologic structures or preferential pathways. These pathways may be caused by heterogeneities in the soil, weathering patterns of the saprolite, foliated bedding planes, faults, fractures, or other relict bedrock features. Groundwater flow is usually unconfined with recharge occurring from rainfall penetrating upland areas and discharge occurring as baseflow to streams and creeks in low lying areas. These flow regimes are commonly referred to as slope aquifer systems. Depending on the interconnection of fracture zones, a downward gradient is commonly observed in upland areas while an upward gradient is generally present in low areas.

Productive groundwater wells in the Ridge and Valley may be located in the saprolite residuum, fractured crystalline bedrock, or a combination of both. Water in the bedrock is transmitted via connected fractures within the rock unit. The quantity, size, and degree of connection between these fractures or discontinuities are generally more significant than the lithology in determining the amount of water available for withdrawal. Rates of withdrawal are often higher along contact zones between rock units. Secondary permeability and fracture size generally decrease

with depth due to overburden pressures except in areas where deep thrust fractures are present. The Ridge and Valley province in the northwestern corner of Georgia is underlain by layers of sandstone, limestone, dolostone, and shale. Wells tapping limestone and dolomite aquifers in this province can be very productive (Tyson, 1993).

Site Hydrogeology

The surficial water bearing zone or uppermost aquifer beneath the Site includes the soil-saprolite unit above the bedrock interface. It is likely that this aquifer is interconnected to the bedrock aquifer beneath it via fractures in the rock. The vertical extent of the bedrock aquifer below 50 ft-bgs has not been investigated.

The groundwater under the Site flows from the high elevation at the western property boundary towards the northeast and the southeast. Considering the surface topography of the Site, the depth the groundwater, and the groundwater flow direction, groundwater at the Site is expected to enter the small stream east of the Site.

3.1.6 Groundwater Flow Direction and Gradient

The depth to groundwater at the Site was measured by EPS personnel in December 2013 in monitoring wells existing at that time. Groundwater elevations were calculated by subtracting the measured depth to groundwater from the surveyed top-of-well casing elevations. The groundwater depths and calculated elevations for the December 2013 sampling event and all previous sampling events are shown in Table 3. A Potentiometric Surface Map for December 2013 is included as Figure 8. As shown on the figure, groundwater flows toward the southeast and northeast, which is consistent with historical data. Based on the December 2013 Potentiometric Surface Map, the average horizontal hydraulic gradient for the Site is 0.03 ft/ft.

Generally, in Ridge and Valley slope aquifer systems an upward vertical flow gradient occurs near creeks or in valley areas and a downward vertical flow gradient occurs on hill sides (Lohman, 1972). The groundwater elevation for MW-7 was 794.12 ft and the elevation for the deeper well DW-1 was 793.62 ft. The lower elevation in DW-1 suggests that a downward vertical gradient may be present between the surficial soil aquifer and deeper bedrock aquifer.

3.1.7 Hydraulic Conductivity Data

On June 28, 2007 EPS performed slug tests on wells MW-4, MW-6, and MW-9 to evaluate the hydraulic conductivity of the upper aquifer. Hydraulic conductivity was determined using the Bower and Rice Graphical Method (Bouwer and Rice, 1976) and the results are shown below.

Well No.	K value (cm/sec)	K value (ft/day)
MW-4	7.4 x 10 ⁻⁵	0.21
MW-6	1.2 x 10 ⁻⁴	0.33
MW-9	1.5 x 10 ⁻⁴	0.42
Average	1.1 x 10 ⁻⁴	0.32

The average hydraulic conductivity value was calculated to be of 1.1×10^{-4} centimeters per second (cm/sec) or 0.32 feet per day (ft/day). This is consistent with published values for clayey soils. The Bower and Rice graphs are included in Appendix G.

3.1.8 Groundwater Flow Velocity

The seepage velocity or groundwater flow velocity is the average speed of groundwater movement by advective processes in the water-bearing zone. The seepage velocity is calculated by multiplying the hydraulic conductivity by the hydraulic gradient and dividing by the effective porosity. The effective porosity is sometimes referred to as the "drainable porosity" and is considered roughly equivalent to specific yield for sandy soils in unconfined units. This parameter is generally estimated using published values.

The groundwater flow velocity was calculated using the following formula:

$$V = \left\lceil \frac{K \frac{dh}{dl}}{n} \right\rceil$$

Where: k = the average hydraulic conductivity (0.32 ft./day)

dh/dl = the hydraulic gradient (0.032 ft./ft.)

n =the estimated effective porosity (0.15 from Fetter, 1988)

Using this formula, a calculated groundwater flow velocity of 0.07 ft/day (26 ft/year) was determined. It should be noted that this calculated value was derived under the assumption that groundwater flow at the Site occurs through a homogeneous, isotropic, porous medium. Since groundwater flow beneath the Site likely occurs through a heterogeneous matrix that may contain secondary fracture pathways, this calculated flow value should be considered only an estimate of the actual groundwater flow velocity.

3.2 Risk Reduction Standards

3.2.1 Soil RRS

In a letter dated June 24, 2011, the GA EPD concurred that the Site was in compliance with Residential RRSs for soil based on CSI Realty's December 29, 2009 Revised Compliance Status Report.

3.2.2 Groundwater RRSs

Regulated substances detected in groundwater at the Site consist of TCA, DCA, DCE, acetone, Freon-113, Freon-12, IPB, PCE, and lead. Type 1 RRSs were calculated for these constituents. TCA, DCE, PCE, and IPB were detected at concentrations which exceed the Type 1 RRSs, and Type 2 RRSs were calculated for these constituents. DCE and PCE exceed the Type 2 RRSs, and Type 4 RRSs were calculated for DCE and PCE. PCE is the only constituent that exceeds the Type 4 RRS. Table 1 summarizes Types 1, 2, and 4 RRSs and compares them to the maximum detected concentrations. RRS calculations are shown in Appendix H.

3.3 Potential Receptors and Exposure Pathways

3.3.1 Potential Environmental Receptors

The Site and adjacent properties are located in a predominantly residential and industrial setting. Common environmental receptors in this type of setting may include protected species, wetland areas, public drinking water wells, and surface water bodies.

3.3.1.1 Protected Species

Information compiled by the Georgia Natural Heritage Program was reviewed for Walker County, Georgia to identify sensitive wildlife receptors or protected species near the Site. The protected species identified in the Walker County include the following:

Plants

· Broadleaf Phlox · Ohio Buckeye · Harbinger-of-spring · Purple Foxglove · Mountain Witch-alder · Tennessee Leafcup · Heath Aster · Blue Ash · Shadow-witch Orchid · Phlox-leaved Aster · Goldenseal · Bigleaf Pondweed · Willow-leaf Aster · Glade St. Johnswort · Granite Gooseberry · Wild Daisy · Twinleaf · Cumberland Rose Gentian ·.Glade Blue Indigo · Texas Plains Rush · Large-flowered Skullcap · Bluehearts · Naked-fruit Rush · Roundleaf Catchfly · Least Gladecress · Wild Hyacinth · Virginia Spirea · White Bear Lake Sedge · Gladecress · Nuttall's Hedge-nettle · Broadleaf Sedge · Wood Lily · Celandine Poppy · Purple Sedge · Broadleaf Gromwell · Silky Aster · Tussock Sedge · Climbing Fern · Downy Bush-pea · Shellbark Hickory · Fraser's Loosestrife · Appalachian Filmy Fern · Limerock Milkvine · Dwarf Filmy Fern · Alabama Lipfern · Bent Trillium · American Smoketree · Virginia Bluebells · Three-flowered Hawthorn · Lanceleaf Trillium · Sprouting Muhly · Barksdale Trillium · Pink Ladyslipper · Alabama Snow-wreath · Marble-seed · Tennessee Fragile Fern · September Elm

· Limestone Adder-tongue Fern

· American Ginseng

· Silverling

· Miami-mist

Ozark BunchflowerLimerock Arrow-wood

· Appalachian Cliff Fern

· Glade Violet

· Gattinger Prairie Clover

· Cream-flowered Tick-trefoil

· Mullein Foxglove

· American Dropseed

Animals

· Bachman's Sparrow · Finelined Pocketbook · Popeye Shiner · Green Salamander · Four-toed Salamander · Burrhead Shiner · Chickamauga Crayfish · Flame Chub · Telescope Shiner · Chattooga River Crayfish · Lined Chub · Yellowfin Madtom · Blackbarred Crayfish · Tennessee Heelsplitter · Dusky Darter · Spotfin Shiner · Spotted Spreadwing · Red-cockaded Woodpecker · Coosa Darter · Sweetflag Spreadwing · Pigeon Mountain Salamander · Blueside Darter · Scarlet Shiner · Southern Pigtoe · Greenbreast Darter · Mountain Shiner · Skirted Hornsnail · Redline Darter · Alabama Moccasinshell · Tapered Cave Beetle · Banded Darter · Gray Myotis · Georgian Cave Beetle · Northern Studfish · Eastern Small-footed Myotis · Pygmy Shrew · Tennessee Cave Salamander · Southern Appalachian Woodrat · Mountain Creekshell

A letter from the Wildlife Resources Division of the Georgia Department of Natural Resources indicated that there are no records of species of concern within the project area. The letter is attached as Appendix I.

3.3.1.2 Wetlands and Surface Water Bodies

A review of a National Wetland Inventory Map prepared by the U.S. Fish and Wildlife Service, indicates that the Site and adjacent properties are not located in identified wetland areas. A small stream, which forms the headwaters of the Chattooga River enters the Site from the north. The stream is damned and forms a small pond on the northern end of the Site. The pond discharge then flows off the property to the east. It is likely that groundwater flows into the stream and pond. Based on groundwater flow from the source area, the stream is considered to be a potential receptor of the groundwater plume. In October 2005, a surface water sample was collected from the pond. VOCs were not detected in this sample.

3.3.2 Potential Human Receptors

The Site includes a manufacturing building (approximately 74,000 square feet), a paved parking lot, a gravel drive leading to a paved loading dock, and a small pond. The future use of the Site will likely remain industrial; however, future residential use of the Site is evaluated below. The adjoining properties are used for residential, commercial, and industrial purposes.

3.3.2.1 Water Well Usage

In November 2005, a water well survey was performed by EPS to identify potential nearby private or public water wells. The survey involved a records search of the EPD files, communications with the City of LaFayette Water Department, a drive-by survey of the properties within a mile of the Site, and a USGS database search. The records search of the EPD files did not identify any water wells in the vicinity of the Site. EPS also reviewed the USGS water well database. No wells were identified in the USGS database within a three mile radius of the Site.

On November 28, 2005, EPS performed a drive-by survey of the properties within a one-mile radius of the Site. No private drinking water wells were observed. EPS identified the City of LaFayette drinking water intake as being located approximately 0.4 miles north of the Site.

Mr. Jim Speir, the City of LaFayette Director of Water & Sewer Utilities, confirmed that the intake location for the City of LaFayette's public water supply is located on a spring approximately 0.4 miles north of the Site. Figure 3 shows the location of the City of LaFayette drinking water intake relative to the Site. Mr. Speir stated that he was not aware of any private drinking water wells present within one mile of the Site. No other public water wells or intake locations are present in the City of LaFayette.

The only drinking water source receptor identified during this survey was the City of LaFayette water intake located along a spring approximately 0.4 miles north of the Site. The intake is located topographically upgradient and upstream of the Site and therefore, human exposure to the VOCs in the groundwater appears unlikely.

3.3.2.2 Underground Utilities

Underground utilities can act as conveyances by intercepting migrating regulated substances through a vapor phase or dissolved phase in the groundwater. In both cases, accumulation may occur inside a hollow pipe or along a preferential pathway created from permeable backfill materials used during placement of the utilities. Human exposures may occur in large diameter utility pipes, manholes, culverts, storm grates, or related access points.

The location of underground utilities in the vicinity of the groundwater plume is shown on Figure 2. The utilities identified include electrical conduits and small diameter roof drain storm water pipes. These utilities are likely located at depths between 2 and 3 ft-bgs. Based on the measured depth to groundwater of 4-5 ft-bgs, these underground utilities could intercept the groundwater table during periods of high groundwater levels.

3.3.2.3 Potential On and Off-Site Receptors

Current/Future Site Worker: Facility workers are expected to work approximately 40 hours per week at the Site. Because the soil has been certified to Residential RRS, and a UEC is being recorded for the Site limiting groundwater use, the only exposure pathway for facility workers is

vapor intrusion from the groundwater plume to the indoor air. As discussed in Section 4.4, a vapor intrusion health risk is not present at the site.

Current/Future Groundskeeper: The grounds are currently maintained by a landscaping contractor on an as-needed basis, and landscaping activity is likely to be required for any future use scenarios. Since the soil has been certified to Residential RRSs, groundskeeper exposure to the VOCs at concentrations greater than Residential RRSs is not likely.

Future Construction/Utility Worker: No construction or utility work activities are currently planned at the Site. However, it is possible that these activities could be conducted in the future. These workers could potentially have short-term (<1 year) exposure to chemicals in groundwater via ingestion, dermal contact, and inhalation of volatiles.

Future On-Site Resident: The Site is currently used for industrial purposes and will likely remain industrial in the future. However, if the Site were to be used for residential purposes in the future, the soils are protective of residential use, and groundwater usage will be prohibited through the use of a UEC.

Potential Off-Site Receptors: There are no potential off-site human receptors. The property immediately downgradient of the Site is the Chattooga and Chickamauga Railway Right-of-Way and further downgradient is a stream and a lower lying area owned by the City of LaFayette. As discussed in Section 4.3.3, it is not likely that the groundwater plume will migrate to the stream.

4 GROUNDWATER COMPLIANCE

4.1 Groundwater Delineation

Groundwater has been delineated to the Type 1 RRSs. Figures 4C through 4F show the data from the four quarterly groundwater monitoring events conducted in 2013. All four compounds (TCA, DCE, IPB, and PCE) detected above the Type 1 RRSs are shown to be delineated on these figures.

4.2 Compliance with Residential and Non-Residential RRSs

Each of the regulated constituents detected in groundwater are in compliance with the Residential RRSs with the exception of DCE and PCE. DCE is in compliance with Non-Residential RRSs while PCE is not. Although Freon-113 was not detected above its Type 1 RRS, the compound was investigated further due to elevated concentrations, and it was determined that a Freon-113 DNAPL was not present. Table 1 summarizes the constituents detected in groundwater and compares them to the RRSs.

- DCE was detected in two soil borings, located inside of the building footprint, in 2006 and more recently in MW-10, located inside the building, above the Type Residential RRS of 103 μ g/L. The maximum concentration of DCE detected was 290 μ g/L, which is below the Type 4 RRS of 520 μ g/L.
- PCE was detected above the Residential RRSs in groundwater samples from three borings and above the Non-Residential RRSs in two of these borings in 2006. More recent sampling results indicate PCE is above the Non-Residential RRS in only one monitoring well, MW-10, with concentrations fluctuating around 150 µg/L.
- Freon-113 has not been detected above the Residential RRS in groundwater. However, in 2006, it was detected at 27,000 μg/L in groundwater samples from borings SB-22 and SB-23 located inside the building, and the GA EPD was concerned of the potential presence of Freon-113 DNAPL. Monitoring wells MW-10 and MW-11 were installed in the vicinity of SB-22 and SB-23 as a nested well pair, with MW-10 screened near the water table (10-12.5 ft-bgs) and MW-11 screened on top of bedrock (17.5-20 ft-bgs). Although initial sampling results from MW-11 indicated elevated concentrations (15,000 and 21,000 μg/L) of Freon-113, follow-up sampling results were much lower (27 μg/L and non-detect). It is therefore believed that the initial elevated concentrations were the result of poor well development (due to slow recharge). Because significantly higher concentrations of Freon-113 exist in the shallow well (MW-10) and because the Freon-

113 concentrations in the deeper well (MW-11) are minor, it does not appear that Freon-113 exists as a DNAPL.

4.3 Groundwater Modeling

4.3.1 Introduction

BIOCHLOR Natural Attenuation Decision Support System (version 2.2) was used to model biodegradation of PCE at the Property. BIOCHLOR is an analytical model approved by the U.S. Environmental Protection Agency that is used to simulate the degradation of chlorinated ethenes and ethanes. It is an Excel-based program based on the Domenico analytical solute transport model. BIOCHLOR simulates advection, 3-D dispersion, linear adsorption and biotransformation via reductive dechlorination.

The primary purpose of this modeling is to predict concentrations at the hypothetical Point of Exposure 1000 ft downgradient of the plume edge and compare the model predictions to the Type 1 RRS (5 µg/L) for PCE. A secondary purpose is to estimate concentrations that may theoretically reach the nearby headwater stream of the Chattooga River and compare the predicted concentrations to the Georgia In-Stream Water Quality Standard (ISWQ).

4.3.2 Model Development and Calibration

The groundwater at the Property flows in two different directions (see Figure 8). Accordingly, two different models were developed and calibrated to simulate each of these flow directions. The highest concentrations of PCE in groundwater were observed at borings SB-22 and SB-23. Thus, the zero distance area (or "initial concentrations", model variable C_o) was considered to be in the area of SB-22 and SB-23 (which also includes wells MW-8, MW-10 and MW-11) flowing in two different directions. Flow path A is to the southeast and includes wells MW-2, MW-3, MW-13, MW-14, and borings SB-1 and SB-13. Following flow path A, the headwater of the Chattooga River is encountered approximately 288 ft from the zero distance. Flow path B is to the north-east and includes wells MW-5, MW-7, MW-12, TW-1 and borings SB-16 and SB-27. Following flow path B, the headwaters of the Chattooga River is encountered approximately 160 ft from the zero distance.

The input parameters used in the model are presented in Table A of Appendix A. The advection parameters (e.g., hydraulic conductivity) were based on site-specific values. The dispersion and adsorption parameters were primarily based on default values available in the model documentation. The biotransformation decay coefficients were not used as biodegradation does not appear to be a primary factor at this Site. The model assumes that there is a continuous source since 1980 when the facility converted to yarn twisting.

The modeled C_0 concentrations were developed during model calibration. Historical groundwater data (from 2005 through 2013) were used to adjust the C_0 concentrations and decay coefficients to develop a model that best represented the conditions at the Site. The C_0 concentrations were chosen primarily to model the data from 2006, when the highest concentration of PCE was observed in groundwater. The highest PCE concentration observed in groundwater was 0.35 mg/L at SB-23; the C_0 concentration was rounded up to 0.4 mg/L.

4.3.3 Sensitivity Analysis

A sensitivity analysis was conducted to evaluate the influence or relative importance of key input variables and assumptions on the predicted concentrations. The parameters evaluated in the sensitivity analysis included the retardation factor, hydraulic conductivity and porosity. This analysis was run for model year 2006 and 2043 (30 years from the last groundwater sampling event). For Flow Path A the sensitivity analysis was conducted at two distances: 72 feet (MW-13) and 170 feet (MW-14). For Flow Path B the sensitivity was conducted at 118 ft (MW-12).

The predicted concentrations (shown in Table B and Table C for 2006 and 2043, respectively) at each of these distances were determined for three different conditions for each parameter being considered: (1) baseline, (2) a value higher than baseline, and (3) a value lower than baseline. The resulting concentrations are also compared to the Type 1 RRS for an additional frame of reference.

Changes in the retardation factor, porosity and hydraulic conductivity did not make an appreciable difference in the concentrations. It is important to note that in all of these simulations, the concentrations did not exceed the Type 1 RRS.

4.3.4 PCE Results

Chart Group 1 in Appendix A shows PCE output screens from the BIOCHLOR model for each year that data was collected from 2005 through 2013 and for year 2043 (30 years after the last groundwater sampling event) for the two different flow paths (Flow Path A and Flow Path B). The boxes on these charts represent analytical data collected from groundwater in that year. In year 2013 groundwater was collected quarterly, thus the high and low concentrations observed in 2013 are both shown on the chart to represent the range of concentrations observed.

These charts show that the model, although not perfect, is a good representation of conditions at the Site and can be used to predict future concentrations. The model actually over predicts concentrations most years indicating that the model is conservative. Thus, the model will conservatively estimate the concentrations of PCE into the future.

The projected concentrations for year 2043 show that the modeled PCE concentrations at the point of demonstration wells (MW-12, MW-13, and MW-14) and the hypothetical Point of Exposure (1000 ft) will not exceed the Type 1 RRS. In addition, the projected concentrations for

year 2043 show that the modeled PCE concentrations at the headwaters for the Chattooga River do not exceed the ISWQ. The PCE plume does not reach the stream following Flow Path A. For Flow Path B, the PCE plume does not reach the stream at concentrations exceeding the ISWQ. Therefore, in response to Comment #3 in the GA EPD's letter data March 30, 2014, the combination of the two flow paths does not cause PCE concentrations entering the stream at concentrations which exceed the ISWQs $(3.3 \, \mu g/L)$.

4.3.5 Conclusions

Comparison of the model predictions to actual groundwater results at the Site indicates that the model can be used to conservatively predict future concentrations. According to the modeling results for the most recent year sampled (2013) and thirty years from then (2043), the concentrations at the Point of Demonstration wells and at the hypothetical Point of Exposure (1000 ft) do not exceed the Type 1 RRS. Thus, the model predicts that groundwater concentrations at the Point of Exposure will not exceed Type 1 RRSs. Additionally, the model predicts that the concentrations of PCE in groundwater at the points it reaches the headwater of the Chattooga River are less than the ISWQ.

4.4 Vapor Intrusion Assessment

In 2009, potential risks associated with PCE and Freon-113 vapor intrusion were assessed using advanced versions of the 2004 Johnson and Ettinger Model specific to soil and groundwater sources. The models were recently updated in accordance with Comments #9 and #10 of the GA EPD's March 30, 2012 letter. This model, published by the US EPA Office of Emergency and Remedial Response, is an enhanced implementation of the US EPA Office of Solid Waste and Emergency Response's Subsurface Vapor Intrusion Guidance (2002).

Vapor intrusion was assessed using the highest soil and groundwater concentrations detected for Freon-113 and PCE under the existing building during all previous sampling events. Exposure parameters listed in Appendix J were derived from Table 3 of Appendix III of the Hazardous Site Response Rule (391-3-19). The default air exchange rate of 0.25 volumes per hour was used in the models.

4.4.1 Non-Residential Exposure Modeling

For non-residential exposure modeling, incremental risk associated with vapor intrusion of PCE was assessed using the maximum concentrations detected in soil (0.024 mg/kg) and groundwater (350 μ g/L) beneath the building. The cancer risk associated with groundwater was 5.5×10^{-8} , and the associated hazard quotient was 1.5×10^{-2} . Modeling of measured concentrations of PCE in soil resulted in a cancer risk value of 3.9×10^{-9} and a hazard quotient of 1.1×10^{-3} . Neither the target cancer risk value of 1.0×10^{-5} nor the target hazard quotient of 1.0 was exceeded.

Since Freon-113 is not considered a potent carcinogen, the cancer risk determination is not applicable. The hazard quotient was estimated using the maximum groundwater (27,000 μ g/L) and soil (4.2 mg/kg) concentrations detected beneath the building. Model results estimated hazard quotients of 3.0×10^{-2} for Freon-113 in groundwater and 7.8×10^{-4} for Freon-113 in soil. Neither of these hazard quotients exceeded the target hazard quotient of 1.0. Model results are summarized in Table 4. Model parameters can be found in Appendix J.

4.4.2 Residential Exposure Modeling

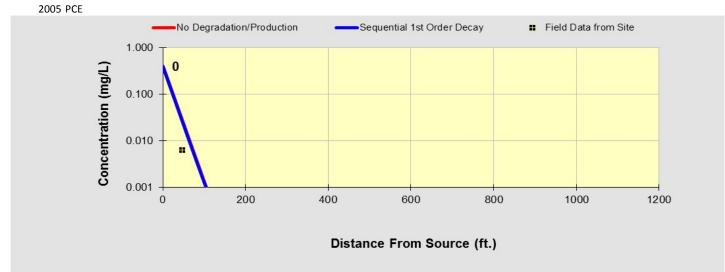
For residential exposure modeling, incremental risk associated with vapor intrusion of PCE was assessed using the maximum concentrations detected in soil (0.3 mg/kg) and groundwater (350 μ g/L) at the Site. The cancer risk associated with groundwater was 3.2×10^{-7} , and the associated hazard quotient was 7.3×10^{-2} . Modeling of measured concentrations of PCE in soil resulted in a cancer risk value of 3.2×10^{-7} and a hazard quotient of 7.1×10^{-2} . Neither the target cancer risk value of 1.0×10^{-6} nor the target hazard quotient of 1.0 was exceeded.

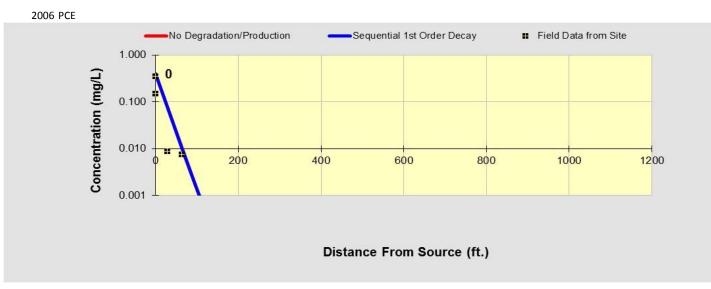
Since Freon-113 is not considered a potent carcinogen, the cancer risk determination is not applicable. The hazard quotient was estimated using the maximum groundwater (27,000 μ g/L) and soil (6.3 mg/kg) concentrations detected at the Site. Model results estimated hazard quotients of 1.4×10^{-1} for Freon-113 in groundwater and 4.0×10^{-3} for Freon-113 in soil. Neither of these hazard quotients exceeded the target hazard quotient of 1.0. Model results are summarized in Table 4. Model parameters can be found in Appendix J.

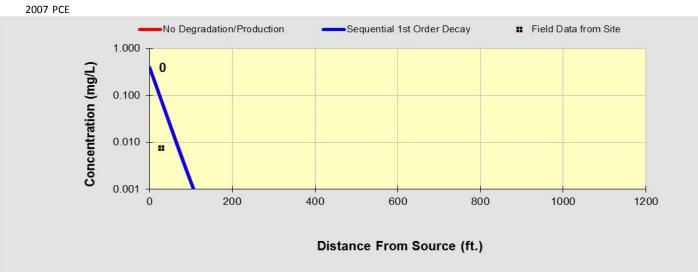
4.5 Institutional Controls

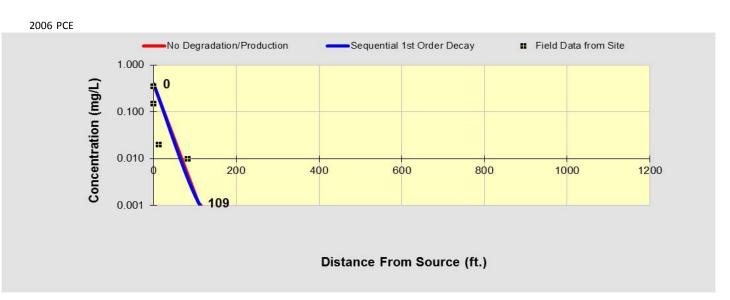
Pursuant to Section 12-8-107(h) of the VRP Act, a UEC has been prepared and was submitted in draft to the EPD On October 28, 2014, to restrict groundwater use.

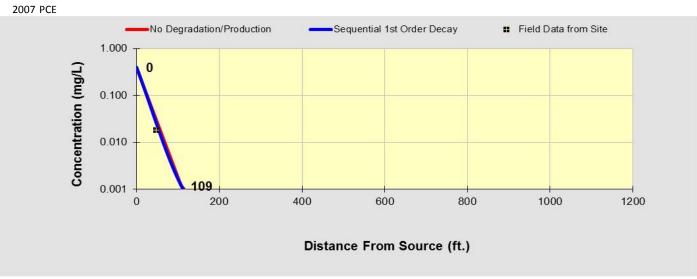
5 REFERENCES

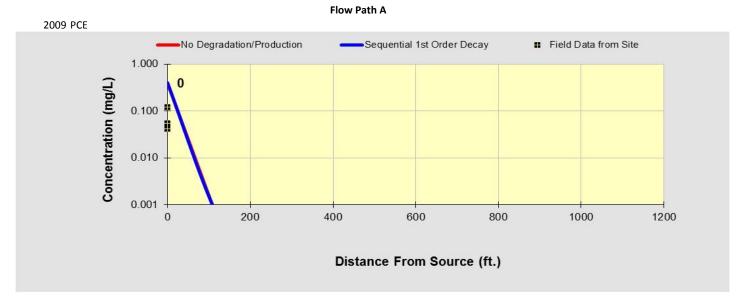

- Bouwer, H. and Rice, R.C., 1976, A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, 12-3, pp. 423-428.
- Bouwer, H., 1989, The Bouwer and Rice Slug Test An Update, Groundwater, vol. 24, no. 3, pp. 304-309.
- Clark & Zisa, A *Physiographic Map of Georgia*, Department of Natural Resources, Georgia Geologic Survey, 1987.
- Fetter, C. W., 1988, Applied Hydrogeology, 2nd Edition, Macmillan Publishing Company, New York, 592 p.
- Lohman, S. W., 1972, *Ground-Water Hydraulics*, Professional Paper 708, U.S. Department of the Interior, Geological Survey, 67 p.
- U.S. Forest Service, Ecological Subregions of the U.S., November 5, 1993 http://www.fs.fed.us/land/pubs/ecoregions/ch20.html#231D
- Tyson, Anthony W., 1993 Georgia's Ground Water Resources, University of Georgia College of Agricultural and Environmental Sciences, Bulletin 1096 October 1993.
- U.S. Environmental Protection Agency, Region 4, Field Branches Quality System and Technical Procedures, Athens, Georgia.

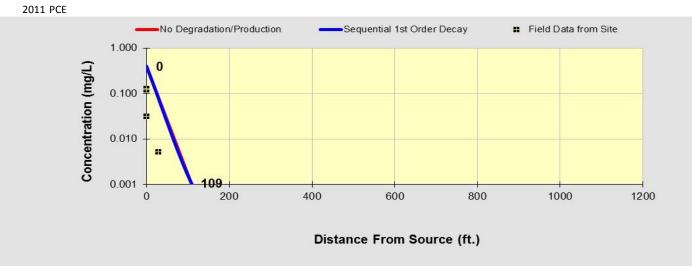


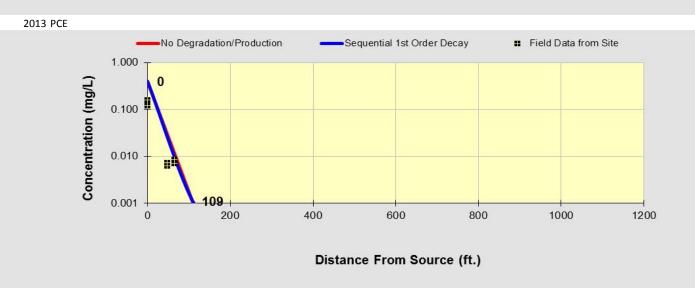

APPENDIX A

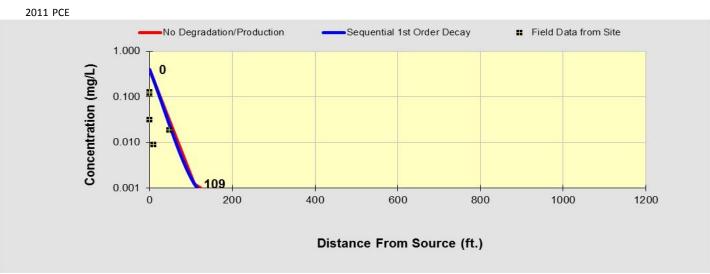

Groundwater Model

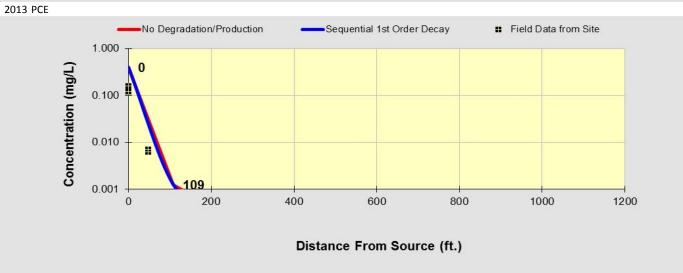


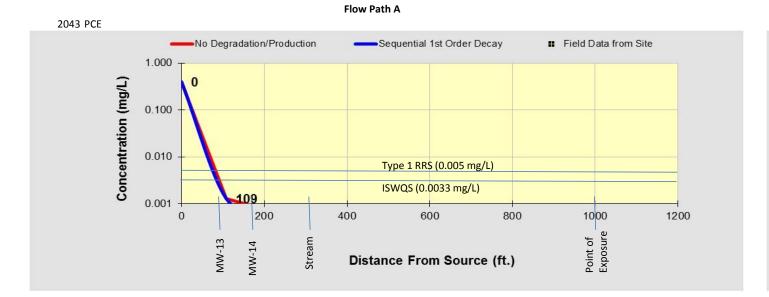


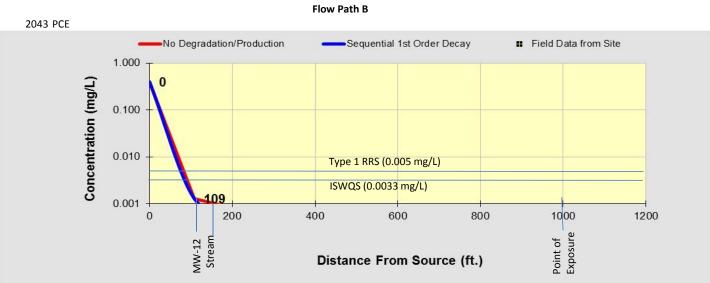












Flow Path B

Chart Group 1 PCE Modeling Results

0.0033

Table A. Input Parameters for the BIOCHLOR Model

Mechanism	Parameter	Value Units	Basis
Advection	Hydraulic Conductivity	1.10E-04 cm/s	Average hydraulic conductivity presented in the 2009 Revised CSR (EPS, 2009)
	Hydraulic Gradient (direction a)	0.015 ft/ft	Based on MW-10 to MW-13
	Hydraulic Gradient (direction b)	0.02 ft/ft	Based on MW-7 to MW-12
	Effective Porosity	0.15 unitless	Typical value for lithological formation (EPA, 2000) and used historically for the Property
Dispersion	Alpha X	6.2711 ft/ft	Modified Xu Eckstein (L approx 85 ft)
	Alpha Y/Alpha X	0.1 unitless	EPA model default
	Alpha Z/Alpha X	5.00E-02 unitless	EPA model default
Adsorption	Soil Bulk Density	1.7 kg/L	EPA model default
	Fraction Organic Carbon	0.001 unitless	EPA model default
	Organic Carbon Partitioning Coefficients		
	PCE	426 L/kg	EPA model default
	TCE	130 L/kg	EPA model default
	DCE	125 L/kg	EPA model default
	VC	30 L/kg	EPA model default
	Ethenes	302 L/kg	EPA model default
	Retardation Factor	2.47	Calcualted based on above values
Biotransformation	1st Order Decay Coefficients		
	TCA->DCA	1/yr	
	DCA->CA	1/yr	
	PCE->TCE	1/yr	
	TCE->DCE	1/yr	
	DCE->VC	1/yr	
	VC->Ethene	1/yr	
General	Simulation Time	varies yr	Assuming the source began in 1980
	Modeled Area Width	700 ft	Assumption
	Modeled Area Length	1085 ft	Assumption
	Zone length	1085 ft	Assuming one-zone
Source Contribution	Type	Continuous	Assumes continuous source concentrations throughout time
	Source Thickness in Saturated Zone	15 ft	Approximate thickness of aquifer
	Source Width	0.1 ft	Based on model calibration
	Source Concentrations		
	PCE	400 mg/L	Based on model calibration (highest value observed in groundwater was 350 mg/L)

EPA,2000: BIOCHLOR Natural Attenuation Decision Support System. User's Manual Version 1.0 USEPA. January 2000 EPA,2002: BIOCHLOR Natural Attenuation Decision Support System. User's Manual Addendum. USEPA. March 2002.

Table B. Sensitivity Analysis (Year 2006)

					Retardation	Factor				
	Concentrat	ions (mg/L) a	t 72 ft (A)	Concentra	ations (mg/L) a	t 170 ft (A)	Concentrations (mg/L) at 118 ft (B)			
		R=2.47		R=2.47			R=2.47			Type 1
	R=5	(Baseline)	R=1.4	R=5	(Baseline)	R=1.4	R=5	(Baseline)	R=1.4	RRS
PCE	0.003	0.005	0.005	< 0.001	< 0.001	< 0.001	0.001	0.001	0.0015	0.005
				Hyd	draulic Condu	ctivity (cm/s)				
	Concentration	ons (mg/L) at	72 ft (A)	Concentratio	ns (mg/L) at 17	'0 ft (A)	Concentrations	(mg/L) at 118 ft (B)	
		K=1.1e-4		K=1.1e-4				Type 1		
	K=7.4e-5	(Baseline)	K=1.5e-4	K=7.4e-5	(Baseline)	K=1.5e-4	K=7.4e-5	(Baseline)	K=1.5e-4	RRS
PCE	0.005	0.005	0.005	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.001	0.005
					Porosi	ty				
	Concentration	ons (mg/L) at	72 ft (A)	Concentratio	ns (mg/L) at 17	'0 ft (A)	Concentrations	(mg/L) at 118 ft (B)	
		n=0.15			n=0.15			n=0.15		Type 1
	n=0.2	(Baseline)	n=0.01	n=0.2	(Baseline)	n=0.01	n=0.2	(Baseline)	n=0.01	RRS
PCE	0.005	0.005	0.005	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.001	0.005

Basis for values selected:

Retardation Factor - R-1.4 based on the example presented in the 2000 Guidance, R=5 is slightly higher than that presented in the 2000 Guidance because the baseline value is higher than that shown in the Guidance. Hydraulic Conductivity - based on the lowest and highest values calculated at the Site (from the 2009 CAP)

Porosity - based on low and high values reasonable for the lithological formation (EPA, 2000)

Table C. Sensitivity Analysis (Year 2043)

					Retardation	Factor				
	Concentrat	ions (mg/L) a	t 72 ft (A)	Concentr	ations (mg/L) a	t 170 ft (A)	Concent	rations (mg/L) at	118 ft (B)	
		R=2.47		R=2.47			R=2.47			Type 1
	R=5	(Baseline)	R=1.4	R=5	(Baseline)	R=1.4	R=5	(Baseline)	R=1.4	RRS
PCE	0.005	0.005	0.005	< 0.001	0.001	0.001	0.001	0.001	0.0015	0.005
				Hy	draulic Condu	ctivity (cm/s)				
	Concentrat	ions (mg/L) a	t 72 ft (A)	Concentr	ations (mg/L) a	t 170 ft (A)	Concent	rations (mg/L) at	118 ft (B)	
		K=1.1e-4		K=1.1e-4				Type 1		
	K=7.4e-5	(Baseline)	K=1.5e-4	K=7.4e-5	(Baseline)	K=1.5e-4	K=7.4e-5	(Baseline)	K=1.5e-4	RRS
PCE	0.005	0.005	0.005	< 0.001	0.001	0.001	0.001	0.001	0.0015	0.005
					Porosi	ty				
	Concentrat	ions (mg/L) a	t 72 ft (A)	Concentr	ations (mg/L) a	t 170 ft (A)	Concent	rations (mg/L) at	118 ft (B)	
		n=0.15		n=0.15			n=0.15			Type 1
	n=0.2	(Baseline)	n=0.01	n=0.2	(Baseline)	n=0.01	n=0.2	(Baseline)	n=0.01	RRS
PCE	0.005	0.005	0.005	0.001	0.001	0.001	< 0.001	0.001	0.0015	0.005

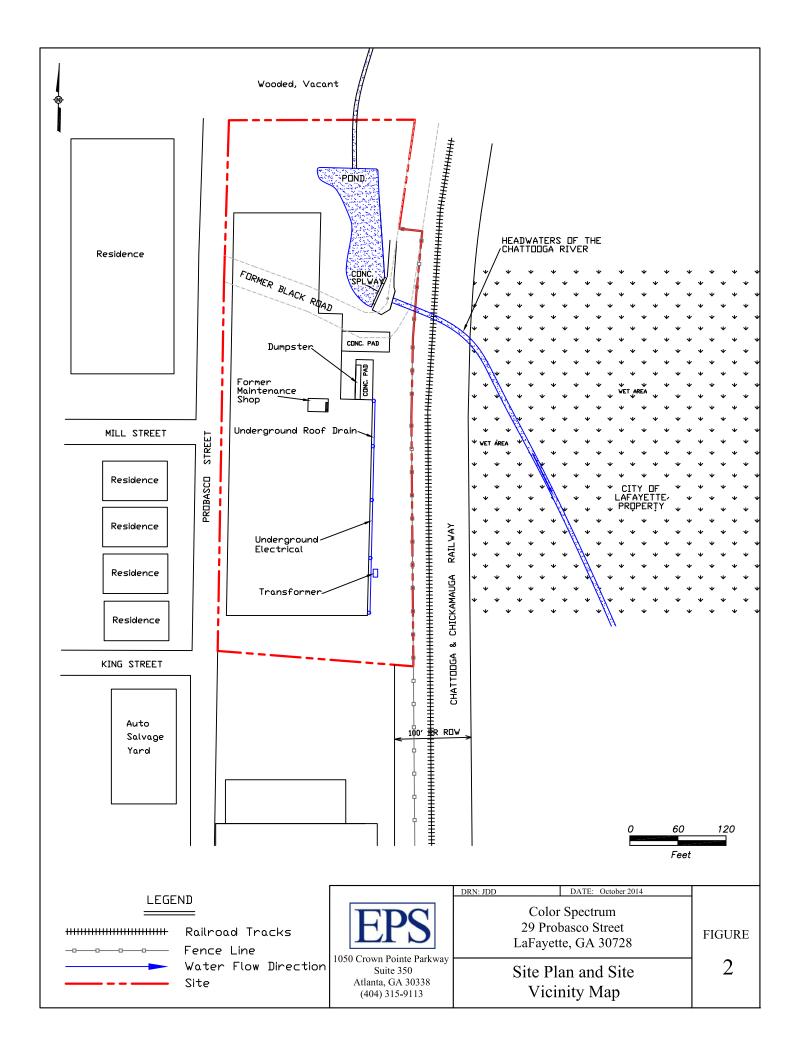
Basis for values selected:

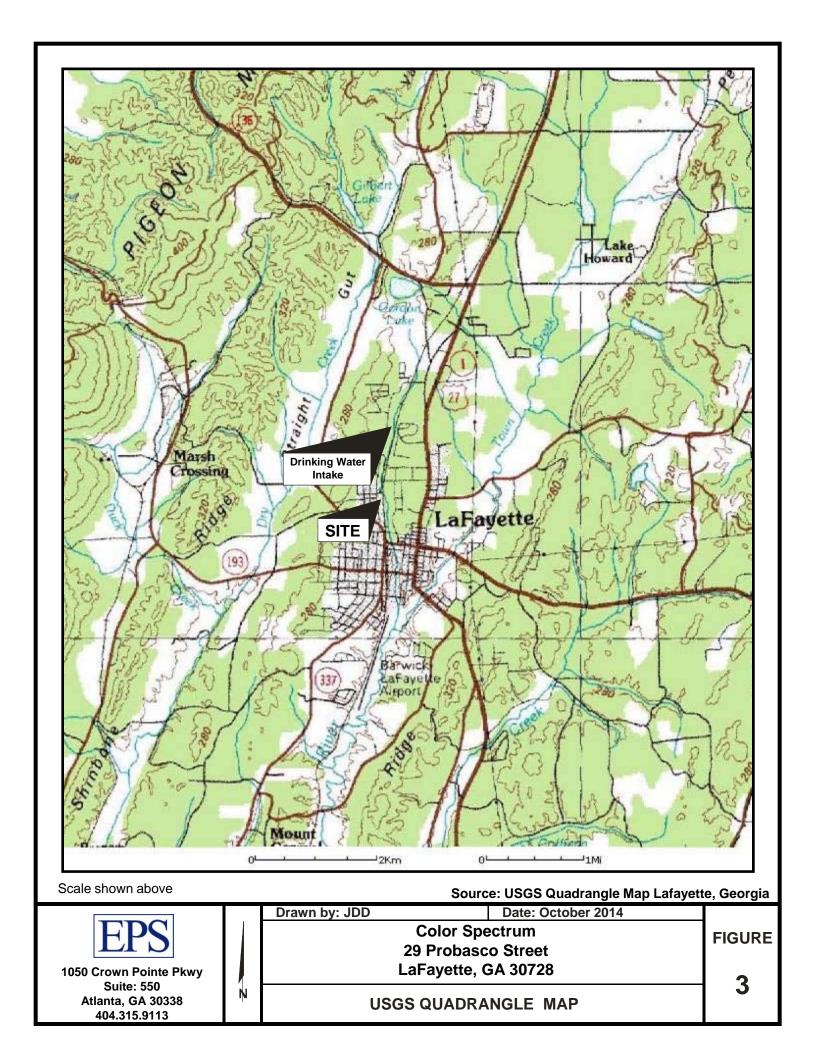
Retardation Factor - R-1.4 based on the example presented in the 2000 Guidance, R=5 is slightly higher than that presented in the 2000 Guidance because the baseline value is higher than that shown in the Guidance. Hydraulic Conductivity - based on the lowest and highest values calculated at the Site (from the 2009 CAP)

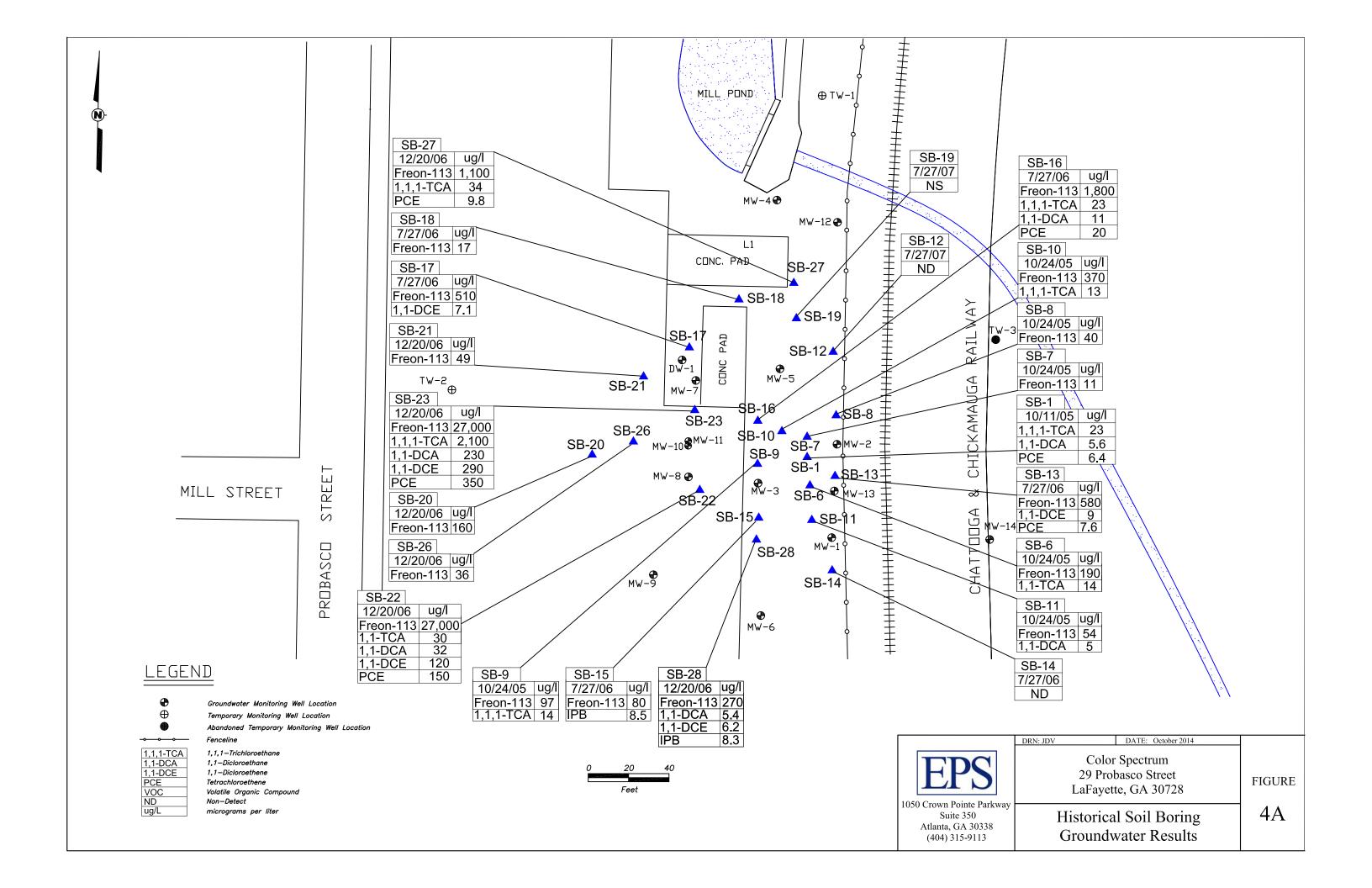
Porosity - based on low and high values reasonable for the lithological formation (EPA, 2000)

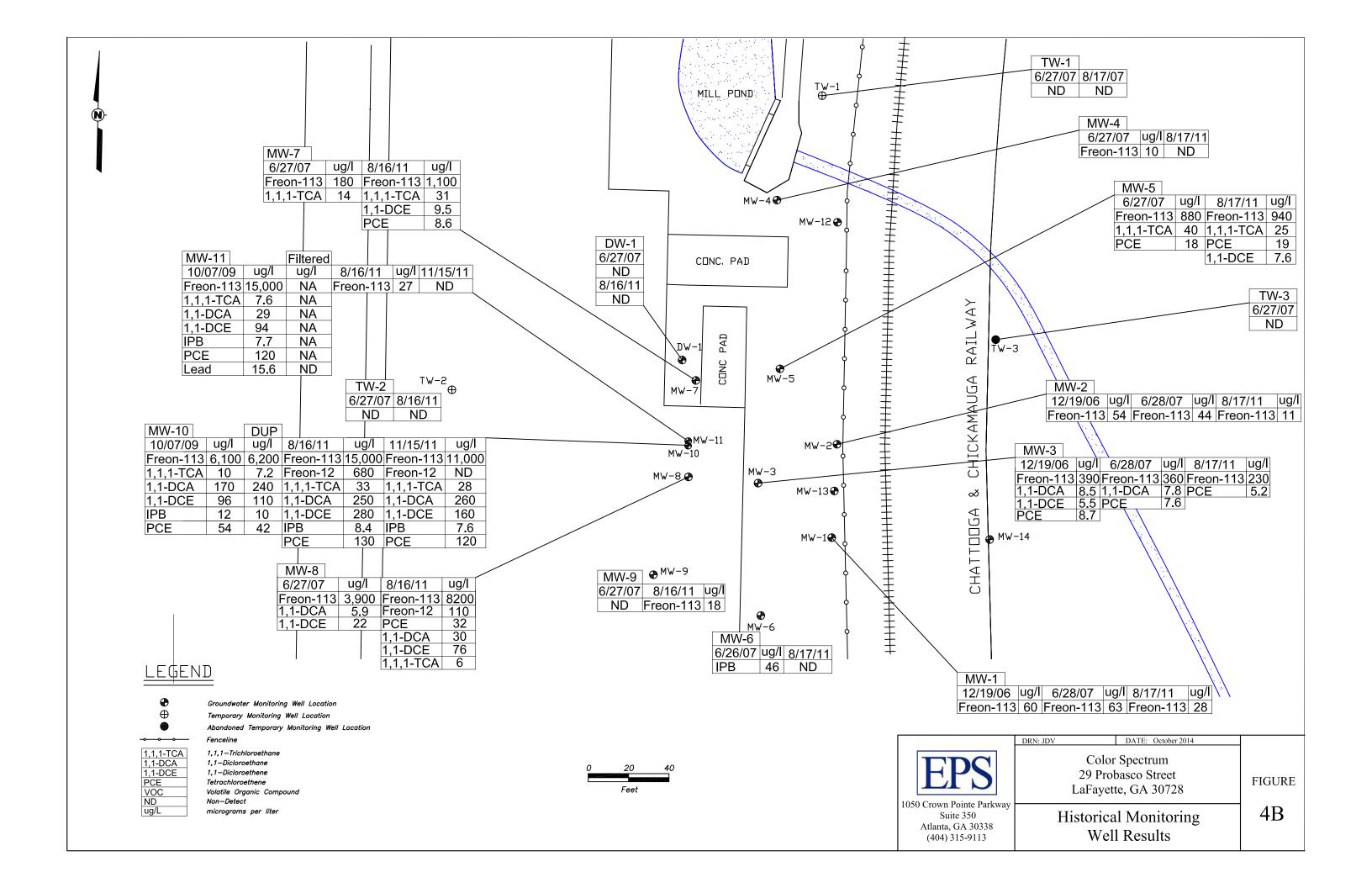
APPENDIX B

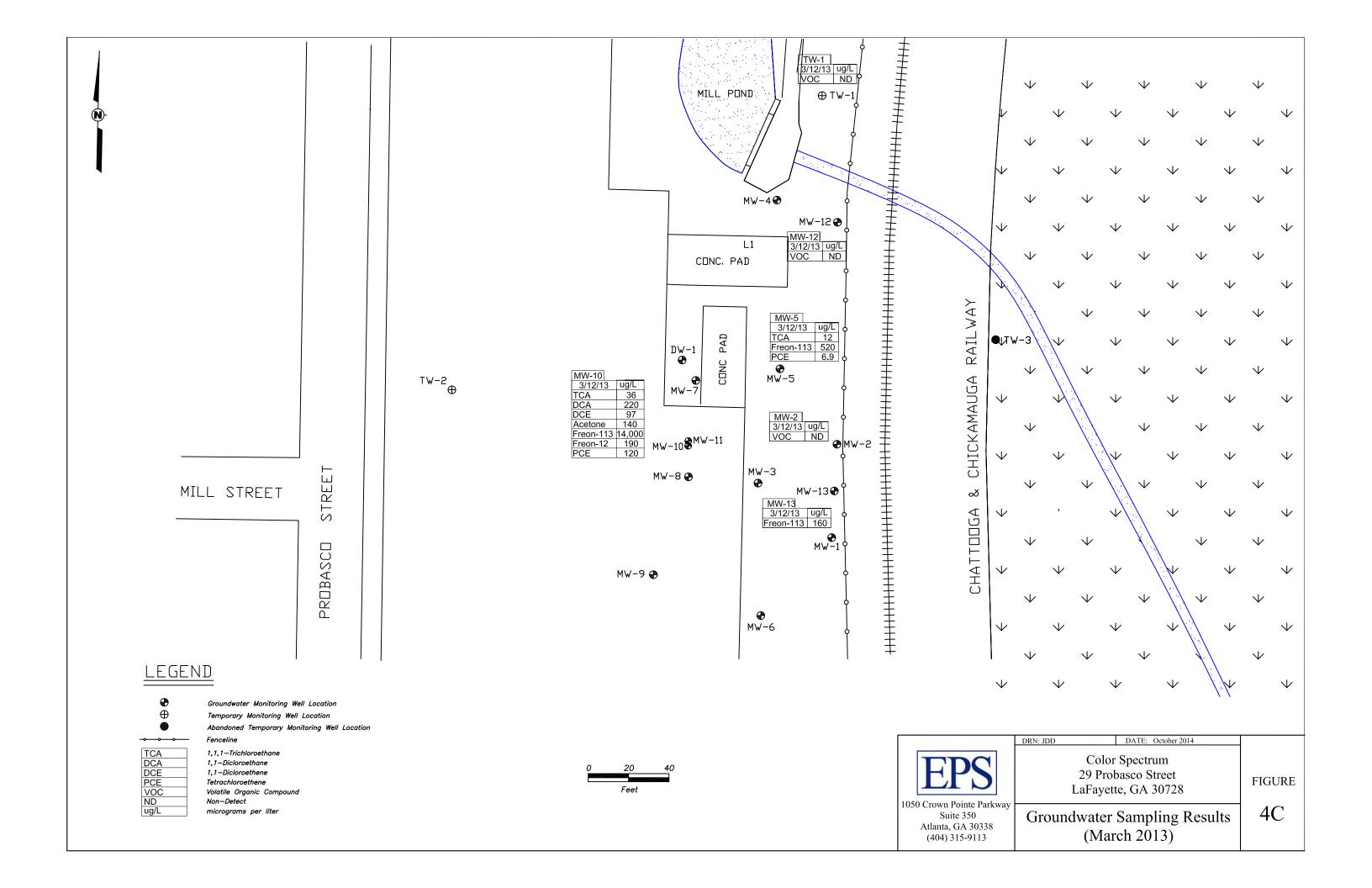
Figures

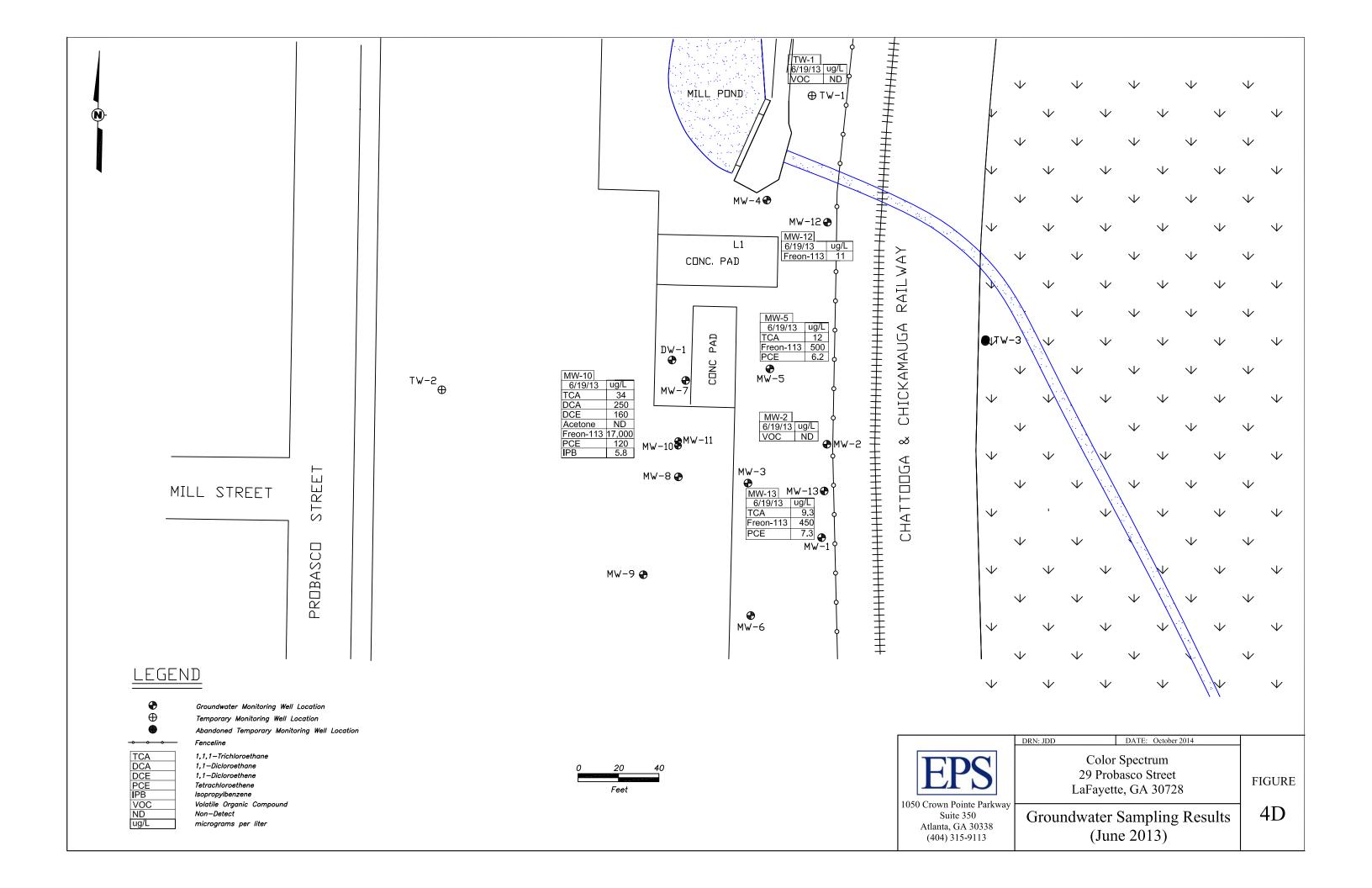

1050 Crown Pointe Pkwy Suite: 550 Atlanta, GA 30338 404.315.9113 2

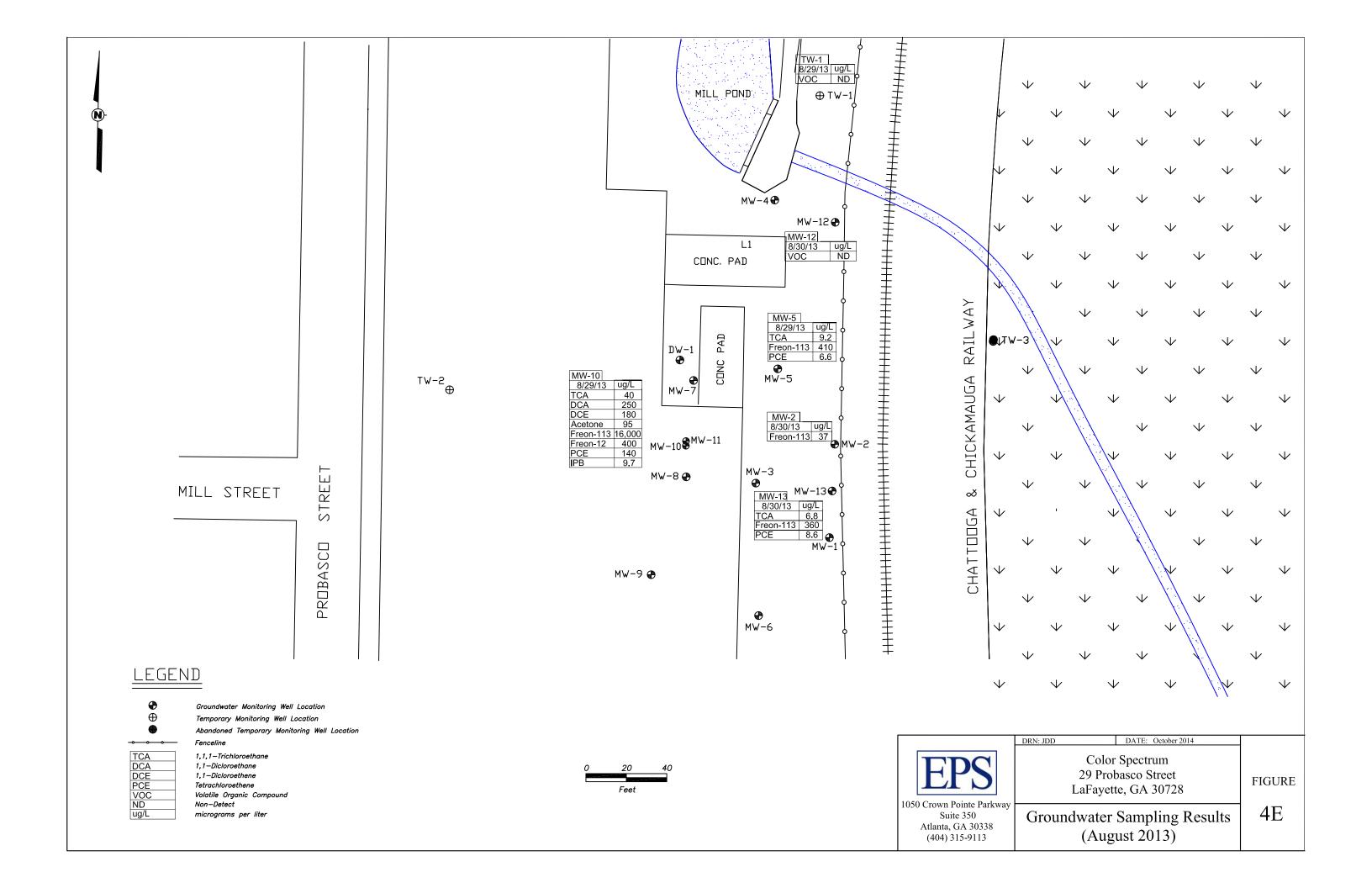

Color Spectrum 29 Probasco Street LaFayette, GA 30728

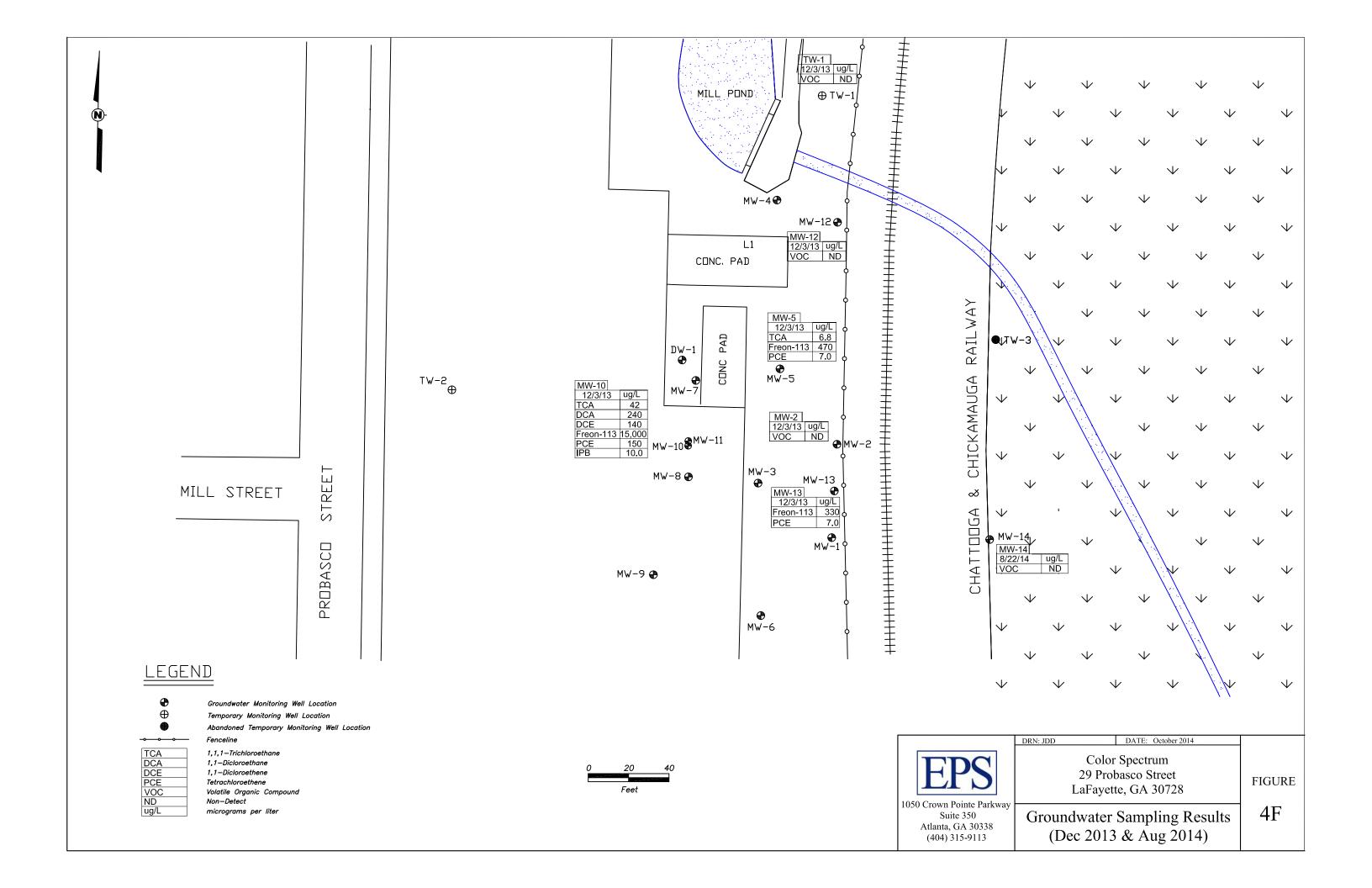

SITE LOCATION MAP

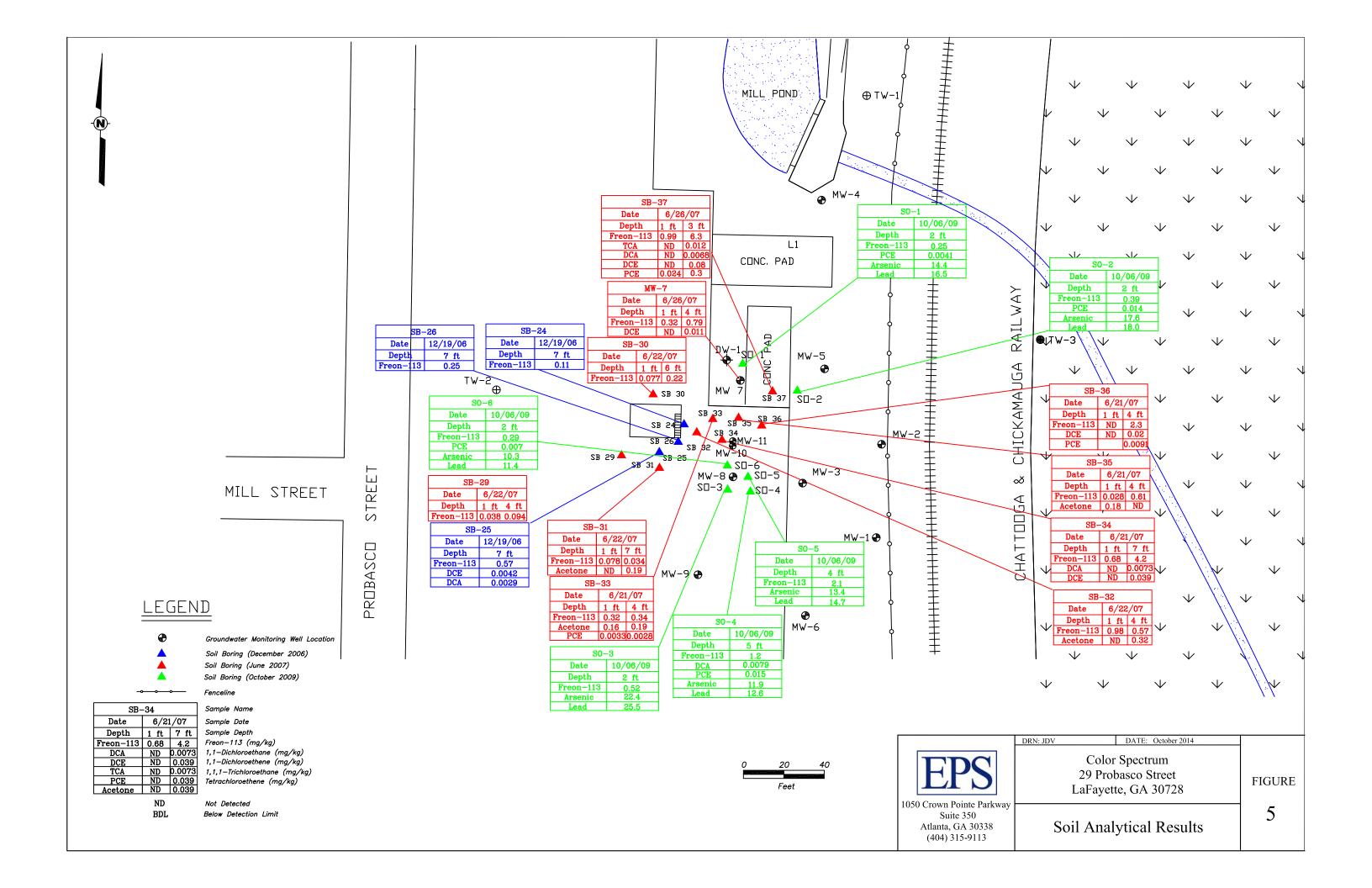

FIGURE

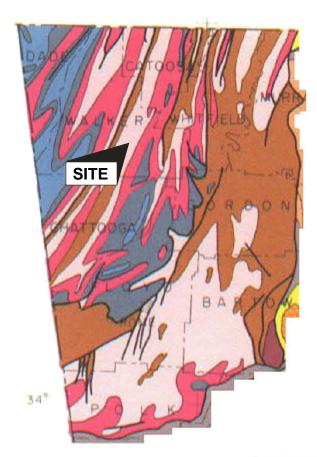

1





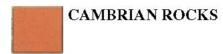


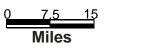




Geologic Map of Georgia -- Ridge and Valley

Georgia Geologic Survey 1977

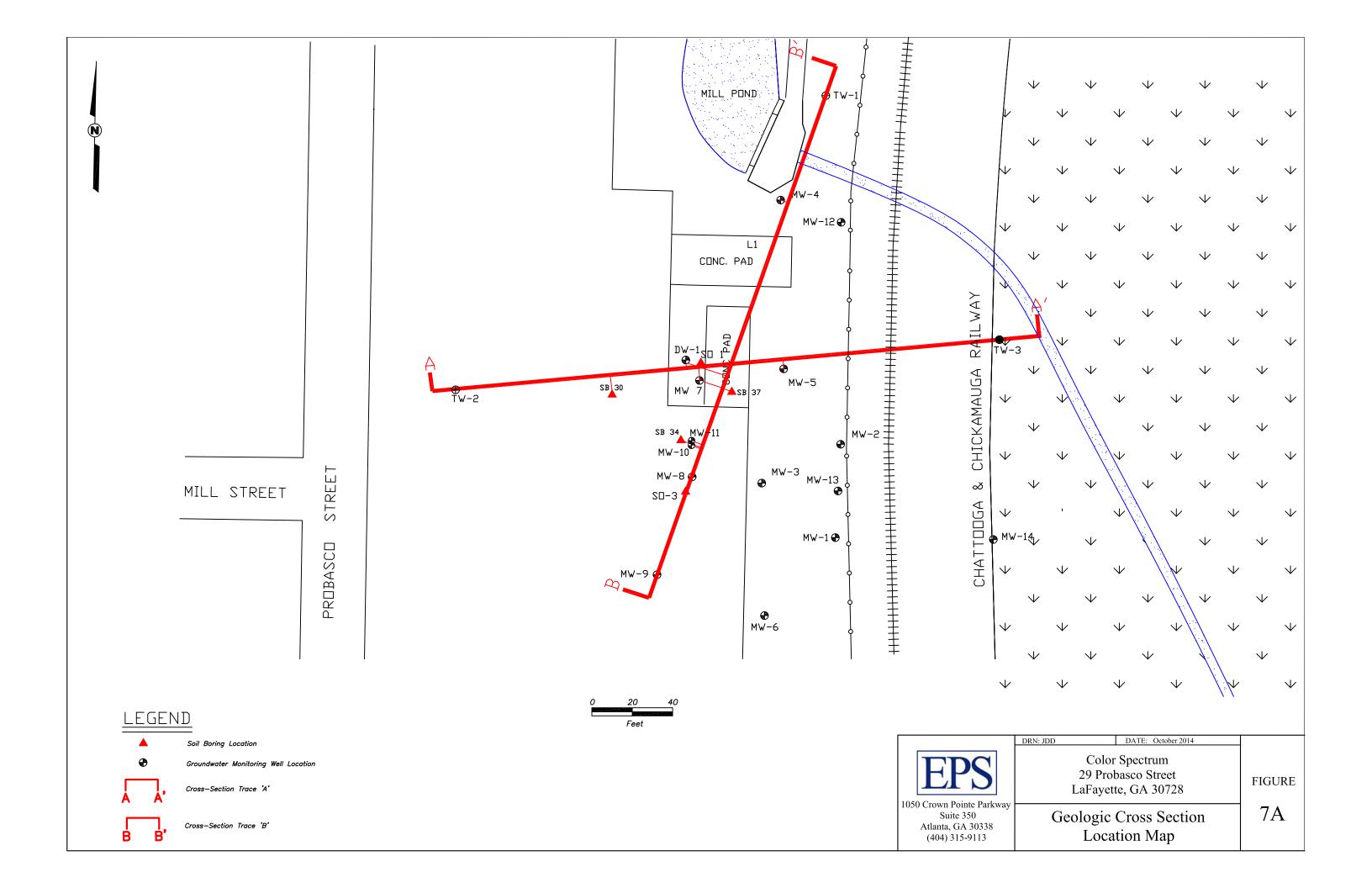

David E. Lawton

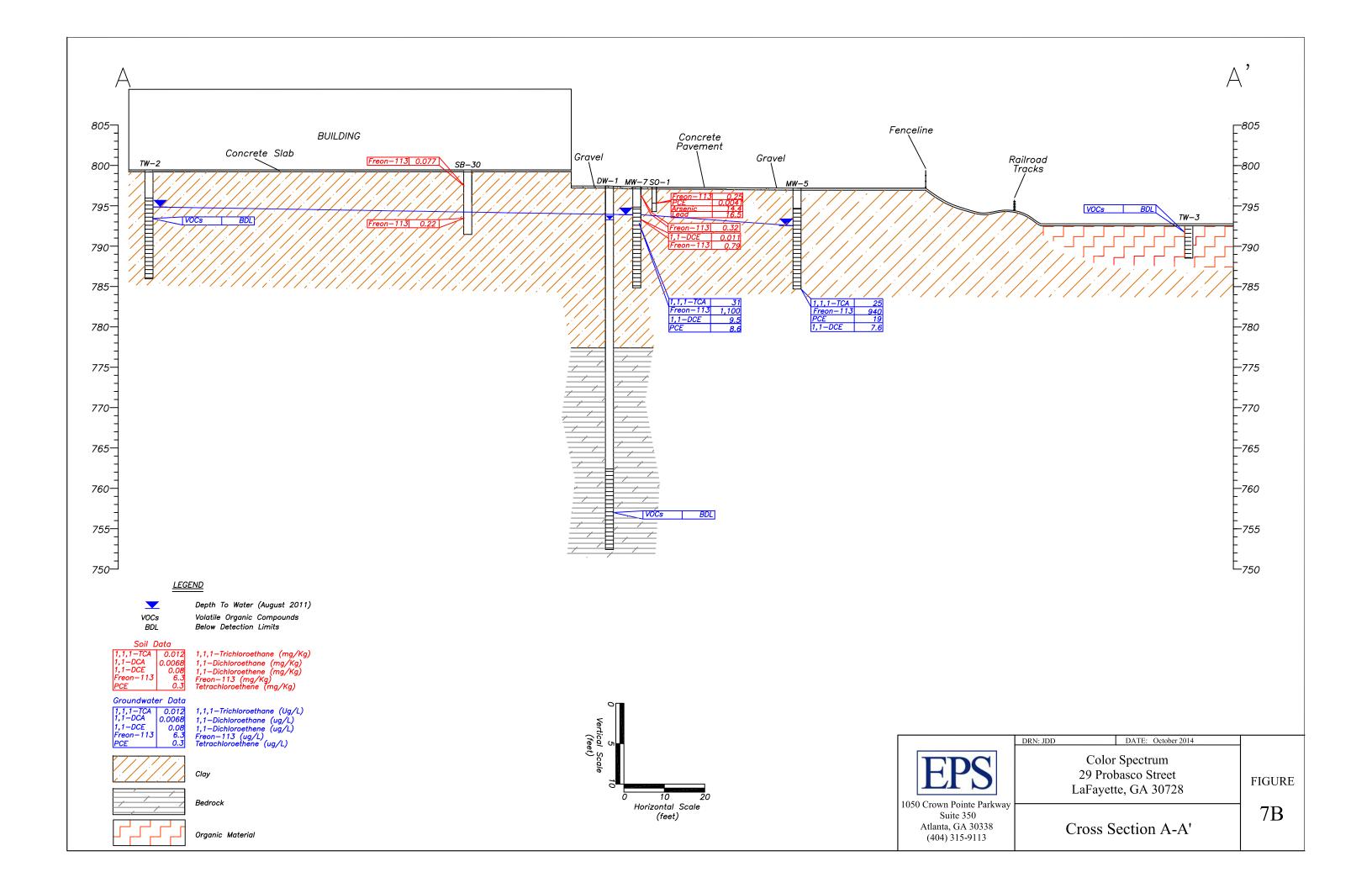


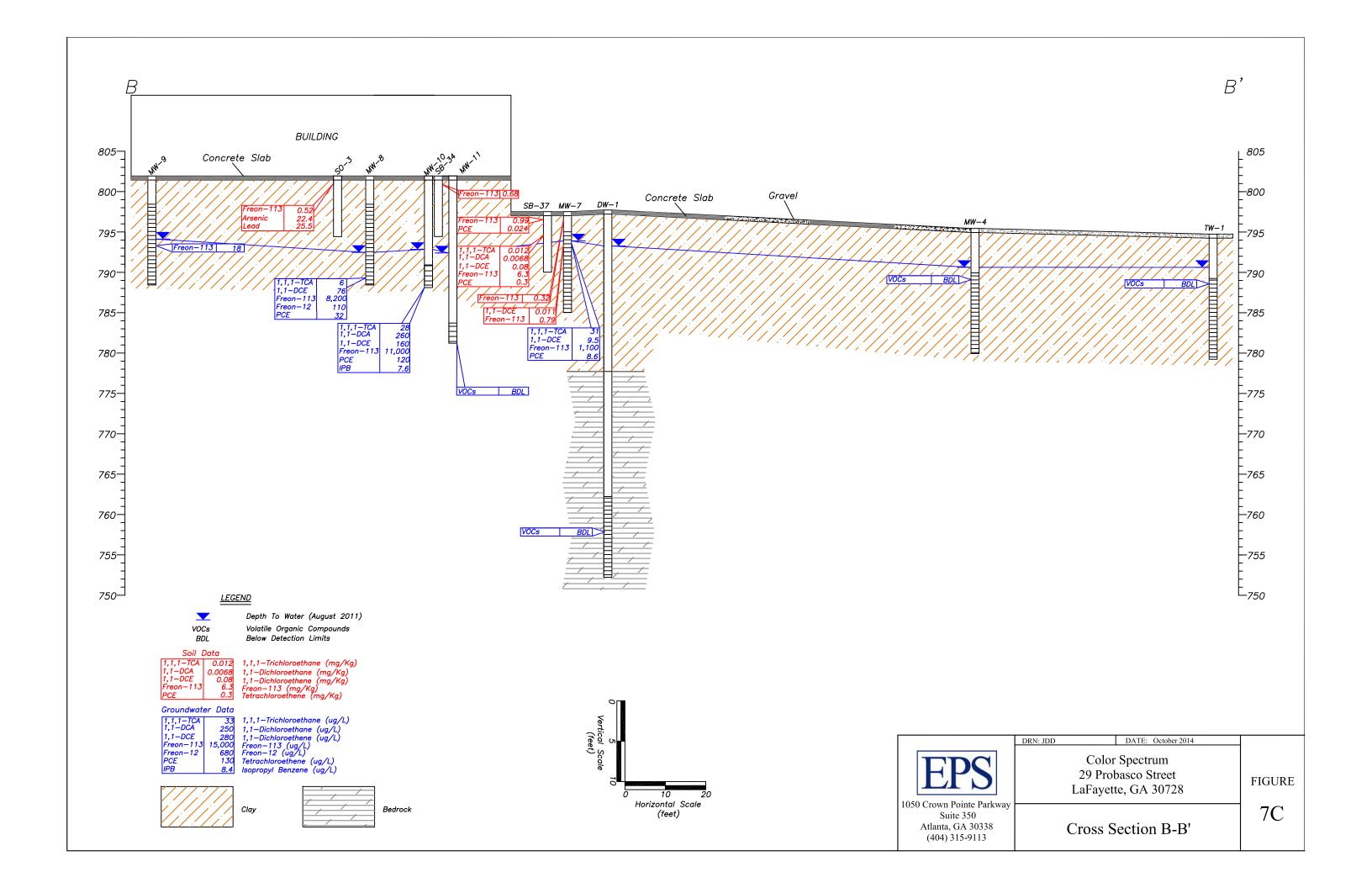
1050 Crown Pointe Pkwy **Suite: 550** Atlanta, GA 30338

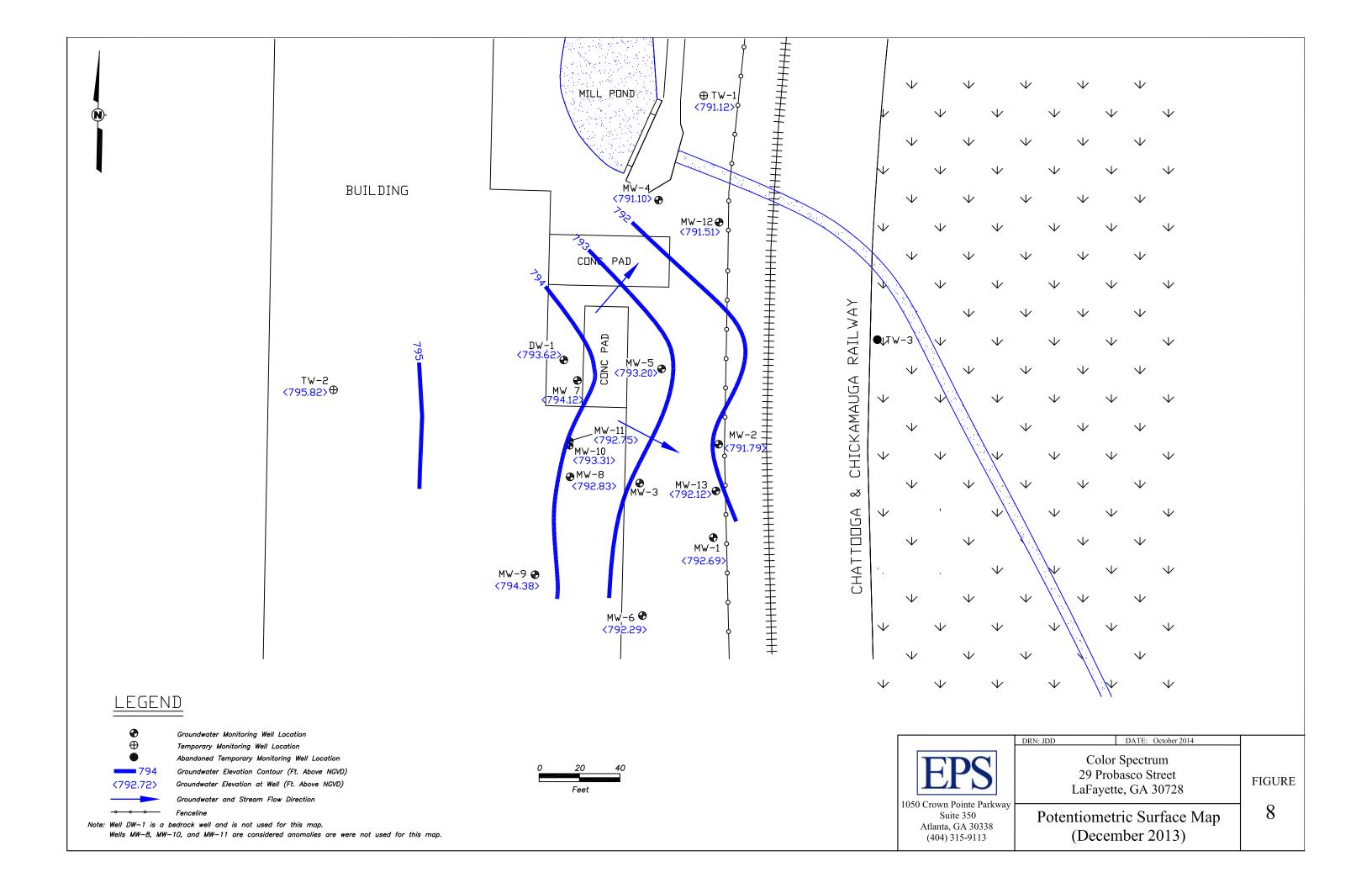
404.315.9113

Drawn by: JDD		Date: Octob
	Color Spe	ectrum
	29 Probasc	o Street


Date: October 2014


LaFayette, GA 30728


FIGURE


6

GEOLOGIC MAP OF THE GEORGIA RIDGE AND VALLEY

APPENDIX C Tables

Table 1 Summary of Groundwater Analytical Results Color Spectrum LaFayette, Georgia

Sample	Sample	1,1,1-TCA	1,1-DCA	1,1-DCE	Acetone	Freon-113	Freon-12	IPB	PCE	Arsenic	Lead
Location	Date	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
	Type 1 RRS	200	4,000	7	4,000	1,000,000	1,000	5*	5	10	15
	Type 2 RRS	2,720	NC	103	NC	NC	NC	207	19	NC	NC
	Type 4 RRS	13,600	NC	520	NC	NC	NC	1,050	98	NC	NC***
Minimum C	Detected Value	5.5	5.0	5.5	95	10	110	6	5	ND	15.6
-	etected Value	2,100	280	290	140	27,000	680	46	350	ND	15.6
MW-1	12/19/06	<5.0	<5.0	<5.0		60	<10	<5.0	<5.0		-
10100 1	06/28/07	<5.0	<5.0	<5.0		63	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	28	<10	<5.0	<5.0		
MW-2	12/19/06	<5.0	<5.0	<5.0		54	<10	<5.0	<5.0		
10100 2	06/28/07	<5.0	<5.0	<5.0		44	<10	<5.0	<5.0		
	08/17/11	<5.0 <5.0	<5.0 <5.0	<5.0	<50	11	<10	<5.0 <5.0	<5.0		
	03/12/13	<5.0 <5.0				<10					
Duplicate	03/12/13		<5.0	<5.0	<50		<10	<5.0	<5.0		
Duplicate		<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	06/19/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Dunlianta	08/30/13	<5.0	<5.0	<5.0	<50	37	<10	<5.0	<5.0		
Duplicate	08/30/13	<5.0	<5.0	<5.0	<50	36	<10	<5.0	<5.0		
	12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
MW-3	12/19/06	<5.0	8.5	5.5		390	<10	<5.0	8.7		-
	06/28/07	<5.0	7.8	<5.0		360	<10	<5.0	7.6		
	08/17/11	<5.0	<5.0	<5.0	<50	230	<10	<5.0	5.2		
MW-4	06/27/07	<5.0	<5.0	<5.0		10	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<5.0	<10	<5.0	<5.0		
MW-5	06/27/07	40	<5.0	<5.0		880	<10	<5.0	18		
	08/17/11	25	<5.0	7.6	<50	940	<10	<5.0	19		
	03/12/13	12	<5.0	<5.0	<50	520	<10	<5.0	6.9		
	06/19/13	12	<5.0	<5.0	<50	500	<10	<5.0	6.2		
	08/29/13	9.2	<5.0	<5.0	<50	410	<10	<5.0	6.6		
	12/03/13	6.8	<5.0	<5.0	<50	470	<10	<5.0	7.0		
Duplicate	12/03/13	6.6	<5.0	<5.0	<50	480	<10	<5.0	7.2		
Duplicate	12/03/13	0.0	\\ 3.0	\\ 0.0	\ 30	400	<10	\\ 3.0	7.2		
MW-6	06/27/07	<5.0	<5.0	<5.0		<10	<10	46	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Duplicate	08/17/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		-
MW-7	06/27/07	14	<5.0	<5.0		180	<10	<5.0	<5.0		
	08/16/11	31	<5.0	9.5	<50	1,100	<10	<5.0	8.6		
MW-8	06/27/07	<5.0	5.9	22		3,900	<10	<5.0	<5.0		
	08/16/11	5.5	30	76	<50	8,200	110	<5.0	32		
MW-9	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	08/16/11	<5.0	<5.0	<5.0	<50	18	<10	<5.0	<5.0		
MW-10	10/07/09	10	170	96	<50	6,100	<10	12	54	<4.4**	<10
Duplicate	10/07/09	7.2	240	110	<50	6,200	<10	10	42	<4.4**	<10
	08/16/11	33	250	280	<50	15,000	680	8.4	130		
	11/15/11	28	260	160	<50	11,000	<10	7.6	120		
	03/12/13	36	220	97	140	14,000	190	<5.0	120		
	06/19/13	34	250	160	<50	17,000	<10	5.8	120		
Duplicate	06/19/13	48	280	280	<50	12,000	<10	8.2	160		
	08/29/13	40	250	180	95	16,000	400	9.7	140		
	12/03/13	42	240	140	<50	15,000	<10	10	150		
MW-11	10/07/09	7.6	29	94	<50	15,000	<10	7.7	120	<4.4**	15.6***
MW-11(F)	10/07/09	11	33	100	<50	21,000	<10	7.5	64	<4.4**	<10
	08/16/11	<5.0	<5.0	<5.0	<50	27	<10	<5.0	<5.0		
	11/15/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/30/13										<10
Duplicate	08/30/13										<10
				l		l .	l .		l	l	

Table 1 Summary of Groundwater Analytical Results Color Spectrum LaFayette, Georgia

Sample	Sample	1,1,1-TCA	1,1-DCA	1,1-DCE	Acetone	Freon-113	Freon-12	IPB	PCE	Arsenic	Lead
Location	Date	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
	Type 1 RRS	200	4,000	7	4,000	1,000,000	1,000	5*	5	10	15
	Type 2 RRS	2,720	NC	103	NC	NC	NC	207	19	NC	NC
	Type 4 RRS	13,600	NC	520	NC	NC	NC	1,050	98	NC	NC***
MW-12	03/12/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	06/19/13	<5.0	<5.0	<5.0	<50	11	<10	<5.0	<5.0		
	08/30/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
MW-13	03/12/13	<5.0	<5.0	<5.0	<50	160	<10	<5.0	<5.0		
	06/19/13	9.3	<5.0	<5.0	<50	450	<10	<5.0	7.3		
	08/30/13	6.8	<5.0	<5.0	<50	360	<10	<5.0	8.6		
	12/03/13	<5.0	<5.0	<5.0	<50	330	<10	<5.0	7.0		
MW-14	08/22/14	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
DW-1	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	08/16/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
TW-1	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	03/12/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	06/19/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/29/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
TW-2	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	08/16/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
TW-3	06/27/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
SB-1	10/11/05	23	5.6	<5.0	<50	<10	<10	<5.0	6.4		
SB-2	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-3	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-4	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-5	10/11/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-6	10/24/05	14	<5.0	<5.0	<50	190	<10	<5.0	<5.0		
SB-7	10/24/05	<5.0	<5.0	<5.0	<50	11	<10	<5.0	<5.0		
SB-8	10/24/05	<5.0	<5.0	<5.0	<50	40	<10	<5.0	<5.0		
SB-9	10/24/05	14	<5.0	<5.0	<50	97	<10	<5.0	<5.0		
SB-10	10/24/05	13	<5.0	<5.0	<50	370	<10	<5.0	<5.0		
SB-11	10/24/05	<5.0	5.0	<5.0	<50	54	<10	<5.0	<5.0		
SB-12	07/27/06	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-13	07/27/06	<5.0	<5.0	9.0	<50	580	<10	<5.0	7.6		
SB-14	07/27/06	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
SB-15	07/27/06	<5.0	<5.0	<5.0	<50	80	<10	8.5	<5.0		
SB-16	07/27/06	23	11	<5.0	<50	1,800	<10	<5.0	20		
SB-17	07/27/06	<5.0	<5.0	7.1	<50	510	<10	<5.0	<5.0		
SB-18	07/27/06	<5.0	<5.0	<5.0	<50	17	<10	<5.0	<5.0		
SB-19	07/27/06	NS 5.0	NS	NS	NS	NS 160	NS 40	NS .5.0	NS		
SB-20	12/20/06	<5.0	<5.0	<5.0		160	<10	<5.0	<5.0		
SB-21	12/20/06	<5.0	<5.0	<5.0 120	-	49 27 000	<10	<5.0	<5.0 150		
SB-22 SB-23	12/20/06 12/20/06	30	32 230	120 290		27,000 27,000	<10	<5.0	150		
SB-23 SB-26	12/20/06	2,100					<10	<5.0	350 -5.0		
Duplicate	12/20/06	<5.0	<5.0	<5.0		36 22	<10	<5.0	<5.0		
SB-27	12/20/06	<5.0 34	<5.0 <5.0	<5.0 <5.0		1,100	<10 <10	<5.0 <5.0	<5.0 9.8		
SB-27	12/20/06	<5.0	<5.0 5.4	<5.0 6.2		270	<10	<5.0 8.3	9.0 <5.0		
POND	10/11/05	<5.0 <5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Field Blank	12/20/06	<5.0 <5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
i iciu bialik	12/20/00	₹3.0	<3.0	٧٥.0		<10	<10	<3.0	₹3.0	ı	

Table 1 **Summary of Groundwater Analytical Results Color Spectrum** LaFayette, Georgia

Sample Location	Sample Date	1,1,1-TCA (μg/L)	1,1-DCA (μg/L)	1,1-DCE (μg/L)	Acetone (μg/L)	Freon-113 (µg/L)	Freon-12 (μg/L)	IPB (μg/L)	PCE (μg/L)	Arsenic (μg/L)	Lead (μg/L)
	Type 1 RRS Type 2 RRS Type 4 RRS	2,720	4,000 NC NC	7 103 520	4,000 NC NC	1,000,000 NC NC	1,000 NC NC	5* 207 1,050	5 19 98	10 NC NC	15 NC NC***
Trip Blank	10/24/05	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	12/20/06	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	06/29/07	<5.0	<5.0	<5.0		<10	<10	<5.0	<5.0		
	10/07/09	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/18/11	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	03/11/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/29/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	12/03/13	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
Rinsate	10/07/09	<5.0	<5.0	<5.0	<50	<10	<10	<5.0	<5.0		
	08/17/11	<5.0	<5.0	<5.0	<50	<11	<10	<5.0	<5.0		

Notes:

ug/L = micrograms per liter

<5.0 = constituent was not detected above the detection limit.

 * A value does not exist on Table 1 of Appendix III for this compound. The Reporting Limit was used for the Type 1 RRS.

** This result is reported down to the Method Detection Limit because the Reporting Limit was greater than the Type 1 RRS.

*** The well could not be fully developed due to slow recharge.

The result represents a highly turbid sample and is not considered valid. Lead was not detected in a filtered sample collected from the same well.

NC = Not Calculated

1,1,1-TCA = 1,1,1-Trichloroethane

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene

PCE = Tetrachloroethene

IPB = Isopropylbenzene -- = Constituent Not Analyzed

NR = Not Regulated

(F) = Filtered

Above Residential RRS (Type 1/2 RRS) Above Non-Residential RRS (Type 4 RRS)

Table 2 Summary of Soil Analytical Results Color Spectrum LaFayette, Georgia

Sample	Depth	Sample	1,1,1-TCA	1,1-DCA	1,1-DCE	Acetone	Freon-113	PCE	Arsenic	Lead
Location	(feet)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
SB-24	7	12/19/06	<0.0035	< 0.0035	< 0.0035	NS	0.11	<0.0035		
SB-25	7	12/19/06	<0.0024	0.0029	0.0042	NS	0.57	<0.0024		
SB-26	7	12/19/06	<0.0033	<0.0033	<0.0033	NS	0.25	<0.0033		
SB-29	1	06/22/07	<0.0046	<0.0046	<0.0046	<0.092	0.038	<0.0046		
SB-29	4	06/22/07	<0.0038	<0.0038	<0.0038	<0.076	0.094	<0.0038		
SB-30	1	06/22/07	<0.0030	<0.0030	<0.0030	<0.061	0.077	<0.0030		
SB-30	6	06/22/07	<0.0035	<0.0035	<0.0035	<0.070	0.22	<0.0035		
SB-31	1	06/22/07	<0.0044	<0.0044	<0.0044	<0.087	0.078	<0.0044		
SB-31	7	06/22/07	<0.0036	<0.0036	<0.0036	0.19	0.034	<0.0036		
SB-32	1	06/22/07	<0.0035	< 0.0035	<0.0035	<0.069	0.98	<0.0035		
SB-32	4	06/22/07	<0.0031	<0.0031	<0.0031	0.32	0.57	<0.0031		
SB-33	1	06/21/07	<0.0028	<0.0028	<0.0028	0.16	0.32	0.0033		
SB-33	4	06/21/07	<0.0027	<0.0027	<0.0027	0.19	0.34	0.0028		
SB-34	1	06/21/07	< 0.0033	<0.0033	< 0.0033	<0.066	0.68	<0.0033		
SB-34	7	06/21/07	<0.0027	0.0073	0.039	<0.054	4.2	<0.0027		
SB-35	1	06/21/07	<0.0034	< 0.0034	<0.0034	0.18	0.028	<0.0034		
SB-35	4	06/21/07	<0.0041	<0.0041	<0.0041	<0.082	0.61	<0.0041		
SB-36	1	06/21/07	<0.0046	<0.0046	<0.0046	<0.092	<0.0092	<0.0046		
SB-36	4	06/21/07	<0.0038	<0.0038	0.020	<0.077	2.3	0.0091		
SB-37	1	06/26/07	<0.0039	<0.0039	<0.0039	<0.077	0.99	0.024		
SB-37	3	06/26/07	0.012	0.0068	0.08	<0.059	6.3	0.30		
MW-7	1	06/26/07	<0.0032	<0.0032	<0.0032	<0.064	0.32	<0.0032		
MW-7	4	06/26/07	<0.0031	<0.0031	0.011	<0.061	0.79	<0.0031		
SO-1	2	10/06/09	<0.0031	<0.0031	<0.0031	< 0.063	0.25	0.0041	14.4	16.5
SO-2	2	10/06/09	< 0.0030	< 0.0030	<0.0030	<0.061	0.39	0.014	17.6	18
SO-3	2	10/06/09	<0.0032	<0.0032	<0.0032	<0.064	0.52	<0.0032	22.4	25.5
SO-4	5	10/06/09	<0.0042	0.0079	<0.0042	<0.084	1.2	0.015	11.9	12.6
SO-5	4	10/06/09	<0.0044	<0.0044	<0.0044	<0.087	2.1	<0.0044	13.4	14.7
Duplicate	4	10/06/09	<0.0037	<0.0037	<0.0037	<0.074	1.6	<0.0037	12.7	10.8
SO-6	4	10/06/09	<0.0066	<0.0066	<0.0066	<0.13	0.29	0.007	10.3	11.4

Notes:

mg/Kg = milligrams per kilogram

<0.0035 = constituent was not detected above the detection limit.

NS = Not Sampled

1,1,1-TCA = 1,1,1-Trichloroethane

1,1-DCA = 1,1-Dichloroethane

1,1-DCE = 1,1-Dichloroethene

PCE = Tetrachloroethene

NC = Not Calculated

-- = Constituent Not Analyzed

Table 3 Groundwater Elevations Color Spectrum LaFayette, Georgia

		Ground Surface	тос	Screened	Depth to	Depth to	Groundwater
Well		Elevation	Elevation	Interval	Groundwater	Product	Elevation
Location	Date	(ft above NGVD)	(ft above NGVD)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft above NGVD)
MW-1	6/28/2007	796.96	796.64	2-12	5.06	ND	791.58
	8/16/2011				5.58	ND	791.06
	3/12/2013		796.34		3.56	ND	792.78
	8/29/2013				4.51	ND	791.83
	12/3/2013				3.65	ND	792.69
MW-2*	6/28/2007	796.43	796.06	2-12	5.48	NM	790.58
	8/16/2011				5.20	5.15	791.27
	3/12/2013				3.70	3.65	792.77
	6/19/2013				4.10	3.00	793.27
	8/29/2013				5.36	4.36	791.92
	12/3/2013				4.65	4.64	791.79
MW-3	6/28/2007	797.46	797.14	2-15	5.45	ND	791.69
	8/16/2011				5.59	ND	791.55
	3/12/2013				NM	NM	NM
	8/29/2013				NM	NM	NM
	12/3/2013				NM	NM	NM
MW-4	6/28/2007	795.58	795.43	6-16	4.48	ND	790.95
	8/16/2011				4.82	ND	790.61
	3/12/2013				4.26	ND	791.17
	8/29/2013				4.39	ND	791.04
	12/3/2013				4.33	ND	791.10
MW-5	6/28/2007	797.46	797.19	3-13	5.10	ND	792.09
	8/16/2011				4.65	ND	792.54
	3/12/2013				3.82	ND	793.37
	6/19/2013				3.84	ND	793.35
	8/29/2013				4.01	ND	793.18
	12/3/2013				3.99	ND	793.20
MW-6	6/28/2007	796.92	796.62	3-13	4.45	ND	792.17
	8/16/2011				4.83	ND	791.79
	3/12/2013				3.90	ND	792.72
	8/29/2013				3.81	ND	792.81
	12/3/2013				4.33	ND	792.29
MW-7	6/28/2007	797.89	797.52	3.5-13.5	3.69	ND	793.83
	8/16/2011				3.63	ND	793.89
	3/12/2013				3.28	ND	794.24
	8/29/2013				3.30	ND	794.22
	12/3/2013				3.40	ND	794.12
MW-8	6/28/2007	801.96	801.74	4-14	12.17	ND	789.57
	8/16/2011				9.27	ND	792.47
	3/12/2013				8.47	ND	793.27
	8/29/2013				8.45	ND	793.29
	12/3/2013				8.91	ND	792.83
							<u> </u>

Table 3 **Groundwater Elevations Color Spectrum** LaFayette, Georgia

MW-9 6/28/2007 801.97 801.53 4-14 7.45 ND 8/16/2011 3/12/2013 7.02 ND ND ND 8/29/2013 6.98 ND ND ND MW-10 10/6/2009 801.96 801.62 10-12.5 9.24 ND 8/16/2011 8.78 ND ND 8.06 ND 8/19/2013 8.04 ND ND 8/29/2013 7.81 ND 12/3/2013 8.31 ND MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND 8/16/2011 9.35 ND 8.65 ND 8/19/2013 8.65 ND 7.96 ND 8/29/2013 9.00 ND 12/3/2013 NM 795.29 3-13 3.78 ND	794.08 794.12 794.51 794.55 794.38 792.38 792.84 793.56 793.58 793.31
8/16/2011 7.41 ND 7.02 ND 8/29/2013 6.98 ND 7.15 ND ND ND ND ND ND ND N	794.12 794.51 794.55 794.38 792.38 792.84 793.56 793.58 793.81 793.31
3/12/2013 7.02 ND 8/29/2013 6.98 ND 7.15 ND ND ND ND ND ND ND N	794.51 794.55 794.38 792.38 792.84 793.56 793.58 793.81 793.31
8/29/2013 6.98 ND 12/3/2013 7.15 ND MW-10 10/6/2009 801.96 801.62 10-12.5 9.24 ND 8/16/2011 8.78 ND ND 8.06 ND 3/12/2013 8.04 ND ND 8/29/2013 7.81 ND ND MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND 8/16/2011 9.35 ND 3/12/2013 8.65 ND 6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	794.55 794.38 792.38 792.84 793.56 793.58 793.81 793.31
8/29/2013 6.98 ND 12/3/2013 7.15 ND MW-10 10/6/2009 801.96 801.62 10-12.5 9.24 ND 8/16/2011 8.78 ND ND 8.06 ND 3/12/2013 8.04 ND ND 8/29/2013 7.81 ND ND MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND 8/16/2011 9.35 ND 3/12/2013 8.65 ND 6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	794.38 792.38 792.84 793.56 793.58 793.81 793.31
MW-10 10/6/2009 8/16/2011 3/12/2013 6/19/2013 8/29/2013 12/3/2013 801.62 10-12.5 9.24 8.78 9.24 9.00 ND ND ND ND ND ND ND ND ND ND MW-11 10/6/2009 8/16/2011 3/12/2013 6/19/2013 8/29/2013 12/3/2013 801.75 801.75 17.5-20 17.5-20 14.21 9.35 17.5-20 ND ND ND ND MW-12 3/12/2013 3/12/2013 8.65 ND ND ND ND MW-12 3/12/2013 3/12/2013 NM 795.29 3-13 3.78 ND	792.38 792.84 793.56 793.58 793.81 793.31
8/16/2011 8.78 ND 3/12/2013 8.06 ND 6/19/2013 8.04 ND 8/29/2013 7.81 ND 12/3/2013 801.96 801.75 17.5-20 14.21 ND 8/16/2011 9.35 ND 3/12/2013 8.65 ND 6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	792.84 793.56 793.58 793.81 793.31
3/12/2013 8.06 ND 8.04 ND 8.09/2013 7.81 ND ND 12/3/2013 8.31 ND ND ND ND ND ND ND N	793.56 793.58 793.81 793.31
6/19/2013 8.04 ND 8/29/2013 7.81 ND 12/3/2013 8.31 ND MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND 8/16/2011 9.35 ND 3/12/2013 8.65 ND 6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	793.58 793.81 793.31
8/29/2013 7.81 ND 12/3/2013 8.31 ND MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND 8/16/2011 9.35 ND 3/12/2013 8.65 ND 6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	793.81 793.31
MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND	793.31
MW-11 10/6/2009 801.96 801.75 17.5-20 14.21 ND 9.35 ND 3/12/2013 8.65 ND 8/29/2013 8.65 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	
8/16/2011 9.35 ND 3/12/2013 8.65 ND 6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	707 54
3/12/2013 8.65 ND	787.54
6/19/2013 8.65 ND 8/29/2013 7.96 ND 12/3/2013 9.00 ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	792.40
8/29/2013 12/3/2013 7.96 9.00 ND ND MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	793.10
12/3/2013 9.00 MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	793.10
MW-12 3/12/2013 NM 795.29 3-13 3.78 ND	793.79
	792.75
6/10/2012	791.51
6/19/2013 3.65 ND	791.64
8/29/2013 3.76 ND	791.53
12/3/2013 3.78 ND	791.51
MW-13 3/12/2013 NM 796.24 3.57 ND	792.67
6/19/2013 3.63 ND	792.61
8/29/2013 4.41 ND	791.83
12/3/2013 4.12 ND	792.12
MW-14 8/22/2014 NM 796.34 5.46 ND	790.88
TW-1 6/28/2007 795.01 794.73 6-16 3.81 ND	790.92
8/16/2011 4.10 ND	790.63
3/12/2013 3.05 ND	791.68
6/19/2013 3.49 ND	791.24
8/29/2013 3.65 ND	791.08
12/3/2013 3.61 ND	791.12
TW-2 6/28/2007 801.94 801.74 4-14 7.36 ND	794.38
8/16/2011 6.89 ND	794.85
3/12/2013 NM NM	NM
8/29/2013 NM NM	NM
12/3/2013 5.92 ND	795.82
DW-1 6/28/2007 798.10 797.72 35.6-45.6 4.70 ND	793.02
8/16/2011 4.45 ND	793.27
3/12/2013 3.45 ND	
8/29/2013 3.77 ND	794.27
12/3/2013 4.10 ND	

Notes
ft = feet
NGVD = National Geodetic Vertical Datum
*'= corrected for free product, measurements are approximate
TOC = top of casing
NM = not measured
A specific gravity correction factor of 0.85 was used to adjust potentiometric surface elevations for MW-2.

Table 4
Summary of Vapor Intrusion Modeling Results
Color Spectrum
LaFayette, Georgia

Property			Estimated	Modeled		Concentration		
Use Sconario	Compound	Motrix	Area Volume ft ³	Air Exchange (AE)	Sample Location	μg/L (GW)	Cancer Risk*	Hazard Quotient**
Scenario	Compound		1.0	Volume (1/h)		mg/kg (soil)	KISK	Quotient
۱- ntial	Freon-113	GW	1,628,000	0.25	SB-23	27,000		3.0E-02
ent	FIEUII-113	Soil	1,628,000	0.25	SB-34	4.2		7.8E-04
Non. esider	PCE	GW	1,628,000	0.25	SB-23	350	5.5E-08	1.5E-02
Re	PCE	Soil	1,628,000	0.25	SB-33	0.024	3.9E-09	1.1E-03
ial	Freon-113	GW	8,611	0.25	SB-23	27,000		1.4E-01
ent	FIEUII-113	Soil	8,611	0.25	SB-34	6.3		4.0E-03
Residential	PCE	GW	8,611	0.25	SB-23	350	3.2E-07	7.3E-02
Re		Soil	8,611	0.25	SB-33	0.3	3.2E-07	7.1E-02

Notes:

μg/L = micrograms per liter

PCE = Tetrachloroethene

1/hr = 1 building volume per hour

^{* =} Estimated Risk is calculated based on measured groundwater and soil PCE concentrations

^{**=} The hazard quotient is calculated based on measured groundwater and soil concentrations of PCE and/or Freon-113.

APPENDIX D Laboratory Analytical Reports

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-MW-10

Lab Order: 0910778 **Collection Date:** 10/7/2009 11:40:00 AM

Project: Color Spectrum

Lab ID: 0910778-011 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOTAL SW6010C				(SW3010A)		Ana	lyst: JY
Arsenic	BRL		0.0044	0.0500 mg/L	119718	1	10/12/2009 2:32:15 PM
Lead	BRL		0.0022	0.0100 mg/L	119718	1	10/12/2009 2:32:15 PM
TCL VOLATILE ORGANICS SW8260B				(SW5030B)		Ana	lyst: JCT
1,1,1-Trichloroethane	10		0.14	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1,2,2-Tetrachloroethane	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1,2-Trichloroethane	BRL		0.15	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1-Dichloroethane	170		0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,1-Dichloroethene	96		0.27	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2,4-Trichlorobenzene	BRL		0.21	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dibromo-3-chloropropane	BRL		0.28	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dibromoethane	BRL		0.24	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dichlorobenzene	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dichloroethane	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,2-Dichloropropane	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,3-Dichlorobenzene	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
1,4-Dichlorobenzene	BRL		0.11	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
2-Butanone	BRL		5.4	50 ug/L	119752	1	10/11/2009 3:02:00 AM
2-Hexanone	BRL		0.21	10 ug/L	119752	1	10/11/2009 3:02:00 AM
4-Methyl-2-pentanone	BRL		0.41	10 ug/L	119752	1	10/11/2009 3:02:00 AM
Acetone	BRL		5.5	50 ug/L	119752	1	10/11/2009 3:02:00 AM
Benzene	0.91	J	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Bromodichloromethane	BRL	-	0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Bromoform	BRL		0.30	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Bromomethane	BRL		1.9	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Carbon disulfide	BRL		0.19	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Carbon tetrachloride	BRL		0.18	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Chlorobenzene	BRL		0.088	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Chloroethane	BRL		0.20	10 ug/L	119752	1	10/11/2009 3:02:00 AM
Chloroform	1.3	J	0.15	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Chloromethane	BRL	Ü	0.15	10 ug/L	119752	1	10/11/2009 3:02:00 AM
cis-1,2-Dichloroethene	BRL		0.070	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
cis-1,3-Dichloropropene	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Cyclohexane	BRL		0.80	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Dibromochloromethane	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Dichlorodifluoromethane	BRL		0.12	10 ug/L	119752	1	10/11/2009 3:02:00 AM
Ethylbenzene	BRL		0.21	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Freon-113	6100		16	1000 ug/L	119752	100	10/11/2009 3:02:00 AM 10/12/2009 7:13:00 PM
	12			5.0 ug/L			
Isopropylbenzene			0.069	-	119752	1	10/11/2009 3:02:00 AM
m,p-Xylene	BRL		0.092	10 ug/L	119752	1	10/11/2009 3:02:00 AM
Methyl acetate	BRL		0.31	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM

Qualifiers:

^{*} Value exceeds Maximum Contaminant Level

> Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-MW-10

Lab Order: 0910778 **Collection Date:** 10/7/2009 11:40:00 AM

Project: Color Spectrum

Lab ID: 0910778-011

Matrix: GROUNDWATER

Analyses		Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				(SW5030B)	Ana	lyst: JCT
Methyl tert-butyl ether		2.7	J	0.073	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Methylcyclohexane		BRL		0.13	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Methylene chloride		BRL		0.96	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
o-Xylene		BRL		0.053	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Styrene		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Tetrachloroethene		54		0.17	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Toluene		BRL		0.15	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
trans-1,2-Dichloroethene		BRL		0.20	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
trans-1,3-Dichloropropene		BRL		0.098	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Trichloroethene		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Trichlorofluoromethane		BRL		0.17	5.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Vinyl chloride		BRL		0.19	2.0 ug/L	119752	1	10/11/2009 3:02:00 AM
Surr: 4-Bromofluorobenzene		84.3		0	61.3-128 %REC	119752	100	10/12/2009 7:13:00 PM
Surr: 4-Bromofluorobenzene		92.9		0	61.3-128 %REC	119752	1	10/11/2009 3:02:00 AM
Surr: Dibromofluoromethane		105		0	67.8-130 %REC	119752	1	10/11/2009 3:02:00 AM
Surr: Dibromofluoromethane		95.5		0	67.8-130 %REC	119752	100	10/12/2009 7:13:00 PM
Surr: Toluene-d8		89.2		0	70.6-121 %REC	119752	1	10/11/2009 3:02:00 AM
Surr: Toluene-d8		83.9		0	70.6-121 %REC	119752	100	10/12/2009 7:13:00 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-MW-11

Lab Order: 0910778 **Collection Date:** 10/7/2009 2:35:00 PM

Project: Color Spectrum

Lab ID: 0910778-012

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOTAL SW6010C			(SW3010A)		Ana	ılyst: JY
Arsenic	BRL	0.0044	0.0500 mg/L	119718	1	10/12/2009 2:35:58 PM
Lead	0.0156	0.0022	0.0100 mg/L	119718	1	10/12/2009 2:35:58 PM
TCL VOLATILE ORGANICS ST	W8260B		(SW5030B)		Ana	llyst: JCT
1,1,1-Trichloroethane	7.6	0.14	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1,2,2-Tetrachloroethane	BRL	0.16	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1,2-Trichloroethane	BRL	0.15	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1-Dichloroethane	29	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,1-Dichloroethene	94	0.27	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2,4-Trichlorobenzene	BRL	0.21	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dibromo-3-chloropropane	BRL	0.28	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dibromoethane	BRL	0.24	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dichlorobenzene	BRL	0.16	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dichloroethane	BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,2-Dichloropropane	BRL	0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,3-Dichlorobenzene	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
1,4-Dichlorobenzene	BRL	0.11	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
2-Butanone	BRL	5.4	50 ug/L	119752	1	10/11/2009 3:30:00 AM
2-Hexanone	BRL	0.21	10 ug/L	119752	1	10/11/2009 3:30:00 AM
4-Methyl-2-pentanone	BRL	0.41	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Acetone	BRL	5.5	50 ug/L	119752	1	10/11/2009 3:30:00 AM
Benzene	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Bromodichloromethane	BRL	0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Bromoform	BRL	0.30	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Bromomethane	BRL	1.9	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Carbon disulfide	BRL	0.19	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Carbon tetrachloride	BRL	0.18	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Chlorobenzene	BRL	0.088	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Chloroethane	BRL	0.20	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Chloroform	BRL	0.15	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Chloromethane	BRL	0.15	10 ug/L	119752	1	10/11/2009 3:30:00 AM
cis-1,2-Dichloroethene	BRL	0.070	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
cis-1,3-Dichloropropene	BRL	0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Cyclohexane	BRL	0.80	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Dibromochloromethane	BRL	0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Dichlorodifluoromethane	BRL	0.21	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Ethylbenzene	BRL	0.085	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Freon-113	15000	16	1000 ug/L	119752	100	10/12/2009 7:41:00 PM
Isopropylbenzene	7.7	0.069	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
m,p-Xylene	BRL	0.092	10 ug/L	119752	1	10/11/2009 3:30:00 AM
Methyl acetate	BRL	0.31	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM

Qualifiers:

^{*} Value exceeds Maximum Contaminant Level

> Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-MW-11

Lab Order: 0910778 **Collection Date:** 10/7/2009 2:35:00 PM

Project: Color Spectrum

Lab ID: 0910778-012

Matrix: GROUNDWATER

Analyses		Result	Qual	MDL	Rpt. Limit Un	its BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				(SW5030)B)	Ana	lyst: JCT
Methyl tert-butyl ether		1.4	J	0.073	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Methylcyclohexane		BRL		0.13	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Methylene chloride		BRL		0.96	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
o-Xylene		BRL		0.053	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Styrene		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Tetrachloroethene		120		0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Toluene		BRL		0.15	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
trans-1,2-Dichloroethene		BRL		0.20	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
trans-1,3-Dichloropropene		BRL		0.098	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Trichloroethene		BRL		0.12	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Trichlorofluoromethane		BRL		0.17	5.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Vinyl chloride		BRL		0.19	2.0 ug/L	119752	1	10/11/2009 3:30:00 AM
Surr: 4-Bromofluorobenzene		83.7		0	61.3-128 %RE	C 119752	100	10/12/2009 7:41:00 PM
Surr: 4-Bromofluorobenzene		85.6		0	61.3-128 %RE	C 119752	1	10/11/2009 3:30:00 AM
Surr: Dibromofluoromethane		106		0	67.8-130 %RE	C 119752	1	10/11/2009 3:30:00 AM
Surr: Dibromofluoromethane		96.2		0	67.8-130 %RE	C 119752	100	10/12/2009 7:41:00 PM
Surr: Toluene-d8		87.5		0	70.6-121 %RE	C 119752	1	10/11/2009 3:30:00 AM
Surr: Toluene-d8		86.3		0	70.6-121 %RE	C 119752	100	10/12/2009 7:41:00 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-MW-11 F

Lab Order: 0910778 **Collection Date:** 10/7/2009 2:30:00 PM

Project: Color Spectrum

Lab ID: 0910778-013

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOTAL SW6010C				(SW3010A)		Ana	lyst: JY
Arsenic	BRL		0.0044	0.0500 mg/L	119718	1	10/12/2009 2:39:34 PM
Lead	0.0039	J	0.0022	0.0100 mg/L	119718	1	10/12/2009 2:39:34 PM
TCL VOLATILE ORGANICS SW8260	В			(SW5030B)		Ana	lyst: JCT
1,1,1-Trichloroethane	11		0.14	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,1,2,2-Tetrachloroethane	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,1,2-Trichloroethane	BRL		0.15	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,1-Dichloroethane	33		0.13	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,1-Dichloroethene	100		0.27	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,2,4-Trichlorobenzene	BRL		0.21	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,2-Dibromo-3-chloropropane	BRL		0.28	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,2-Dibromoethane	BRL		0.24	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,2-Dichlorobenzene	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,2-Dichloroethane	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,2-Dichloropropane	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,3-Dichlorobenzene	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
1,4-Dichlorobenzene	BRL		0.11	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
2-Butanone	BRL		5.4	50 ug/L	119752	1	10/11/2009 4:27:00 AM
2-Hexanone	BRL		0.21	10 ug/L	119752	1	10/11/2009 4:27:00 AM
4-Methyl-2-pentanone	BRL		0.41	10 ug/L	119752	1	10/11/2009 4:27:00 AM
Acetone	BRL		5.5	50 ug/L	119752	1	10/11/2009 4:27:00 AM
Benzene	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Bromodichloromethane	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Bromoform	BRL		0.30	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Bromomethane	BRL		1.9	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Carbon disulfide	BRL		0.19	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Carbon tetrachloride	BRL		0.18	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Chlorobenzene	BRL		0.088	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Chloroethane	BRL		0.20	10 ug/L	119752	1	10/11/2009 4:27:00 AM
Chloroform	BRL		0.15	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Chloromethane	BRL		0.15	10 ug/L	119752	1	10/11/2009 4:27:00 AM
cis-1,2-Dichloroethene	BRL		0.070	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
cis-1,3-Dichloropropene	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Cyclohexane	BRL		0.80	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Dibromochloromethane	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Dichlorodifluoromethane	BRL		0.21	10 ug/L	119752	1	10/11/2009 4:27:00 AM
Ethylbenzene	2.7	J	0.085	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Freon-113	21000	E	0.16	10 ug/L	119752	1	10/11/2009 4:27:00 AM
Isopropylbenzene	7.5		0.069	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
m,p-Xylene	1.5	J	0.092	10 ug/L	119752	1	10/11/2009 4:27:00 AM
Methyl acetate	BRL		0.31	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM

Qualifiers:

Value exceeds Maximum Contaminant Level

Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-MW-11 F

Lab Order: 0910778 **Collection Date:** 10/7/2009 2:30:00 PM

Project: Color Spectrum

Lab ID: 0910778-013

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS SW8260B				(SW5030B)		Ana	lyst: JCT
Methyl tert-butyl ether	1.6	J	0.073	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Methylcyclohexane	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Methylene chloride	BRL		0.96	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
o-Xylene	3.0	J	0.053	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Styrene	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Tetrachloroethene	64		0.17	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Toluene	5.2		0.15	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
trans-1,2-Dichloroethene	BRL		0.20	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
trans-1,3-Dichloropropene	BRL		0.098	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Trichloroethene	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Trichlorofluoromethane	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Vinyl chloride	BRL		0.19	2.0 ug/L	119752	1	10/11/2009 4:27:00 AM
Surr: 4-Bromofluorobenzene	92.4		0	61.3-128 %REC	119752	1	10/11/2009 4:27:00 AM
Surr: Dibromofluoromethane	100		0	67.8-130 %REC	119752	1	10/11/2009 4:27:00 AM
Surr: Toluene-d8	86.8		0	70.6-121 %REC	119752	1	10/11/2009 4:27:00 AM

Qualifiers:

Value exceeds Maximum Contaminant Level

Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Date: 21-Oct-14

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-DUP

Lab Order: 0910778

Project: Color Spectrum

Lab ID: 0910778-014 Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
METALS, TOTAL SW6010C				(SW3010A)		Ana	lyst: JY
Arsenic	BRL		0.0044	0.0500 mg/L	119718	1	10/12/2009 2:43:06 PM
Lead	BRL		0.0022	0.0100 mg/L	119718	1	10/12/2009 2:43:06 PM
TCL VOLATILE ORGANICS SW8260B				(SW5030B)		Ana	lyst: JCT
1,1,1-Trichloroethane	7.2		0.14	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,1,2,2-Tetrachloroethane	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,1,2-Trichloroethane	BRL		0.15	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,1-Dichloroethane	240		1.3	50 ug/L	119752	10	10/13/2009 1:47:00 AM
1,1-Dichloroethene	110		0.27	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2,4-Trichlorobenzene	BRL		0.21	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dibromo-3-chloropropane	BRL		0.28	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dibromoethane	BRL		0.24	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dichlorobenzene	BRL		0.16	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dichloroethane	1.0	J	0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,2-Dichloropropane	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,3-Dichlorobenzene	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
1,4-Dichlorobenzene	BRL		0.11	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
2-Butanone	BRL		5.4	50 ug/L	119752	1	10/11/2009 5:52:00 AM
2-Hexanone	BRL		0.21	10 ug/L	119752	1	10/11/2009 5:52:00 AM
4-Methyl-2-pentanone	BRL		0.41	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Acetone	BRL		5.5	50 ug/L	119752	1	10/11/2009 5:52:00 AM
Benzene	1.1	J	0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Bromodichloromethane	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Bromoform	BRL		0.30	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Bromomethane	BRL		1.9	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Carbon disulfide	BRL		0.19	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Carbon tetrachloride	BRL		0.18	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Chlorobenzene	BRL		0.088	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Chloroethane	BRL		0.20	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Chloroform	BRL		0.15	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Chloromethane	BRL		0.15	10 ug/L	119752	1	10/11/2009 5:52:00 AM
cis-1,2-Dichloroethene	BRL		0.070	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
cis-1,3-Dichloropropene	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Cyclohexane	BRL		0.80	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Dibromochloromethane	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Dichlorodifluoromethane	BRL		0.21	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Ethylbenzene	BRL		0.085	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Freon-113	6200		16	1000 ug/L	119752	100	10/12/2009 8:37:00 PM
Isopropylbenzene	10		0.069	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
m,p-Xylene	0.46	J	0.092	10 ug/L	119752	1	10/11/2009 5:52:00 AM
Methyl acetate	BRL	•	0.31	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
wonyi acciaic	DIVE		0.51	5.0 ag/L	113132	'	10, 11,2000 J.JZ.00 AW

Qualifiers:

Date: 21-Oct-14

Collection Date: 10/7/2009

Value exceeds Maximum Contaminant Level

> Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

CLIENT: Environmental Planning Specialists, Inc. Client Sample ID: 09280-DUP

Project: Color Spectrum

Lab ID: 0910778-014

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Rpt. Limit Units	BatchID	DF	Date Analyzed
TCL VOLATILE ORGANICS SW8260B				(SW5030B)		Ana	lyst: JCT
Methyl tert-butyl ether	4.6	J	0.073	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Methylcyclohexane	BRL		0.13	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Methylene chloride	BRL		0.96	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
o-Xylene	BRL		0.053	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Styrene	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Tetrachloroethene	42		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Toluene	0.73	J	0.15	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
trans-1,2-Dichloroethene	BRL		0.20	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
trans-1,3-Dichloropropene	BRL		0.098	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Trichloroethene	BRL		0.12	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Trichlorofluoromethane	BRL		0.17	5.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Vinyl chloride	BRL		0.19	2.0 ug/L	119752	1	10/11/2009 5:52:00 AM
Surr: 4-Bromofluorobenzene	81.3		0	61.3-128 %REC	119752	10	10/13/2009 1:47:00 AM
Surr: 4-Bromofluorobenzene	83.7		0	61.3-128 %REC	119752	100	10/12/2009 8:37:00 PM
Surr: 4-Bromofluorobenzene	89.6		0	61.3-128 %REC	119752	1	10/11/2009 5:52:00 AM
Surr: Dibromofluoromethane	101		0	67.8-130 %REC	119752	10	10/13/2009 1:47:00 AM
Surr: Dibromofluoromethane	99.8		0	67.8-130 %REC	119752	100	10/12/2009 8:37:00 PM
Surr: Dibromofluoromethane	100		0	67.8-130 %REC	119752	1	10/11/2009 5:52:00 AM
Surr: Toluene-d8	86.5		0	70.6-121 %REC	119752	10	10/13/2009 1:47:00 AM
Surr: Toluene-d8	83.5		0	70.6-121 %REC	119752	1	10/11/2009 5:52:00 AM
Surr: Toluene-d8	84.4		0	70.6-121 %REC	119752	100	10/12/2009 8:37:00 PM

Qualifiers:

Date: 21-Oct-14

Value exceeds Maximum Contaminant Level

Greater than Result value

E Estimated value above quantitation range

J Estimated value detected below Reporting Limit

< Less than Result value

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

August 29, 2014

Justin Vickery
Environmental Planning Specialists, Inc.
1050 Crown Pointe Parkway
Atlanta GA 30338

TEL: (404) 315-9113 FAX: (404) 315-8509

RE: Color Spectrum

Dear Justin Vickery: Order No: 1408K76

Analytical Environmental Services, Inc. received 2 samples on 8/22/2014 3:55:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/14-06/30/15.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

James Forrest

Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC 3080 Presidential Drive, Atlanta GA 30340-3704

AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

CHAIN OF CUSTODY Work Order: 1408K 760 Date: §-22-14 Page (of 4

OMP.		ADDRESS:	un fointe P	bry S	site S	556				AN.	ALYSI	S REQ	UESTI	ED			Visit our website	
	PS Inc.	Attenta,	GA 3033	8													www.aesatlanta.com to check on the status of	
HON	404-315- 9113	FAX:				,	S										your results, place bottle	ners
AMPI	404-315- 9113 Alex Testift	SIGNATURE:	Joseph .	<u></u>	•		Vacs										orders, etc.	No # of Containers
		-	ØLED		e e	- P												to # 0
#	SAMPLE ID]	Composite	Matrix (See codes)				PRE	SERVA	TION (See cod	es)			DENCADIO	Z.
		DATE	TIME	Grab	Con	Matı (See	144										REMARKS	•
I	14234-MW-14	8-22-14	1100	×		GW	X											2
2	Trie Blank					W												2
3							,											
4																		
5																		
6																		
7																		***************************************
8																		
9																		
10									\Box							\top	***************************************	
11																寸		
12													\top					
13									一				1			┪		
]4													_			+	· · · · · · · · · · · · · · · · · · ·	
RELIN	QUISHED BY DATE/TIME	RECEIVED B	Y		1	DATE/TIME				PR	OJECT	INFOR	MATIC	N	<u></u>		RECEIPT	
al	of Joseph 8-22-14 3:55	atoyo	- Reeve	0 8 a	2/14	3:55p	PROJ	ECT N		Color	Sje	ch!	dim				Total # of Containers	4
31	•	2: U					PROJ	ECT#			· 						Turnaround Time Request	
3:		3:					SITE	ADDR	ESS:	Faye	روبكيك	GA	•				Standard 5 Business Days	
							SENI	REPO	ORT TO	: 1V1	مور وسار	(De/	wolan	ning a	, M		2 Business Day Rush Next Business Day Rush	
SPECI	AL INSTRUCTIONS/COMMENTS:	our /	SHIPMEN	T METHO	ac	· · · · · · · · · · · · · · · · · · ·	INVO (IF D	ICE T	O: ENT FI	NOM AB	ove)	enop	~14h	ning.a	· · · · · · · · · · · · · · · · · · ·		Same Day Rush (auth req.) Other	
		IN /	_ \	VIA:												2	TATE PROGRAM (if any);	
		CLIEN		PS MAI THER	L COU	RIER	<u></u>								· · · · · · · · · · · · · · · · · · ·		L-mail? Y/N; Fax? Y/N	
SAMP	LES RECEIVED AFTER 3PM OR ON SATURDAY ARE CO	NSIDERED RI	ECEIVED THE	NEXT B	USINES	S DAY. IF T	QUO URNA		D TIM	E IS NO	T INDI	CATED	O#:	VILI PP	OCEED WIT	TH ST	DATA PACKAGE: I II III	IV
SAMP	LES ARE DISPOSED 30 DAYS AFTER REPORT COMPLE	TION UNLESS	OTHER ARRA	NGEME	NTS AR	E MADE.		VA1			1,1,1		, 2.20		CCEED WII	. 11 31,	ADDRED IN OF SAMPLES.	

Client: Environmental Planning Specialists, Inc. Client Sample ID: 14234-MW-14

Project Name: Color Spectrum Collection Date: 8/22/2014 11:06:00 AM

Date:

29-Aug-14

Lab ID: 1408K76-001 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Volatile Organic Compounds by GC/	MS SW8260B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1,2-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1-Dichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,1-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dibromoethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,2-Dichloropropane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,3-Dichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,4-Dichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
1,4-Dioxane	BRL	150		ug/L	195485	1	08/28/2014 15:09	NP
2-Butanone	BRL	50		ug/L	195485	1	08/28/2014 15:09	NP
2-Hexanone	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
4-Methyl-2-pentanone	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Acetone	BRL	50		ug/L	195485	1	08/28/2014 15:09	NP
Benzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Bromodichloromethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Bromoform	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Bromomethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Carbon disulfide	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Carbon tetrachloride	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Chlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Chloroethane	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Chloroform	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Chloromethane	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
cis-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
cis-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Cyclohexane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Dibromochloromethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Dichlorodifluoromethane	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Ethylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Freon-113	BRL	10		ug/L	195485	1	08/28/2014 15:09	NP
Isopropylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methyl acetate	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methyl tert-butyl ether	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methylcyclohexane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Methylene chloride	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Styrene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP

Qualifiers:

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Environmental Planning Specialists, Inc. Client Sample ID: 14234-MW-14

Project Name:Color SpectrumCollection Date:8/22/2014 11:06:00 AM

Date:

29-Aug-14

Lab ID: 1408K76-001 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Volatile Organic Compounds by GC/	MS SW8260B			(SW	/5030B)			
Tetrachloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Toluene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
trans-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
trans-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Trichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Trichlorofluoromethane	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Vinyl chloride	BRL	2.0		ug/L	195485	1	08/28/2014 15:09	NP
Xylenes, Total	BRL	5.0		ug/L	195485	1	08/28/2014 15:09	NP
Surr: 4-Bromofluorobenzene	81.9	66.2-120		%REC	195485	1	08/28/2014 15:09	NP
Surr: Dibromofluoromethane	105	79.5-121		%REC	195485	1	08/28/2014 15:09	NP
Surr: Toluene-d8	103	77-117		%REC	195485	1	08/28/2014 15:09	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client:Environmental Planning Specialists, Inc.Client Sample ID:TRIP BLANKProject Name:Color SpectrumCollection Date:8/22/2014

Project Name:Color SpectrumCollection Date:8/22/2014Lab ID:1408K76-002Matrix:Aqueous

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
Volatile Organic Compounds by GC	C/MS SW8260B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1,2-Trichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1-Dichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,1-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2-Dibromoethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2-Dichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2-Dichloroethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,2-Dichloropropane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,3-Dichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,4-Dichlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
1,4-Dioxane	BRL	150		ug/L	195485	1	08/28/2014 14:45	NP
2-Butanone	BRL	50		ug/L	195485	1	08/28/2014 14:45	NP
2-Hexanone	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
4-Methyl-2-pentanone	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Acetone	BRL	50		ug/L	195485	1	08/28/2014 14:45	NP
Benzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Bromodichloromethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Bromoform	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Bromomethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Carbon disulfide	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Carbon tetrachloride	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Chlorobenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Chloroethane	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Chloroform	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Chloromethane	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
cis-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
cis-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Cyclohexane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Dibromochloromethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Dichlorodifluoromethane	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Ethylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Freon-113	BRL	10		ug/L	195485	1	08/28/2014 14:45	NP
Isopropylbenzene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Methyl acetate	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Methyl tert-butyl ether	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Methylcyclohexane	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Methylene chloride	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP
Styrene	BRL	5.0		ug/L	195485		08/28/2014 14:45	NP

Qualifiers:

- * Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

E Estimated (value above quantitation range)

Date:

29-Aug-14

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client:Environmental Planning Specialists, Inc.Client Sample ID:TRIP BLANKProject Name:Color SpectrumCollection Date:8/22/2014

Project Name: Color Spectrum Collection Date: 8/22/2014

Lab ID: 1408K76-002 Matrix: Aqueous

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Volatile Organic Compounds by GC/	MS SW8260B			(SW	/5030B)			
Tetrachloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Toluene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
trans-1,2-Dichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
trans-1,3-Dichloropropene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Trichloroethene	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Trichlorofluoromethane	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Vinyl chloride	BRL	2.0		ug/L	195485	1	08/28/2014 14:45	NP
Xylenes, Total	BRL	5.0		ug/L	195485	1	08/28/2014 14:45	NP
Surr: 4-Bromofluorobenzene	82.6	66.2-120		%REC	195485	1	08/28/2014 14:45	NP
Surr: Dibromofluoromethane	107	79.5-121		%REC	195485	1	08/28/2014 14:45	NP
Surr: Toluene-d8	105	77-117		%REC	195485	1	08/28/2014 14:45	NP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

29-Aug-14

S Spike Recovery outside limits due to matrix

Narr See case narrative NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Sample/Cooler Receipt Checklist

Client Env. Planning Specialists		Work Order	Number	1408K FG
Checklist completed by <u>Loana Pacurar</u> Signature Date	8/22/14			
Carrier name: FedEx UPS Courier Client US	S Mail Othe	1*	_	
Shipping container/cooler in good condition?	Yes /	No	Not Present	/
Custody seals intact on shipping container/cooler?	Yes	No 1	Not Present	V
Custody seals intact on sample bottles?	Yes	No	Not Present	
Container/Temp Blank temperature in compliance? (0°≤6°C)	* Yes	No		
Cooler #1 3.4°C Cooler #2 Cooler #3	Cooler #4 _	Cool	er#5	Cooler #6
Chain of custody present?	Yes _	No		
Chain of custody signed when relinquished and received?	Yes 🖊	No		
Chain of custody agrees with sample labels?	Yes 🖊	No		
Samples in proper container/bottle?	Yes 🟒	No		
Sample containers intact?	Yes 🗹	No		
Sufficient sample volume for indicated test?	Yes 🗸	No		
All samples received within holding time?	Yes 🗾	No		
Was TAT marked on the COC?	Yes _	No		
Proceed with Standard TAT as per project history?	Yes	No	Not Applical	ole
Water - VOA vials have zero headspace? No VOA vials su	ıbmitted	Yes 🖊	No	
Water - pH acceptable upon receipt?	Yes _	No	Not Applical	ole
Adjusted?	Chec	cked by		_
Sample Condition: Good Other(Explain)				
(For diffusive samples or AIHA lead) Is a known blank include	led? Yes	No	_	

See Case Narrative for resolution of the Non-Conformance.

\\Aes_server\\\Sample_Cooler_Recipt_Checklist_Rev1.rtf

^{*} Samples do not have to comply with the given range for certain parameters.

Date: 29-Aug-14

Client: Environmental Planning Specialists, Inc.

ANALYTICAL QC SUMMARY REPORT

Project Name: Color Spectrum 1408K76 Workorder:

BatchID: 195485

Sample ID: MB-195485 SampleType: MBLK	Client ID:	latile Organic Compo	ands by GC/MS	SW8260R	Un	its: ug/L chID: 195485		ep Date: 08/nalysis Date: 08/	27/2014	Run No: 274624 Seq No: 5795611
Sample Type. WIBLK	resicode.	attic Organic Compo	ands by Ge/Mis	S *** 0200B	Dat	CIIID. 193403	Al	narysis Date. 06/	27/2014	364 No. 3793011
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,1,1-Trichloroethane	BRL	5.0								
1,1,2,2-Tetrachloroethane	BRL	5.0								
1,1,2-Trichloroethane	BRL	5.0								
1,1-Dichloroethane	BRL	5.0								
1,1-Dichloroethene	BRL	5.0								
1,2,4-Trichlorobenzene	BRL	5.0								
1,2-Dibromo-3-chloropropane	BRL	5.0								
1,2-Dibromoethane	BRL	5.0								
1,2-Dichlorobenzene	BRL	5.0								
1,2-Dichloroethane	BRL	5.0								
1,2-Dichloropropane	BRL	5.0								
1,3-Dichlorobenzene	BRL	5.0								
1,4-Dichlorobenzene	BRL	5.0								
2-Butanone	BRL	50								
2-Hexanone	BRL	10								
4-Methyl-2-pentanone	BRL	10								
Acetone	BRL	50								
Benzene	BRL	5.0								
Bromodichloromethane	BRL	5.0								
Bromoform	BRL	5.0								
Bromomethane	BRL	5.0								
Carbon disulfide	BRL	5.0								
Carbon tetrachloride	BRL	5.0								
Chlorobenzene	BRL	5.0								
Chloroethane	BRL	10								
Chloroform	BRL	5.0								
Chloromethane	BRL	10								
Qualifiers: > Greater than Result	value		< Less	than Result value			В	Analyte detected in the	associated method	blank
BRL Below reporting limit	it		E Estim	nated (value above quantit	ation range)		Н	Holding times for prepa	ration or analysis	exceeded
J Estimated value det	tected below Reporting Lim	it	N Anal	yte not NELAC certified			R	RPD outside limits due	to matrix	
Rpt Lim Reporting Limit			S Spike	Recovery outside limits of	lue to matrix					

Client: Environmental Planning Specialists, Inc.

Project Name: Color Spectrum 1408K76 Workorder:

ANALYTICAL QC SUMMARY REPORT

BatchID: 195485

Date:

29-Aug-14

Sample ID: MB-195485	Client ID:				Uni	_	_		08/27/2014	Run No: 274624
SampleType: MBLK	TestCode:	Volatile Organic Compou	nds by GC/MS	SW8260B	Bat	chID: 195485	Ana	lysis Date:	08/27/2014	Seq No: 5795611
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD Limit Qual
cis-1,2-Dichloroethene	BRL	5.0								
cis-1,3-Dichloropropene	BRL	5.0								
Cyclohexane	BRL	5.0								
Dibromochloromethane	BRL	5.0								
Dichlorodifluoromethane	BRL	10								
Ethylbenzene	BRL	5.0								
Freon-113	BRL	10								
Isopropylbenzene	BRL	5.0								
Methyl acetate	BRL	5.0								
Methyl tert-butyl ether	BRL	5.0								
Methylcyclohexane	BRL	5.0								
Methylene chloride	BRL	5.0								
Styrene	BRL	5.0								
Tetrachloroethene	BRL	5.0								
Toluene	BRL	5.0								
trans-1,2-Dichloroethene	BRL	5.0								
trans-1,3-Dichloropropene	BRL	5.0								
Trichloroethene	BRL	5.0								
Trichlorofluoromethane	BRL	5.0								
Vinyl chloride	BRL	2.0								
Xylenes, Total	BRL	5.0								
Surr: 4-Bromofluorobenzene	42.71	0	50.00		85.4	66.2	120			
Surr: Dibromofluoromethane	50.65	0	50.00		101	79.5	121			
Surr: Toluene-d8	50.65	0	50.00		101	77	117			

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Client:

Environmental Planning Specialists, Inc.

Project Name: Color Spectrum

Workorder: 1408K76

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-14

BatchID: 195485

Sample ID: LCS-195485 SampleType: LCS	Client ID: TestCode: Vol	atile Organic Compo	unds by GC/MS	SW8260B	Uni Bat	ts: ug/L chID: 195485	•	p Date: 08 alysis Date: 08		Run No: 27462 Seq No: 57956	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	al %RPD	RPD Limit	Qual
1,1-Dichloroethene	52.29	5.0	50.00		105	63.1	140				
Benzene	51.45	5.0	50.00		103	74.2	129				
Chlorobenzene	45.89	5.0	50.00		91.8	70	129				
Coluene	52.63	5.0	50.00		105	74.2	129				
richloroethene	51.22	5.0	50.00		102	71.2	135				
Surr: 4-Bromofluorobenzene	43.23	0	50.00		86.5	66.2	120				
Surr: Dibromofluoromethane	48.48	0	50.00		97.0	79.5	121				
Surr: Toluene-d8	50.83	0	50.00		102	77	117				
Sample ID: 1408K90-022AMS	Client ID:				Uni	ts: ug/L	Prep	p Date: 08	3/27/2014	Run No: 27462	4
SampleType: MS	TestCode: Vol	atile Organic Compo	unds by GC/MS	SW8260B	Bat	chID: 195485	Ana	alysis Date: 08	3/27/2014	Seq No: 57956	23
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	ıl %RPD	RPD Limit	Qual
,1-Dichloroethene	635500	50000	500000		127	60.2	159				
Benzene	560300	50000	500000		112	70.2	138				
Chlorobenzene	491400	50000	500000		98.3	70.1	133				
oluene	586400	50000	500000		117	70	139				
richloroethene	552100	50000	500000		110	70.1	144				
Surr: 4-Bromofluorobenzene	421200	0	500000		84.2	66.2	120				
Surr: Dibromofluoromethane	506400	0	500000		101	79.5	121				
Surr: Toluene-d8	505900	0	500000		101	77	117				
Sample ID: 1408K90-022AMSD SampleType: MSD	Client ID: TestCode: Vol	atile Organic Compo	unds by GC/MS	SW8260B	Uni Bat	ts: ug/L chID: 195485	•	p Date: 08 alysis Date: 08		Run No: 27462 Seq No: 57956	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	ıl %RPD	RPD Limit	Qual
,1-Dichloroethene	630900	50000	500000		126	60.2	159	635500	0.726	19.2	
Benzene	550700	50000	500000		110	70.2	138	560300	1.73	20	
BRL Below reporting limit J Estimated value detecte Rpt Lim Reporting Limit		it	ation range)		Н	Analyte detected in the Holding times for prep RPD outside limits du	paration or analysis e				

Client: Environmental Planning Specialists, Inc.

Project Name: Color Spectrum

Workorder: 1408K76

ANALYTICAL QC SUMMARY REPORT

BatchID: 195485

Date:

29-Aug-14

Sample ID: 1408K90-022AMSD	Client ID:				Uni	ts: ug/L	Prep	Date: 08/27/	2014	Run No: 274624	
SampleType: MSD	TestCode: Vo	stCode: Volatile Organic Compounds by GC/MS SW8260B				chID: 195485	Ana	lysis Date: 08/27 /	2014	Seq No: 5795624	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
Chlorobenzene	489600	50000	500000		97.9	70.1	133	491400	0.367	20	
Toluene	578000	50000	500000		116	70	139	586400	1.44	20	
Trichloroethene	542400	50000	500000		108	70.1	144	552100	1.77	20	
Surr: 4-Bromofluorobenzene	419900	0	500000		84.0	66.2	120	421200	0	0	
Surr: Dibromofluoromethane	508400	0	500000		102	79.5	121	506400	0	0	
Surr: Toluene-d8	514500	0	500000		103	77	117	505900	0	0	

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

APPENDIX E

Well Development and Well Sampling Forms

Monitoring Well Sampling Form

EPS Project: Color	Spelmon	Date: 15 1
Well ID: Sampling Performed By:	G. Henry	Field Conditions: 600
Well Construction:	2" Fursh Marnt	General Condition of Well:
Well Labeled: <u></u> Well depth from TOC:	Well Cap: Yes Well Loc	Signer Milener
Well Diameter (in):	(Well depth from TOC - Static level from	Method of measure:
Volume of water in well (Ht. Purging Method:	x(.16 for 2")(.653 for 4")(1.469 for 6"):	Three Well Volumes (gal): 1,7%
Sample Method:	Thumb	Sample Parameters: YOC \$2448
Volume		

Time	Volume (gal)	Temp (oC)	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	Dire	Comments
1120	٠5	21.03	Ce. 81	0-827	6-20	17.2	-70	9.75	
1135	เาร	21.12	6.33	0.325	5.12	7.42	-77	9.77	
1150	1.0	21.18	6.94	0.810	4.06	5.57	- 8b -	<u></u>	-
1202	1.25	21.17	4.95	0.376	3.94	3,45	-37	10.02	<u> </u>
215	1.50	21.10	6.93	0.818	3.31	2.74	- 32	10.04	
1225	1.75	21.11	6.93	0.816	3.29	2.45	- 80	10.09	
		-							
		 							
	 	 	·						<u> </u>
	-		<u> </u>	-					
									
									
									

Sample ID: 11319-NW-10

Time Collected: /225 Technician Signature

Monitoring Well Sampling Form

EPS Project: Color Speeding	Date: 11-1-5-11
Well ID: Sampling Performed By: C-Henry	Field Conditions: Ram - Lo
Well Construction: Well Labeled: Well Cap: Well Cap:	General Condition of Well: Condition of surrounding area: Depth to Water from TOC: Method of measure:
Height (Ht) of water in well (Well depth from TOC - Static level from TOC): Volume of water in well (Ht. x(.16 for 2")(.653 for 4")(1.469 for 6"): Purging Method: Sample Method:	Three Well Volumes (gal): 5.02 Time @ Start of Purge: 920 Sample Parameters: 70C 824013

Time	Volume (gal)	Temp (oC)	рН	Cond. (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DIW	Comments
950	0.5	20.06	Ce. 71	0.342	GEL 40 1.38		249	N-95	
005_	1.0	20.51	7.35	6.336	1.07	73.2	217	14.31	
1024	1.5	20.60	7.46	0.3372	10.	128	202	16.35	
1040	2.0	10.05	7.53	0.328	0.96	112	194	18.95	
10:20	Pungl	Dry @	2.25 gallon	22 - Will	mait to	nechonne t	Collect Significant	le	
3 <i>55</i>		70,97	6.37	0.171	6.56	28.7	25		
				}					
			 .						

Sample ID: 1319- 4W-11

Time Collected: 1355

Technician Signature

e Juny

Well Development

Monitoring Well Sampling Form

EPS Project	t: Color	Spectron	η					Date: △४/	15/2011	<i>y</i>)
	formed By: ction: m TOC: (in): water in well (V ter in well (Ht. x	Well Cap: Vell depth from (.16 for 2")(.653	// // // // // // // // // // TOC - Static le	vel from TOC		Metho	General Cond	Three Well V	ewy	3.12
Time	Volume (gal)	Down hole Temp (°C)	Flow Cell Temp (°C)	рН	ORP (mV)	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Depth to Water (ft)	Comments
1047 1052 1057 1162 1107 1112	6.0 6.25 6.75 2.25 7.75 6.17835		20.55 20.55 20.55 20.55 20.55	6.17 6.08 6.13 6.16 6.18 6.17	193 -37 -62 -76 -79 -82	0.400 0.400 0.400 0.399 0.399	47. 9 31. 2 15. 7 6. 24 4. 72 4. 29	1.96 0.64 0.00 0.00 0.00 2.00		use bailer to proise well until trabidity is long then use peri-Dump to complete development passed dry several times (see notes for destails)
Temp probe ID				Tir	me Collected:		Ferrous Iron	n (Fe ²⁺)=	mg/L	

Monitoring Well Sampling Form

			-···							
EPS Project	t: Color	Spectrum	· .					Date: 8-	22-14	
Well ID:	MW-1					Fie	eld Conditions:		F, clear	
Sampling Perf		Ale	x Testatt						4.8	r
Well Construc					* '		General Cond	ition of Well:	9000	'
Well Labeled:	no	Well Cap:	-	427	Well Locked:	425		urrounding are	a: -2010	Che d
Well depth from		8.0			•		Depth to Wate		3-46	<i>3100</i>
Well Diameter (in): 2"					Metho	d of measure:	WILM			
Height (Ht) of v	water in weli (V	Vell depth from	TOC - Static le	vel from TOC):			2.5Y	1071		
Volume of wat	er in well (Ht.)	k(.16 for 2")(.653	for 4")(1.469 f	ог 6"):	0.4	3	2.01	Three Well V	olumes (gal):	1 47
Purging Metho	od:		estaltic foul				Start of Purge:	1038	oluliles (gai).	1- 23
Sample Metho	d:		liseef				le Parameters:	VOC		
_ `			1100			Ourinp	ne r alallieters.		_	
	Volume	Down hole	Flow Cell			01		<u> </u>		
 :						Cond.	Turbidity		Depth to	
Time	(gal)	Temp (°C)	Temp (°C)	рН	ORP (mV)	(mS/cm)	(NTU)	DO (mg/L)	Water (ft)	Comments
1044	0.5		24.26	6.51	~74	0.212	0-65	19.61	5.63	
100-1056	10		22.82	6.55	-83	0.209	0-75	5.24	5.64	
1057	1.50		2260	6055	-8 L	0.20	0.62	3-99	5.65	
,1103	2.0		2248	6.56	-91	0.209	0.56	3, 21	5.66	
									3.44	
					<u> </u>					
		-								
					<u> </u>					
					 					
Temp probe ID:						<u> </u>	Ferrous Iron	(Fo ²⁺)=	me #	
							. 511743 1101	· (1 6)	mg/L	

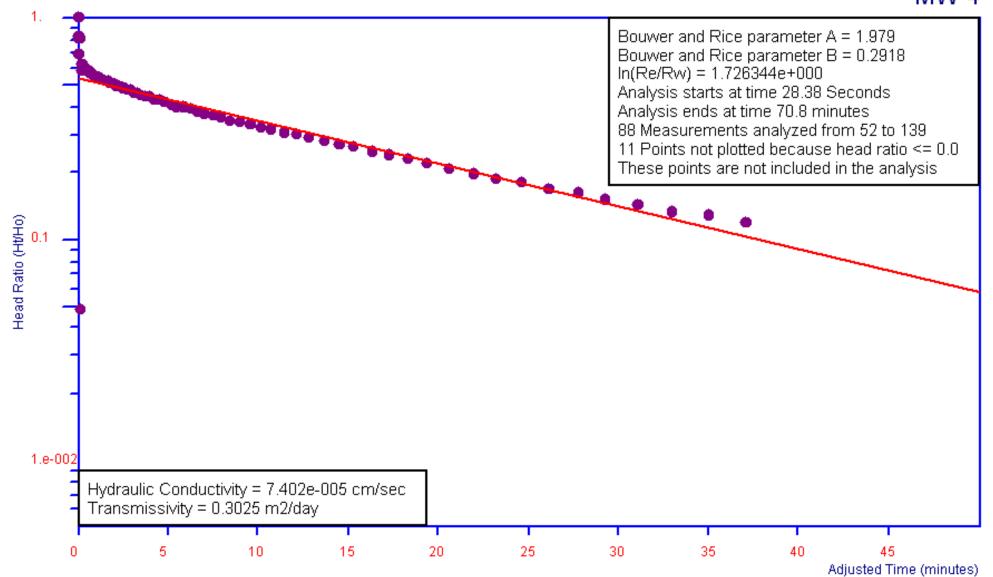
Sample ID: 14234 - MW-14

Time Collected: 110C

Technician Signature Use Just

APPENDIX F

Boring Logs and Well Diagrams



APPENDIX G

Slug Test Data

Color Spectrum

Bouwer and Rice Graph MW-4

Analysis by Starpoint Software

Ho is 0.846 feet at 28.38 Seconds

Report Date: 7/2/2007 11:51

Report User Name: amodi

Report Computer Name: EPS-DIM-2400

Log File Properties

File Name MW4 2007-06-28 09.57.08.wsl Create Date 6/28/2007 12:56

Device Properties

LevelTroll 700 Device Site color spectrum mw-4

Device Name MW4

Serial Number 114123 Firmware Version 2.04

Log Configuration

MW4 Log Name Created By Unknown Computer Name Pocket PC Application WinSituMobile.exe **Application Version** 5.1.0.11

Create Date 6/28/2007 11:45 4096 Notes Size(bytes) True Logarithmic Type

Overwrite when full Disabled Scheduled Start **Manual Start** Scheduled Stop No Stop Time

Days: 0 Hours: 00 Mins: 20 Secs: 00 Max Interval

Level Reference Settings At Log Creation

Level Measurement Mode Depth

> Specific Gravity 0.999

Log Notes:

Date and Time Note

> 6/28/2007 11:45 Manual Start Command 6/28/2007 12:56 Suspend Command 6/28/2007 12:56 Manual Stop Command

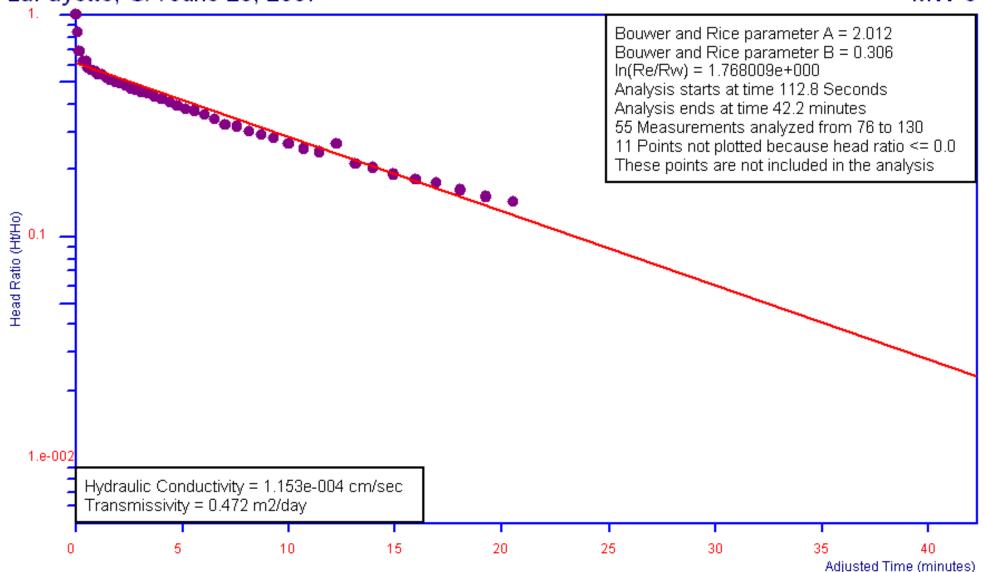
Log Data:

Record Count 139

			Sensor: Pres 15G	Sensor: Pres 15G	Sensor: Pres 15G
	Elapsed Time		SN#: 114123	SN#: 114123	SN#: 114123
Date and Time	Seconds		Pressure (PSI)	Depth (ft)	Temperature (F)
6/28/2007 11:45	;	0	3.498	8.077	68.414
6/28/2007 11:45	5	0.251	3.499	8.08	68.442
6/28/2007 11:45	; ;	0.502	3.5	8.082	68.464
6/28/2007 11:45	;	0.751	3.499	8.079	68.478
6/28/2007 11:45	,)	1.001	3.499	8.079	68.485

6/28/2007 11:45	1.251	3.499	8.078	68.491
6/28/2007 11:45	1.501	3.499	8.078	68.501
6/28/2007 11:45	1.751	3.498	8.076	68.505
6/28/2007 11:45	2.001	3.499	8.078	68.509
6/28/2007 11:45	2.251	3.498	8.077	68.509
6/28/2007 11:45	2.501	3.498	8.078	68.513
6/28/2007 11:45	2.751	3.499	8.078	68.513
6/28/2007 11:45	3.001	3.498	8.078	68.511
6/28/2007 11:45	3.251	3.498	8.076	68.508
6/28/2007 11:45	3.501	3.498	8.077	68.508
6/28/2007 11:45	3.751	3.499	8.079	68.512
6/28/2007 11:45	4.001	3.498	8.077	68.505
6/28/2007 11:45	4.251	3.498	8.077	68.506
6/28/2007 11:45	4.501	3.498	8.077	68.51
6/28/2007 11:45	4.751	3.498	8.076	68.502
6/28/2007 11:45	5.001	3.498	8.077	68.505
6/28/2007 11:45	5.251	3.498	8.077	68.495
6/28/2007 11:45	5.501	3.499	8.079	68.494
6/28/2007 11:45	5.751	3.497	8.075	68.491
6/28/2007 11:45	6.001	3.498	8.077	68.492
6/28/2007 11:45	6.361	3.498	8.078	68.471
6/28/2007 11:45	6.721	3.498		68.457
			8.077	
6/28/2007 11:45	7.141	3.499	8.078	68.437
6/28/2007 11:45	7.561	3.498	8.077	68.423
6/28/2007 11:45	7.981	3.499	8.08	68.42
6/28/2007 11:45	8.461	3.498	8.078	68.403
6/28/2007 11:45	9.001	3.498	8.077	68.386
6/28/2007 11:45	9.481	3.499	8.079	68.376
6/28/2007 11:45	10.081	3.498	8.078	68.359
6/28/2007 11:45	10.681	3.499	8.078	68.348
6/28/2007 11:45	11.281	3.498	8.077	68.335
6/28/2007 11:45	12.074	3.499	8.078	68.308
6/28/2007 11:45	12.66	3.498	8.077	68.336
6/28/2007 11:45	13.441	3.499	8.079	68.301
6/28/2007 11:45	14.221	3.499	8.079	68.283
6/28/2007 11:45	15.061	3.5	8.08	68.259
6/28/2007 11:45	15.961	3.499	8.078	68.242
6/28/2007 11:45	16.92	3.499	8.08	68.228
6/28/2007 11:45	17.88	3.5	8.081	68.206
6/28/2007 11:45	18.961	3.501	8.083	68.184
6/28/2007 11:45	20.101	3.503	8.088	68.164
6/28/2007 11:45	21.301	3.504	8.09	68.147
6/28/2007 11:45	22.561	3.381	7.807	68.124
6/28/2007 11:45	23.88	3.612	8.34	68.131
6/28/2007 11:45	25.321	3.859	8.91	68.084
6/28/2007 11:45	26.821	3.726	8.603	68.063
6/28/2007 11:45	28.38	3.864	8.923	68.041
6/28/2007 11:45	30.061	3.801	8.776	68.008
6/28/2007 11:45	31.86	3.751	8.66	67.975
6/28/2007 11:45	33.721	3.795	8.763	67.974
6/28/2007 11:46	35.761	3.795	8.762	67.93
6/28/2007 11:46	37.86	3.516	8.118	67.891
6/28/2007 11:46	40.081	3.709	8.563	67.869
6/28/2007 11:46	42.481	3.725	8.602	67.826
6/28/2007 11:46	45	3.721	8.592	67.805

6/28/2007 11:46	47.64	3.719	8.588	67.763
6/28/2007 11:46	50.461	3.718	8.584	67.722
6/28/2007 11:46	53.473	3.716	8.58	67.715
6/28/2007 11:46	56.64	3.714	8.576	67.646
6/28/2007 11:46	60.001	3.711	8.569	67.599
6/28/2007 11:46	63.6	3.71	8.565	67.58
6/28/2007 11:46	67.2	3.708	8.561	67.515
6/28/2007 11:46	71.401	3.706	8.556	67.455
6/28/2007 11:46	75.6	3.703	8.551	67.417
6/28/2007 11:46	79.8	3.703	8.549	67.359
6/28/2007 11:46	84.6	3.7	8.544	67.311
6/28/2007 11:46	90	3.699	8.54	67.247
6/28/2007 11:46	94.8	3.697	8.536	67.204
6/28/2007 11:47	100.801	3.695	8.532	67.137
6/28/2007 11:47	106.8	3.693	8.527	67.081
6/28/2007 11:47	112.801	3.692	8.526	67.016
6/28/2007 11:47	119.4	3.69	8.521	66.956
6/28/2007 11:47	126.6	3.688	8.516	66.891
6/28/2007 11:47	134.4	3.686	8.511	66.835
6/28/2007 11:47	142.201	3.684	8.507	66.761
6/28/2007 11:47	150.601	3.683	8.504	66.694
6/28/2007 11:48	159.6	3.68	8.497	66.635
6/28/2007 11:48	169.201	3.678	8.492	66.559
6/28/2007 11:48	178.801	3.677	8.489	66.498
6/28/2007 11:48	189.6	3.674	8.483	66.43
6/28/2007 11:48	201.001	3.672	8.478	66.359
6/28/2007 11:48	213.049	3.668	8.468	66.292
6/28/2007 11:49	225.6	3.666	8.465	66.226
6/28/2007 11:49	238.801	3.664	8.459	66.158
6/28/2007 11:49	253.237	3.661	8.454	66.144
6/28/2007 11:49	268.2	3.659	8.449	66.029
6/28/2007 11:50	283.8	3.656	8.441	65.98
6/28/2007 11:50	300.6	3.653	8.436	65.899
6/28/2007 11:50	318.6	3.651	8.43	65.842
6/28/2007 11:51	337.2	3.648	8.422	65.779
6/28/2007 11:51	357.6	3.645	8.416	65.72
6/28/2007 11:51	378.6	3.643	8.412	65.666
6/28/2007 11:52				
	400.8	3.641	8.407	65.609
6/28/2007 11:52	424.8	3.636	8.396	65.561
6/28/2007 11:52	450	3.634	8.391	65.503
6/28/2007 11:53	476.4	3.632	8.386	65.46
6/28/2007 11:53	504.6	3.629	8.379	65.422
6/28/2007 11:54	534.6	3.624	8.369	65.375
6/28/2007 11:54	566.4	3.623	8.366	65.322
6/28/2007 11:55	600	3.619	8.356	65.281
6/28/2007 11:56	636	3.616	8.35	65.252
6/28/2007 11:56	672	3.613	8.342	65.21
6/28/2007 11:57	714.179	3.609	8.334	65.209
6/28/2007 11:58	756	3.607	8.328	65.147
6/28/2007 11:58	798	3.604	8.321	65.114
6/28/2007 11:59	846	3.6	8.313	65.087
6/28/2007 12:00	900	3.596	8.303	65.056
6/28/2007 12:01	948	3.594	8.298	65.037
6/28/2007 12:02	1008	3.59	8.29	65.007
6/28/2007 12:03	1068	3.587	8.281	64.988


6/28/2007 12:04	1128	3.583	8.272	64.97
6/28/2007 12:05	1194.057	3.579	8.264	64.984
6/28/2007 12:06	1266	3.575	8.254	64.934
6/28/2007 12:07	1344.115	3.571	8.245	64.943
6/28/2007 12:09	1422	3.568	8.237	64.894
6/28/2007 12:10	1506	3.564	8.229	64.888
6/28/2007 12:12	1596	3.56	8.22	64.875
6/28/2007 12:13	1692	3.557	8.214	64.85
6/28/2007 12:15	1788	3.554	8.206	64.84
6/28/2007 12:17	1896	3.551	8.199	64.83
6/28/2007 12:18	2010	3.547	8.19	64.816
6/28/2007 12:20	2130	3.545	8.186	64.797
6/28/2007 12:23	2256	3.542	8.179	64.788
6/28/2007 12:25	2388	3.335	7.701	64.772
6/28/2007 12:27	2532	3.376	7.796	64.745
6/28/2007 12:30	2682	3.4	7.85	64.744
6/28/2007 12:32	2838	3.42	7.896	64.788
6/28/2007 12:35	3006	3.436	7.934	64.934
6/28/2007 12:38	3186	3.451	7.968	65.066
6/28/2007 12:41	3372	3.461	7.992	65.069
6/28/2007 12:45	3576	3.472	8.016	65.061
6/28/2007 12:48	3786	3.479	8.033	64.985
6/28/2007 12:52	4008	3.488	8.053	64.928
6/28/2007 12:56	4248	3.493	8.066	64.884

Color Spectrum

Bouwer and Rice Graph

LaFayette, GA June 28, 2007

MW-6

Analysis by Starpoint Software

Ho is 0.583 feet at 112.8 Seconds

Report Date: 7/2/2007 11:52

Report User Name: amodi

Report Computer Name: EPS-DIM-2400

Log File Properties

File Name MW6 2007-06-28 11.22.20.wsl Create Date 6/28/2007 14:22

Device Properties

Device LevelTroll 700
Site color spectrum mw-4

Device Name MW4

Serial Number 114123 Firmware Version 2.04

Log Configuration

Log Name MW6
Created By Unknown
Computer Name Pocket PC
Application WinSituMobile.exe

Application viriolituiviobile.ex

Application Version 5.1.0.11

Create Date 6/28/2007 13:38

Notes Size(bytes) 4096

Type True Logarithmic

Overwrite when full Disabled

Schoduled Start Manual Start

Scheduled Start Manual Start Scheduled Stop No Stop Time

Max Interval Days: 0 Hours: 00 Mins: 20 Secs: 00

Level Reference Settings At Log Creation

Level Measurement Mode Depth

Specific Gravity 0.999

Log Notes:

Date and Time Note

6/28/2007 13:38 Manual Start Command 6/28/2007 14:22 Manual Stop Command

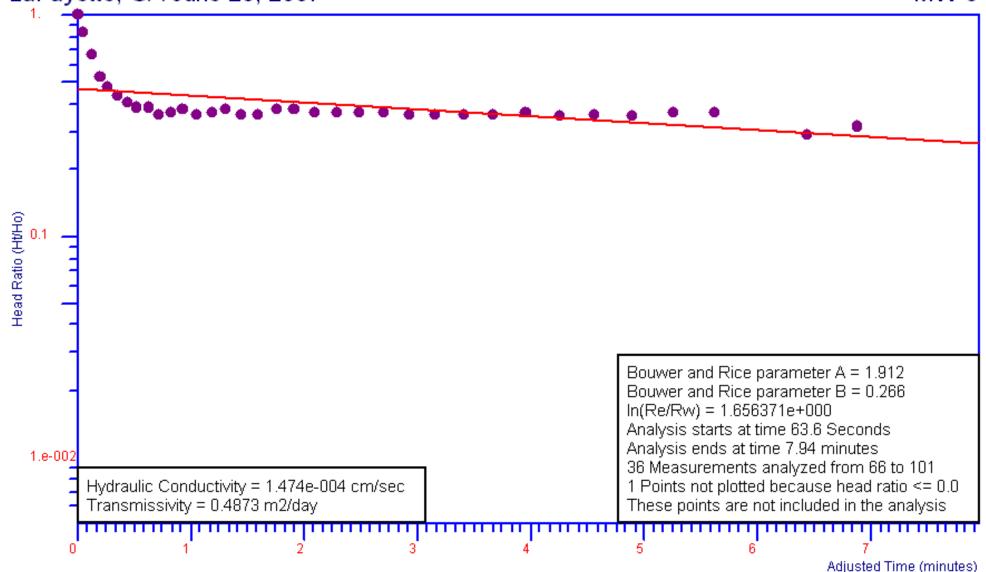
Log Data:

Record Count 130

	Elapsed Time		Sensor: Pres 15G SN#: 114123	Sensor: Pres 15G SN#: 114123	Sensor: Pres 15G SN#: 114123
Date and Time	Seconds		Pressure (PSI)	Depth (ft)	Temperature (F)
6/28/2007 13:38		0	3.869	8.933	71.412
6/28/2007 13:38		0.25	3.869	8.933	71.442
6/28/2007 13:38		0.501	3.869	8.934	71.46
6/28/2007 13:38		0.794	3.881	8.961	71.464
6/28/2007 13:38		1.002	3.868	8.931	71.485
6/28/2007 13:38		1.25	3.869	8.933	71.485
6/28/2007 13:38		1.5	3.869	8.934	71.488

6/28/2007 13:38	1.75	3.869	8.933	71.489
6/28/2007 13:38	2	3.868	8.931	71.486
6/28/2007 13:38	2.25	3.868	8.93	71.486
6/28/2007 13:38	2.5	3.869	8.932	71.485
6/28/2007 13:38	2.75	3.869	8.933	71.484
6/28/2007 13:38	3	3.868	8.932	71.481
6/28/2007 13:38	3.25	3.869	8.933	71.476
6/28/2007 13:38	3.5	3.867	8.93	71.472
6/28/2007 13:38	3.75	3.868	8.931	71.471
6/28/2007 13:38	4	3.868	8.931	71.468
6/28/2007 13:38	4.25	3.867	8.929	71.463
6/28/2007 13:38	4.5	3.868	8.931	71.461
6/28/2007 13:38	4.75	3.869	8.933	71.457
6/28/2007 13:38	5.176	3.868	8.931	71.425
6/28/2007 13:38	5.379	3.869	8.934	71.468
6/28/2007 13:38	5.712	3.867	8.93	71.424
6/28/2007 13:38	6.103	3.867	8.93	71.441
6/28/2007 13:38	6.306	3.867	8.93	71.438
6/28/2007 13:38	6.511	3.867	8.93	71.441
6/28/2007 13:38	6.716	3.868	8.931	71.441
6/28/2007 13:38	7.14	3.868	8.93	71.395
6/28/2007 13:38	7.56	3.867	8.928	71.379
6/28/2007 13:38	7.98	3.868	8.931	71.354
6/28/2007 13:38	8.46	3.867	8.93	71.329
6/28/2007 13:38	9	3.868	8.932	71.306
6/28/2007 13:38	9.48	3.867	8.928	71.292
6/28/2007 13:38	10.08	3.867	8.93	71.268
6/28/2007 13:38	10.68	3.868	8.931	71.24
6/28/2007 13:38	11.28	3.868	8.931	71.224
6/28/2007 13:38	11.94	3.868	8.931	71.208
6/28/2007 13:38	12.66	3.868	8.932	71.187
6/28/2007 13:38	13.44	3.867	8.93	71.164
6/28/2007 13:38	14.22	3.868	8.931	71.14
6/28/2007 13:38	15.06	3.868	8.931	71.112
6/28/2007 13:38	15.96	3.867	8.929	71.09
6/28/2007 13:38	16.92	3.868	8.931	71.093
6/28/2007 13:38	17.88	3.868	8.931	71.048
6/28/2007 13:38	18.96	3.869	8.933	71.014
6/28/2007 13:38	20.1	3.869	8.934	70.981
6/28/2007 13:38	21.3	3.868	8.931	70.949
6/28/2007 13:38	22.56	3.869	8.933	70.919
6/28/2007 13:38	23.88	3.869	8.932	70.879
6/28/2007 13:38	25.32	3.868	8.932	70.844
6/28/2007 13:38	26.82	3.868	8.931	70.837
6/28/2007 13:38	28.38	3.868	8.931	70.78
6/28/2007 13:38	30.06	3.868	8.931	70.738
6/28/2007 13:38	31.86	3.868	8.932	70.688
6/28/2007 13:38	33.72	3.868	8.931	70.644
6/28/2007 13:39	35.76	3.868	8.932	70.597
6/28/2007 13:39	37.86	3.868	8.931	70.564
6/28/2007 13:39	40.08	3.869	8.934	70.5
6/28/2007 13:39	42.48	3.869	8.933	70.454
6/28/2007 13:39	45	3.869	8.933	70.405
6/28/2007 13:39	47.64	3.868	8.932	70.355
6/28/2007 13:39	50.46	3.869	8.933	70.281
6/28/2007 13:39	53.46		8.93	70.201
0/20/2007 13.38	JJ.40	3.868	0.93	70.217

6/28/2007 13:39	56.649	3.868	8.93	70.189
6/28/2007 13:39	60	3.868	8.931	70.115
6/28/2007 13:39	63.6	3.868	8.932	70.024
6/28/2007 13:39	67.199	3.868	8.931	69.952
6/28/2007 13:39	71.4	3.867	8.929	69.886
6/28/2007 13:39	75.6	3.867	8.929	69.794
6/28/2007 13:39	79.8	3.868	8.931	69.723
6/28/2007 13:39	84.6	3.867	8.929	69.641
6/28/2007 13:39	90.023	3.867	8.93	69.548
6/28/2007 13:40	94.8	3.868	8.932	69.481
6/28/2007 13:40	100.8	3.866	8.927	69.401
6/28/2007 13:40	106.8	3.872	8.94	69.288
6/28/2007 13:40	112.8	4.121	9.516	69.2
6/28/2007 13:40	119.4	4.081	9.423	69.106
6/28/2007 13:40	126.6	4.045	9.339	69.007
6/28/2007 13:40	134.399	4.026	9.296	68.896
6/28/2007 13:40	142.199	4.025	9.294	68.8
6/28/2007 13:40	150.6	4.016	9.273	68.714
6/28/2007 13:41	159.6	4.012	9.263	68.581
6/28/2007 13:41	169.2	4.009	9.257	68.473
6/28/2007 13:41	178.8	4.006	9.25	68.377
6/28/2007 13:41	189.599	4.004	9.245	68.264
6/28/2007 13:41	201	4	9.235	68.174
6/28/2007 13:41	213	3.997	9.229	68.07
6/28/2007 13:42	225.599	3.995	9.224	67.965
6/28/2007 13:42	238.8	3.992	9.218	67.871
6/28/2007 13:42	253.199	3.991	9.214	67.777
6/28/2007 13:42	268.2	3.987	9.205	67.676
6/28/2007 13:43	283.799	3.985	9.201	67.589
6/28/2007 13:43	300.599	3.982	9.195	67.522
6/28/2007 13:43	318.599	3.981	9.193	67.399
6/28/2007 13:44	337.2	3.977	9.182	67.309
6/28/2007 13:44	357.599	3.974	9.176	67.221
6/28/2007 13:44	378.599	3.971	9.168	67.149
6/28/2007 13:44	400.799	3.968	9.161	67.149
6/28/2007 13:45	424.799	3.964	9.153	67.006
6/28/2007 13:45			9.133	
	450.041	3.961		66.945
6/28/2007 13:46	476.399	3.958	9.14	66.885
6/28/2007 13:46	504.599	3.955	9.131	66.835
6/28/2007 13:47	534.599	3.95	9.121	66.78
6/28/2007 13:47	566.4	3.949	9.117	66.73
6/28/2007 13:48	600.1	3.944	9.107	66.685
6/28/2007 13:49	636	3.941	9.101	66.638
6/28/2007 13:49	672	3.939	9.095	66.603
6/28/2007 13:50	713.999	3.935	9.086	66.567
6/28/2007 13:51	756	3.932	9.078	66.533
6/28/2007 13:51	797.999	3.929	9.073	66.501
6/28/2007 13:52	845.999	3.936	9.087	66.462
6/28/2007 13:53	900.114	3.923	9.058	66.444
6/28/2007 13:54	948	3.921	9.053	66.421
6/28/2007 13:55	1008	3.918	9.045	66.391
6/28/2007 13:56	1068	3.915	9.039	66.36
6/28/2007 13:57	1128	3.913	9.035	66.328
6/28/2007 13:58	1193.999	3.91	9.028	66.311
6/28/2007 13:59	1265.999	3.907	9.021	66.287
6/28/2007 14:00	1343.999	3.905	9.016	66.259
			-	


6/28/2007 14:02	1421.999	3.734	8.621	66.241
6/28/2007 14:03	1505.999	3.755	8.669	66.177
6/28/2007 14:05	1596	3.767	8.699	66.116
6/28/2007 14:06	1691.999	3.778	8.723	66.095
6/28/2007 14:08	1788	3.787	8.743	66.057
6/28/2007 14:10	1896	3.795	8.762	66.038
6/28/2007 14:11	2010.024	3.803	8.78	66.022
6/28/2007 14:13	2130.032	3.808	8.793	66.003
6/28/2007 14:16	2256	3.814	8.808	65.987
6/28/2007 14:18	2388	3.82	8.821	65.96
6/28/2007 14:20	2531.999	3.825	8.833	65.944

Color Spectrum

Bouwer and Rice Graph

LaFayette, GA June 28, 2007

MW-9

Analysis by Starpoint Software

Ho is 0.131 feet at 63.6 Seconds

Report Date: 7/2/2007 11:52

Report User Name: amodi

Report Computer Name: EPS-DIM-2400

Log File Properties

File Name MW 9-[2] 2007-06-28 11.50.41.wsl Create Date 6/28/2007 14:50

Device Properties

Device LevelTroll 700
Site color spectrum mw-4

Device Name MW4

Serial Number 114123 Firmware Version 2.04

Log Configuration

Log Name MW 9-[2]
Created By Unknown
Computer Name Pocket PC
Application WinSituMobile.exe

Application Version 5.1.0.11

Create Date 6/28/2007 14:41
Notes Size(bytes) 4096
Type True Logarithmic
Overwrite when full Disabled

Scheduled Start Manual Start
Scheduled Stop No Stop Time

Max Interval Days: 0 Hours: 00 Mins: 20 Secs: 00

Level Reference Settings At Log Creation

Level Measurement Mode Depth

Specific Gravity 0.999

Log Notes:

Date and Time Note

6/28/2007 14:42 Manual Start Command 6/28/2007 14:50 Suspend Command 6/28/2007 14:50 Manual Stop Command

Log Data:

Record Count 101

		Sensor: Pres 15G	Sensor: Pres 15G	Sensor: Pres 15G	
Elapsed Time		SN#: 114123	SN#: 114123	SN#: 114123	
Seconds		Pressure (PSI)	Depth (ft)	Temperature (F)	
:42	0	2.829	6.533	73.21	
:42	0.25	2.829	6.533	73.245	
:42	0.501	2.831	6.538	73.274	
:42	0.966	2.841	6.56	73.269	
:42	1.17	2.841	6.56	73.296	
:42	1.374	2.829	6.531	73.31	
:42	1.581	2.829	6.532	73.328	
	Seconds 42 42 42 42 42 42 42	Seconds 42 0 42 0.25 42 0.501 42 0.966 42 1.17 42 1.374	Elapsed Time SN#: 114123 Pressure (PSI) 42 0 2.829 42 0.25 2.829 42 0.501 2.831 42 0.966 2.841 42 1.17 2.841 42 1.374 2.829	Elapsed Time SN#: 114123 SN#: 114123 Seconds Pressure (PSI) Depth (ft) 42 0 2.829 6.533 42 0.25 2.829 6.533 42 0.501 2.831 6.538 42 0.966 2.841 6.56 42 1.17 2.841 6.56 42 1.374 2.829 6.531	

6/28/2007 14:42	1.785	2.829	6.532	73.342
6/28/2007 14:42	2	2.829	6.533	73.35
6/28/2007 14:42	2.25	2.829	6.532	73.346
6/28/2007 14:42	2.5	2.829	6.532	73.353
6/28/2007 14:42	2.75	2.829	6.532	73.35
6/28/2007 14:42	3	2.829	6.532	73.36
6/28/2007 14:42	3.25	2.829	6.532	73.363
6/28/2007 14:42	3.5	2.829	6.533	73.366
6/28/2007 14:42	3.75	2.83	6.533	73.372
6/28/2007 14:42	4	2.828	6.531	73.366
6/28/2007 14:42	4.25	2.829	6.531	73.377
6/28/2007 14:42	4.5	2.829	6.531	73.37
6/28/2007 14:42	4.75	2.828	6.53	73.378
6/28/2007 14:42	5	2.828	6.53	73.382
6/28/2007 14:42	5.389	2.829	6.532	73.366
6/28/2007 14:42	5.592	2.829	6.531	73.41
6/28/2007 14:42	5.925	2.829	6.531	73.38
6/28/2007 14:42	6.316	2.83	6.535	73.396
6/28/2007 14:42	6.521	2.829	6.532	73.403
6/28/2007 14:42	6.726	2.829	6.532	73.413
6/28/2007 14:42	7.14	2.828	6.529	73.375
6/28/2007 14:42	7.56	2.829	6.533	73.361
6/28/2007 14:42	7.98	2.829	6.531	73.356
6/28/2007 14:42	8.46	2.829	6.531	73.349
6/28/2007 14:42	9	2.828	6.53	73.331
6/28/2007 14:42	9.48	2.828	6.531	73.333
6/28/2007 14:42	10.08	2.829	6.532	73.325
6/28/2007 14:42	10.68	2.829	6.532	73.348
6/28/2007 14:42	11.28	2.828	6.531	73.324
6/28/2007 14:42	11.94	2.829	6.532	73.317
6/28/2007 14:42	12.66	2.83	6.535	73.306
6/28/2007 14:42	13.44	2.829	6.532	73.3
6/28/2007 14:42	14.22	2.829	6.531	73.295
6/28/2007 14:42	15.06	2.829	6.532	73.294
6/28/2007 14:42	15.96	2.829	6.531	73.288
6/28/2007 14:42	16.92	2.829	6.532	73.283
6/28/2007 14:42	17.88	2.828	6.531	73.285
6/28/2007 14:42	18.96	2.829	6.532	73.281
6/28/2007 14:42	20.1	2.83	6.533	73.275
6/28/2007 14:42	21.467	2.829		
			6.533	73.297
6/28/2007 14:42	22.56	2.829	6.533	73.279
6/28/2007 14:42	23.88	2.829	6.532	73.267
6/28/2007 14:42	25.32	2.829	6.532	73.264
6/28/2007 14:42	26.82	2.829	6.532	73.261
6/28/2007 14:42	28.38	2.83	6.534	73.257
6/28/2007 14:42	30.06	2.83	6.535	73.257
6/28/2007 14:42	31.86	2.829	6.533	73.279
6/28/2007 14:42	33.72	2.83	6.535	73.25
6/28/2007 14:42	35.76	2.83	6.535	73.247
6/28/2007 14:42	37.86	2.829	6.533	73.245
6/28/2007 14:42	40.08	2.83	6.535	73.243
6/28/2007 14:42	42.48	2.83	6.534	73.246
6/28/2007 14:42	45	2.83	6.535	73.241
6/28/2007 14:43		2.831		73.231
	47.64		6.537	
6/28/2007 14:43	50.46	2.835	6.545	73.235
6/28/2007 14:43	53.46	3.15	7.274	73.237
6/28/2007 14:43	56.64	2.908	6.715	73.227

6/28/2007 14:43	60	2.939	6.785	73.222
6/28/2007 14:43	63.6	2.886	6.664	73.228
6/28/2007 14:43	67.199	2.877	6.644	73.223
6/28/2007 14:43	71.472	2.867	6.62	73.249
6/28/2007 14:43	75.6	2.86	6.603	73.217
6/28/2007 14:43	79.8	2.856	6.595	73.212
6/28/2007 14:43	84.6	2.854	6.59	73.212
6/28/2007 14:43	90	2.852	6.586	73.21
6/28/2007 14:43	94.8	2.851	6.583	73.21
6/28/2007 14:43	100.99	2.851	6.583	73.204
6/28/2007 14:43	106.8	2.85	6.58	73.206
6/28/2007 14:44	112.8	2.85	6.581	73.217
6/28/2007 14:44	119.4	2.851	6.582	73.208
6/28/2007 14:44	126.6	2.85	6.58	73.209
6/28/2007 14:44	134.399	2.85	6.581	73.208
6/28/2007 14:44	142.199	2.851	6.582	73.218
6/28/2007 14:44	150.6	2.85	6.58	73.202
6/28/2007 14:44	159.6	2.85	6.58	73.198
6/28/2007 14:45	169.2	2.85	6.582	73.197
6/28/2007 14:45	178.8	2.851	6.582	73.189
6/28/2007 14:45	189.6	2.85	6.581	73.183
6/28/2007 14:45	201.045	2.85	6.581	73.185
6/28/2007 14:45	213	2.85	6.581	73.188
6/28/2007 14:45	225.599	2.85	6.581	73.174
6/28/2007 14:46	238.8	2.85	6.58	73.178
6/28/2007 14:46	253.199	2.85	6.58	73.186
6/28/2007 14:46	268.199	2.85	6.58	73.181
6/28/2007 14:46	283.799	2.85	6.58	73.196
6/28/2007 14:47	300.6	2.85	6.581	73.199
6/28/2007 14:47	318.599	2.849	6.579	73.206
6/28/2007 14:47	337.2	2.85	6.58	73.216
6/28/2007 14:48	357.6	2.85	6.579	73.217
6/28/2007 14:48	378.599	2.85	6.581	73.22
6/28/2007 14:48	400.98	2.85	6.581	73.26
6/28/2007 14:49	424.799	2.79	6.441	73.231
6/28/2007 14:49	450	2.846	6.571	73.225
6/28/2007 14:50	476.399	2.847	6.574	73.229

APPENDIX H

Risk Reduction Standards Calculations

Table I Georgia Specific Values

			Table 2	Table 1	
		NC	Soil	GW	GA MCL
Parameter	CASText	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)
1,1,1-Trichloroethane	71-55-6	5.44		0.2	0.2
1,1-Dichloroethane	75-34-3	0.03		4	
1,1-Dichloroethene	75-35-4	0.36		0.007	0.007
Acetone	67-64-1	2.74		4	
Arsenic	7440-38-2	41	20	0.01	0.01
Freon-113	76-13-1	6.92		1000	
Freon-12	75-71-8	1.49		1	
Isopropylbenzene	98-82-8	21.88			
Lead	7439-92-1	400	75	0.015	
Tetrachloroethene	127-18-4	0.18		0.005	0.005

HSRA: Hazardous Site Response Act's Hazardous Site Response Rules ("Rules")

NC: Notification Concentration - Appendix I of the Rules

Table 2 Soil: Appendix III Table 2 of the Rules Table 1 GW: Appendix III Table 1 of the Rules

GA MCL: Georgia Maximum Contaminant Level (Rules for Safe Drinking Water)

Table II Toxicity Factors

		NonC	ancer Toxicity	Values	Cancer Toxicity Values						
Analyte	CAS	Oral RfD	Inhalation RFC	Inhalation RfD	Oral CSF	Inhalation Unit Risk	Inhalation CSF	Cancer Class	VOC		
		mg/kg-day	mg/m3	mg/kg-day	per mg/kg- day	per ug/m3	per mg/kg- day				
1,1,1-Trichloroethane	71-55-6	2	5	1.4					V		
1,1-Dichloroethane	75-34-3	0.2			0.0057	0.0000016	0.0056	С	V		
1,1-Dichloroethene	75-35-4	0.05	0.2	0.057					V		
Acetone	67-64-1	0.9	31	8.9					V		
Arsenic	7440-38-2	0.0003	0.000015	0.0000043	1.5	0.0043	15	Α			
Freon-113	76-13-1	30	30	8.6					V		
Freon-12	75-71-8	0.2	0.1	0.029					V		
Isopropylbenzene	98-82-8	0.1	0.4	0.11					V		
Lead	7439-92-1										
Tetrachloroethene	127-18-4	0.006	0.04	0.011	0.0021	2.6E-07	0.00091	В	V		

Values are from the EPA Regional Screening Level Summary Table (May 2014), except where noted IRIS: Intigrated Risk Information System (www.epa.gov/IRIS/)

Table III Groundwater Risk Calculations

RAGS Eqn. 1													
			Oral	Inhalation		Adult		Child		Worker			
Analyte	CAS	Volatile?	CSF	CSF	Ingestion	Inhalation	Total	Ingestion	Inhalation	Total	Ingestion	Inhalation	Total
			per mg/kg- day	per mg/kg- day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
1,1,1-Trichloroethane	71-55-6	V				<u></u>							
1,1-Dichloroethane	75-34-3	V	0.0057	0.0056	0.15	0.041	0.032	0.32	0.043	0.038	0.50	0.051	0.046
1,1-Dichloroethene	75-35-4	V											
Acetone	67-64-1	V											
Arsenic	7440-38-2		1.5	15	0.00057		0.00057	0.0012		0.0012	0.0019		0.0019
Freon-113	76-13-1	V											
Freon-12	75-71-8	V											
Isopropylbenzene	98-82-8	V											
Lead	7439-92-1						·						
Tetrachloroethene	127-18-4	V	0.0021	0.00091	0.41	0.25	0.15	0.87	0.27	0.20	1.4	0.31	0.26

Ingestion/Oral C (mg/kg) =	TR x BW x AT	_
	EF x ED x (SFo x IRw)	=
Inhalation C (mg/kg) =	TR x BW x AT	_
	EF x ED x (SFi x K x IRa)	='
RAGS Eqn 1 =	TR x BW x AT	_
	EF x ED x [(SFo x IRw) + (SFi x K x IRa)]	="

Note: Inhalation pathway not calculated if not volatile

	Adı	ult	Ch	ild	Wor	ker	
Parameter	Parameter				Source	Value	Source
Body Weight, Adult (kg)	BW	70	1	15	2	70	1
Exposure Frequency, Resident Adult (d/yr)	EF	350	1	350	1	250	1
Exposure Duration, Resident Adult (yr)	ED	30	1	6	2	25	1
Soil Ingestion, Resident Adult (mg/d)	IRs	114	1	200	2	50	1
Water ingestion, Resident Adult (L/d)	IRw	2	1	1	1	1	1
Inhalation Rate, Resident Adult (m³/d)	IRa	15	1	15	2	20	1
Averaging Time, Cancer, Adult (d)	AT	25550	1	25550	1	25550	1
Target Risk	TR	1E-05	1	1E-05	1	1E-05	1
Water-to-air volatilization factor (L/m3)	K	0.5	1	0.5	1	0.5	1
Particulate Emission Factor (m3/kg)	PEF	4630000000	1	4630000000	1	4630000000	1

Notes:

Source 1 - GaEPD Reg 391-3-19 Appendix III, Table 3

Source 2 - HSRA Guidance http://www.georgiaepd.org/Documents/hsraguideCSRRRS.html

Table IV Groundwater Hazard Calculations

		Volatile?	Overl	la halatia a					RAGS Eqn. 2					
			Oral RfD	Inhalation RfD		Adult			Child			Worker		
Analyte	CAS		KID	KID	Ingestion	Inhalation	Total	Ingestion	Inhalation	Total	Ingestion	Inhalation	Total	
			mg/kg-day	mg/kg-day	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
1,1,1-Trichloroethane	71-55-6	V	2	1.4	73	14	12	31	3.0	2.7	204	15	14	
1,1-Dichloroethane	75-34-3	V	0.2		7.3		7.3	3.1		3.1	20		20	
1,1-Dichloroethene	75-35-4	V	0.05	0.057	1.8	0.56	0.43	0.78	0.12	0.10	5.1	0.58	0.52	
Acetone	67-64-1	V	0.9	8.9	33	86	24	14	18	8.0	92	91	46	
Arsenic	7440-38-2		0.0003	4.29E-06	0.011		0.011	0.0047		0.0047	0.031		0.031	
Freon-113	76-13-1	V	30	8.6	1095	83	78	469	18	17	3066	88	85	
Freon-12	75-71-8	V	0.2	0.029	7.3	0.28	0.27	3.1	0.060	0.058	20	0.29	0.29	
Isopropylbenzene	98-82-8	V	0.1	0.11	3.7	1.1	0.85	1.6	0.24	0.21	10	1.2	1.0	
Lead	7439-92-1	·												
Tetrachloroethene	127-18-4	V	0.006	0.011	0.22	0.11	0.074	0.094	0.024	0.019	0.61	0.12	0.098	

Lead GSL based on Appendix III concentration

Note: Inhalation pathway not calculated if not volatile

RAGS Eqn 2 =	THI x BW x AT
_	EF x ED x [(1/RfDo x IRw) + (1/RfDi x K x IRa)]

		Ad	ult	Chi	ld	Wor	ker
Parameter		Value	Source	Value	Source	Value	Source
Body Weight, Adult (kg)	BW	70	1	15	2	70	1
Exposure Frequency, Resident Adult (d/yr)	EF	350	1	350	1	250	1
Exposure Duration, Resident Adult (yr)	ED	30	1	6	2	25	1
Soil Ingestion, Resident Adult (mg/d)	IRs	114	1	200	2	50	1
Water ingestion, Resident Adult (L/d)	IRw	2	1	1	1	1	1
Inhalation Rate, Resident Adult (m³/d)	IRa	15	1	15	2	20	1
Averaging Time, Noncancer, Adult (d)	AT	10950	1	2190	1	9125	1
Target hazard quotient	THQ	1	1	1	1	1	1
Water-to-air volatilization factor (L/m3)	K	0.5	1	0.5	1	0.5	1
Particulate Emission Factor (m3/kg)	PEF	4630000000	1	4630000000	1	4630000000	1

Exposure Duration x 365 days

Notes:

Source 1 - GaEPD Reg 391-3-19 Appendix III, Table 3

Source 2 - HSRA Guidance http://www.georgiaepd.org/Documents/hsraguideCSRRRS.html

Table V Groundwater Residential Risk Reduction Standards

			TYPE 1 G	W RRS					TYPE 2 GW	/ RRS			
					ce: The lesser of NA, the higher of	Rule 391-3-1907(7)(b): The lesser of Items 1 and 2 (or where NA, the higher of Table 1 App III, background or DL)							
Analyte	CAS	DL or Bkg)				Item 1: RAGS Eqn 2 (NC)		Item 2: RAG	SS Eqn 1 (C)		Alternate	Alternate, if NA	
		Table 1, App III mg/L	GA MCL mg/L	Bkg* mg/L	Type 1 GW RRS mg/L	Adult mg/L	Child mg/L	Adult mg/L	Child mg/L	Lesser of Items 1 and 2	Table 1, App III mg/L	Bkg* mg/L	Type 2 GW RRS mg/L
1,1,1-Trichloroethane	71-55-6	0.2	0.2		0.2	12	2.7			2.7	0.2		2.7
1,1-Dichloroethane	75-34-3	4			4	7.3	3.1	0.032	0.038	0.032	4		0.032
1,1-Dichloroethene	75-35-4	0.007	0.007		0.007	0.43	0.10			0.10	0.007		0.10
Acetone	67-64-1	4			4	24	8.0			8.0	4		8.0
Arsenic	7440-38-2	0.01	0.01		0.01	0.011	0.0047	0.00057	0.00122	0.00057	0.01		0.00057
Freon-113	76-13-1	1000			1000	78	17			17	1000		17
Freon-12	75-71-8	1			1	0.27	0.058			0.058	1		0.058
Isopropylbenzene	98-82-8				0.005 *	0.85	0.21			0.21			0.21
Lead	7439-92-1	0.015			0.015						0.015		0.015
Tetrachloroethene	127-18-4	0.005	0.005		0.005	0.074	0.019	0.15	0.20	0.019	0.005		0.019

Residential GW RRS - higher of Type 1 and 2 mg/L							
2.7							
4							
0.10							
8.0							
0.01							
1000							
1							
0.21							
0.015							
0.019							

^{*} Method detection limit

Table VI Groundwater Industrial Risk Reduction Standards

Analysis		TYPE 3 GW RRS	TYPE 3 GW RRS TYPE 4 GW RRS										
	CAS	Rule 391-3-1907(8)(c)		Rule 391-3-1907(9)(c): The lesser of Items 1 and 2 (or where NA, the higher o Table 1 App III, background and DL)									
Analyte	CAS	Same as		Item 1	Item 2	Lesser of	Alternate						
		Type 1 GW RRS		RAGS Eqn 2	RAGS Eqn 1	Items 1 and	Table 1 App		Type 4 GW				
				(NC)	(C)	2	III	Bkg*	RRS				
		mg/L		mg/L	mg/L	mg/L	mg/L		mg/L				
1,1-Dichloroethene	75-35-4	0.007		0.52		0.52	0.007		0.52				
Tetrachloroethene	127-18-4	0.005		0.098	0.26	0.098	0.005		0.098				

Non-Residential							
RRS - higher of							
Type 3 and 4							
mg/L							
0.52							
0.098							

Table VII Summary of Risk Reduction Standards

Analyte	CAS	Maximum			Ground	dwater		
		Detected Concentration On-Site μg/L	Type 1 RRS μg/L	Type 2 RRS μg/L	Residential RRS μg/L	Type 3 RRS μg/L	Type 4 RRS μg/L	Non- Residential RRS µg/L
1,1,1-Trichloroethane	71-55-6	2,100	200	2,720	2,720			
1,1-Dichloroethane	75-34-3	280	4,000	32	4,000			
1,1-Dichloroethene	75-35-4	290	7	103	103	7	524	524
Acetone	67-64-1	140	4,000	7,990	7,990			
Arsenic	7440-38-2	ND	10	0.57	10			
Freon-113	76-13-1	27,000	1,000,000	17,221	1,000,000			
Freon-12	75-71-8	680	1,000	58	1,000			
Isopropylbenzene	98-82-8	46	5	207	207			
Lead	7439-92-1	15.6*	15	15	15			
Tetrachloroethene	127-18-4	350	5.0	19	19	5.0	98	98

^{*} This detection was in 2009 when the well could not be fully developed due to slow recharge, represents a highly turbid sample, and is not considered valid. Lead was not detected in a filtered sample in 2009 nor was it detected in an unfiltered sample in 2013.

Bold - exceeds Residential or Non-Residential RRS

APPENDIX I

Wildlife Resources Division Letter

Noel Holcomb, Commissioner Dan Forster, Director

Georgia Department of Natural Resources Wildlife Resources Division

Nongame Conservation Section 2065 U.S. Highway 278, S.E., Social Circle, Georgia 30025-4743 (770) 918 6411

December 6, 2007

Justin Vickery, Senior Geologist EPS 900 Ashwood Parkway Atlanta, GA 30338

Subject:

Known Occurrences of Conservation Areas and Special Concern Animals and Plants On or Near EPD Hazardour Site Compliance Status Report, T&E Species Review, Walker County, Georgia

Dear Mr. Vickery:

This is in response to your request of November 27, 2007. According to our records, within a three-mile radius of the project site there are the following Natural Heritage Database occurrences:

Aesculus glabra (Ohio Buckeye) approx. 2.5 mi. W of site

- GA Aneides aeneus (Green Salamander) approx. 3.0 mi. W of site Carya laciniosa (Shellbark Hickory) approx. 3.0 mi. W of site
- GA Crataegus triflora (Three-flowered Hawthorn) approx. 3.0 mi. W of site Etheostoma coosae (Coosa Darter) approx. 1.0 mi. SE of site in Town Creek Etheostoma coosae (Coosa Darter) approx. 2.5 mi. N of site in Dry Creek Etheostoma coosae (Coosa Darter) approx. 2.5 mi. W of site in Duck Creek Fraxinus quadrangulata (Blue Ash) approx. 3.0 mi. W of site
- GA Jeffersonia diphylla (Twinleaf) approx. 3.0 mi. W of site
- GA Neviusia alabamensis (Alabama Snow-wreath) approx. 3.0 mi. W of site Phacelia purshii (Miami-mist) approx. 2.5 mi. W of site Ponthieva racemosa (Shadow-witch Orchid) approx. 3.0 mi. W of site Potamogeton amplifolius (Bigleaf Pondweed) approx. 1.0 mi. N of site Blue Hole [Cave] approx. 3.0 mi. W of site Chattooga River [High Priority Stream] approx. 1.0 mi. SE of site Crockford-Pigeon Mountain WMA [GA DNR] approx. 2.5 mi. W of site Duck Creek [High Priority Stream] approx. 2.0 mi. SW of site Wayne's Dudhole [Cave] approx. 3.0 mi. W of site

Recommendations:

We have no records of species of concern within the project area. Please encourage strict measures to protect the important aquatic resources near this site. This site occurs near Duck

^{*} Entries above proceeded by "US" indicates species with federal status in Georgia (Protected or Candidate). Species that are federally protected in Georgia are also state protected; "GA" indicates Georgia protected species.

Creek and the Chattooga River, both high priority streams. As part of an effort to develop a comprehensive wildlife conservation strategy for the state of Georgia, the Wildlife Resources division has developed and mapped a list of streams that are important to the protection or restoration of rare aquatic species and aquatic communities. High priority waters and their surrounding watersheds are a high priority for a broad array of conservation activities, but do not receive any additional legal protections. We now have GIS ESRI shapefiles of GA high priority waters available on our website

(http://www.georgiawildlife.com/content/displaycontent.asp?txtDocument=89&txtPage=13). Please contact the Georgia Natural Heritage Program if you would like additional information on high priority waters.

New Data Available on the Nongame Conservation Section Website

We have recently updated the Nongame Conservation Section Website!!! You can view the updated rare species and natural community information by Quarter Quad, County and HUC8 Watershed. To access this information, please visit our GA Rare Species and Natural Community Information page at:

http://georgiawildlife.dnr.state.ga.us/content/displaycontent.asp?txtDocument=89 An updated ESRI shape file of our rare species and natural community data by quarter quad and county is also available. It can be downloaded from:

http://georgiawildlife.dnr.state.ga.us/assets/documents/gnhp/gnhpds.zip

Disclaimer:

Please keep in mind the limitations of our database. The data collected by the Nongame Conservation Section comes from a variety of sources, including museum and herbarium records, literature, and reports from individuals and organizations, as well as field surveys by our staff biologists. In most cases the information is not the result of a recent on-site survey by our staff. Many areas of Georgia have never been surveyed thoroughly. Therefore, the Nongame Conservation Section can only occasionally provide definitive information on the presence or absence of rare species on a given site. Our files are updated constantly as new information is received. Thus, information provided by our program represents the existing data in our files at the time of the request and should not be considered a final statement on the species or area under consideration.

If you know of populations of special concern species that are not in our database, please fill out the appropriate data collection form and send it to our office. Forms can be obtained through our web site (http://www.georgiawildlife.com) or by contacting our office. If I can be of further assistance, please let me know.

Sincerely,

Katrina Morris

Thina Morris

Environmental Review Coordinator

APPENDIX J

Vapor Intrusion Model

PROJI		ynte	ec I	ndustries	s, Inc.	Lo	g of Boring	No.	MW-2
SITE L	OCATION				======================================		OF CASING ELEVATION		
DRILLI	NG CON	TRACTO	or: A	Atlas Geo-Sa		DATE	STARTED: 6/20/06	DATE FIN	NSHED: 0/06
DRILLI	NG METI	HOD:		Direct P	ush	TOTAL	0/20/00 L DEPTH (ft.):	SCREEN	INTERVAL (ft.): -12
DRILLI	NG EQU	PMENT	:	AMS Power	Probe		H TO WATER AT TIME DRING (ft.):	CASING	
SAMPI	LING ME	THOD:	Mac	rocore w/ Ac	etate Liner	BORE	:HOLE ETER (In.): 7.2	WELL	
LOGG	ED BY:			K. Moor	e		, ,	,	·
F a		PLES	ng		DESCRIPTION		W	ELL CONSTRUC	
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): N/A		С	DETAILS AND/ RILLING REMA	
5— 10— 15— 20— 25— 33— 40— 45—			0 0.5 5.5		Tan orange sandy clay (fill native at 7 ft Tan gray clayey course gray some foliation - sa	l) transition to		erminated at 12	ft-bls.
50- E	PS								

PROJI		nte	c I	ndustries	s, Inc.	Lo	g of Boring N	o. MW-3
SITE L	OCATION:			La F	ayette, GA	TOP	OF CASING ELEVATION (ft):	N/A
DRILLI	NG CONT	RACTO	R: A	Atlas Geo-Sai	·	DATE	STARTED: 6/20/06	DATE FINISHED: 6/20/06
DRILLI	NG METH	OD:		Direct P	ush	TOTAL	DEPTH (ft.):	SCREEN INTERVAL (ft.): 2-15
DRILLI	NG EQUIP	MENT:		AMS Power	Probe		H TO WATER AT TIME DRING (ft.):	CASING (ft.): 0-2
SAMPI	LING METH	HOD:	Mac	rocore w/ Ace	etate Liner	BORE		WELL DIAMETER (In.): 2
LOGG	ED BY:			K. Moor	e		(,	, , _
돈 _	SAMP		ng		DESCRIPTION			CONSTRUCTION
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading	Top of Casing E	evation (ft): N/A			AILS AND/OR ING REMARKS
5			0.5 0.2 0.1 0		Gray brown clayey mediu (moist) Tan gray clayey course grain saprolite Gray brown clayey course saprolite	m grain sand		ated at 15 ft-bls.
25—								
35— - - - 40—								
45—								
E	PS							

	ECT:	Sy	nte	c I	ndustrie	s, Inc.	Lo	g of Bo	ring N	o. MW
SITE I	OCATI	ION:			 La l	======================================		OF CASING ELE		
DRILL	ING CC	ONTR	ACTO	R: A	Atlas Geo-Sa	<u> </u>		STARTED: 6/21/07		DATE FINISHED: 6/21/07
DRILL	ING ME	ETHC)D:		Direct Push	and HSA	ТОТА	L DEPTH (ft.):	16	SCREEN INTERVAL (fi
DRILL	ING EC	QUIPN	MENT:		GeoProl	be		H TO WATER AT DRING (ft.):		CASING (ft.): 0-6
SAMP	LING M	ИΕΤΗ	OD:	Ма	crocore Acet	ate Liner	BORE	EHOLE ETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGO	ED BY	' :		N/A	G. Henr	у	Dirwi	LTER (III.).	1.20	DIAMETER (III.). Z
I.		AMPL		g.		DESCRIPTION			WELL C	ONSTRUCTION
DEPTH (feet)	Sample No.	ocation	Blows/ Foot	PID Reading	Top of Casing E					AILS AND/OR ING REMARKS
0	S	ĭ			Top of Casing E	Dark brown clayey sand	with ground			
-					X:	Black weathered	J			
5-						Black Weathered	TOOK			
-						Tan clay with some gra	avel (wet)			
10-					* / X X X * /)		
-						Tan weathered rock with co	ome clay (wet)		
15-						Tan clay with ro	ock			
15-									Termina	ated at 16 ft-bls.
-										
20-										
-										
25-										
-	-									
30-										
35-										
-										
-										
40-										
-										
45-										
-										
	1									

PROJECT: Syntec II	ndustries, Inc.	Log of	Boring N	o. MW-5
SITE LOCATION:	La Fayette, GA		G ELEVATION (ft):	
DRILLING CONTRACTOR: A	<u> </u>	DATE STARTED		DATE FINISHED: 6/21/07
DRILLING METHOD:	Hollow Stem Auger	TOTAL DEPTH (ft.):	SCREEN INTERVAL (ft.): 3-13
DRILLING EQUIPMENT:	Deitrich	DEPTH TO WAT OF BORING (ft.)	TER AT TIME	CASING (ft.): 0-3
SAMPLING METHOD:	Split Spoon	BOREHOLE DIAMETER (In.)		WELL DIAMETER (In.): 2
LOGGED BY: N/A	G. Henry	Dir tivic i cirt (iii.)	1.20	Dirame Lett (m.).
SAMPLES	DESCRIPTION			CONSTRUCTION
DEPTH (feet) (feet) No. No. Blows/ Foot PID Reading	Top of Casing Elevation (ft): 797.19			AILS AND/OR ING REMARKS
10— 15— 20— 30— 40— 45—	Gravel Red clay with g Dark brown clay with some w Red clay with interbedded some grave Dark red clay with some bla Orange-red clay with rock g	rock gravel and its	Termina	ated at 13ft-bls.

Synteci	ndustries, Inc.	Log of Bo		
SITE LOCATION:	La Fayette, GA	TOP OF CASING EL	EVATION (ft):	796.62
DRILLING CONTRACTOR: A	Atlas Geo-Sampling	DATE STARTED: 6/21/0	7	DATE FINISHED: 6/21/07
DRILLING METHOD:	Hollow Stem Auger	TOTAL DEPTH (ft.):	13	SCREEN INTERVAL (ft.): 3-13
DRILLING EQUIPMENT:	Deitrich	DEPTH TO WATER OF BORING (ft.):		CASING (ft.): 0-3
SAMPLING METHOD:	Split Spoon	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGGED BY: N/A	G. Henry	DIAMETER (III.).	7.25	DIAWLILK (III.). Z
SAMPLES	•		WELL C	CONSTRUCTION
DEPTH (feet) (feet) No. No. Blows/ Foot PID Reading			DET	AILS AND/OR ING REMARKS
	Top of Casing Elevation (ft): 796.62			
5— 10— 15— 20— 25— 30— 40—	Brown-tan clay with some gravel Tan clay with some black striations Orange clay with some grand grave Green-gray of	sands and gravel gravel and black ay clay deposits	Termina	ated at 13ft-bls.

PROJE		vnte	ec I	ndustries	s. Inc.	l c	og of Bo	rina N	o. MW-7
SITE L	OCATIO				Fayette, GA		OF CASING ELE		
			ne. A	Atlas Geo-Sa			STARTED:		DATE FINISHED:
	NG MET			Direct Push a		TOTA	6/26/07 AL DEPTH (ft.):		6/26/07 SCREEN INTERVAL (ft.):
	NG EQL			GeoProl			TH TO WATER A		3.5-13.5 CASING (ft.):
	ING ME			acrocore Acet		BORI	ORING (ft.): EHOLE	3.69	0-3.5
	ED BY:	11100.	N/A			DIAM	IETER (In.):	7.25	DIAMETER (In.): 2
	SAM	IPLES			DESCRIPTION			WELLO	CONSTRUCTION
DEPTH (feet)	Sample No.	Blows/ Foot	PID Reading					DETA	AILS AND/OR ING REMARKS
0	- S - S			Top of Casing E	evation (ft): 797.52 Rock gravel				
- - -					Red clay with gr				
5					Red clay with rock lay	vers (wet)		Termina	ated at 13.5ft-bls.
15-									
25— -									
30-									
35-									
40-									
45—									
50-									
E	PS		•					,	

PROJE		Sy	nte	ec I	ndustrie	s, Inc.		Log of	Bori	na No	0.	MV	V-8
SITE L						Fayette, GA		OP OF CASI			801.96		
DRILLI	ING CO	ONTR	RACTO	or: A	Atlas Geo-Sa		D	ATE STARTE	ED: 22/07		DATE FINIS 6/22/		
DRILLI	ING ME	ETHC	D:		Direct Push	and HSA	Т	OTAL DEPTH	H (ft.):	14	SCREEN IN	ITERVAL	_ (ft.):
DRILLI	ING EC	QUIPI	MENT		GeoProl	oe		EPTH TO WA			CASING (ft.	.):	
SAMPI	LING M	ИЕТН	OD:	Ма	crocore Acet	ate Liner	В	OREHOLE IAMETER (Ir		7.25	WELL DIAMETER		2
LOGG	ED BY	·:		N/A	G. Henr	y		<i></i>	,.	7.20	12.1.1.1.1	()	
F .		AMPL		ng		DESCRIPTION					ONSTRUCT		
DEPTH (feet)	Sample No.	ocation	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): 801.96					AILS AND/OI NG REMAR		
0 _	0)				Top of Odding L	Concrete	Э						
5-						Red clay with	gravel						
-						Grey-brown clay witl	h some rock			Termina	ited at 14ft-l	hls	
15— - -									·				
20-													
25—													
30-													
35—													
40-													
45— -													
50-													
E	PS	5											

PROJE		Syr	nte	c I	ndustrie	s, Inc.	L	og of Bor	ing N	o. MW	/ - 9
SITE LO	OCATIO	DN:			La I	======================================		OF CASING ELEV			
ORILLII	NG CONTRACTOR: Atlas Geo-Sampling NG METHOD: Direct Push and HSA						DAT	DATE STARTED: DATE			
ORILLII	NG ME	THOI	D:		Direct Push	and HSA	тот	AL DEPTH (ft.):	14	6/22/07 SCREEN INTERVAL (f 4-14	ft.):
ORILLII	NG EQI	JIPM	IENT:		GeoPro	be		TH TO WATER AT	TIME	CASING (ft.): 0-4	
SAMPL	ING ME	ETHO	DD:	Ма	crocore Ace	tate Liner	BOF	REHOLE METER (In.):	7.45 7.25	WELL DIAMETER (In.): 2	
_OGGI	ED BY:			N/A	G. Henr	у	DIA	WETER (III.).	1.20	DIAWETER (III.). Z	
et)		MPLE		D ding		DESCRIPTION				CONSTRUCTION AILS AND/OR	
DEPTH (feet)	Sample No.	Locati	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): 801.93		_		ING REMARKS	
0 _		-				Concrete					
-						Red clay with grave	el				
5-						Red-brown clay with gr	avel				
-					XX XX XX	Rock layer					
10-						Gray-brown clay with son	ne rock				
-									Termin	ated at 14ft-bls.	
15-									TOTTIME	ated at 14ft bis.	
-											
20-											
-											
_											
25-											
-											
30-											
35—											
-											
-											
40-											
-											
45-											
-											
-											
50-											
E	PS			<u> </u>							

PROJ	ECT:	Co	olo	r Spectrı	um	Lo	g of Bori	ng No	o. MW-10
SITE L	OCATION:			LaFayette	, GA	TOP C	F CASING ELEVA	ATION (ft):	N/A
DRILL	ING CONTE	RACTO	R: <i>F</i>	Atlas Geo-Sa	ımpling	DATE S	STARTED:	0/6/09	DATE FINISHED: 10/6/09
DRILL	ING METHO	DD:		Hollow Ster	m Auger	TOTAL	DEPTH (ft.):	12.5	SCREEN INTERVAL (ft.): 10-12.5
DRILL	ING EQUIP	MENT:		AMS Power	Probe		TO WATER AT T		CASING (ft.):
SAMP	LING METH	HOD:		None		BORE	HOLE	7.25	WELL DIAMETER (In.): 2
LOGG	SED BY:			R. Jone	es		121(11.).	7.20	
H fi	SAMPL		D		DESCRIPTION			WELL CO	ONSTRUCTION ILS AND/OR
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading	Ground Surface	e Elevation (ft): N/A				NG REMARKS
10— 15— 20—					No soils collecte	ed .		below la well usir Gauged	erminated at 12.5-ft nd surface. Installed ng 2-inch screen. and collected vater sample on
E	PS								

PROJECT: Color Spe	ectrum	Log of Bori	ng No). MW-11
SITE LOCATION: LaFa	ayette, GA	TOP OF CASING ELEVA	TION (ft):	N/A
DRILLING CONTRACTOR: Atlas G		DATE STARTED:	0/6/09	DATE FINISHED: 10/6/09
DRILLING METHOD: Hollov	w Stem Auger	TOTAL DEPTH (ft.):		SCREEN INTERVAL (ft.): 17.5-20
DRILLING EQUIPMENT: AMS F	Power Probe	DEPTH TO WATER AT TO OF BORING (ft.):		CASING (ft.): 17.5
SAMPLING METHOD:	None	BOREHOLE		WELL DIAMETER (In.): 2
LOGGED BY:	. Jones	J	7.20	
SAMPLES	DESCRIPTION		WELL CO	INSTRUCTION
Sample (feet) No. No. No. Poot Poot Pload Reading	Surface Elevation (ft): N/A			LS AND/OR IG REMARKS
10-	No soils collected		below lan well using Gauged a	erminated at 20-ft nd surface. Installed g 2-inch screen. and collected ater sample on
EPS		,		

PROJECT: Colo	r Spectrum	Log of Bo	ring No	o. MW-12
SITE LOCATION:	LaFayette, GA	TOP OF CASING ELE	VATION (ft):	795.29
DRILLING CONTRACTOR:	Geo Lab	DATE STARTED:	3/6/2013	DATE FINISHED: 3/6/2013
DRILLING METHOD:	Hollow Stem Auger	TOTAL DEPTH (ft.):	13	SCREEN INTERVAL (ft.): 3-13
DRILLING EQUIPMENT:	Geoprobe	DEPTH TO WATER AT OF BORING (ft.):		CASING (ft.):
SAMPLING METHOD:	N/A	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGGED BY:	B. Crowe		0	, , <u>=</u>
(feet) Sample No. Ocation Blows/ Foot PID Reading	DESCRIPTION		DETA	ONSTRUCTION ILS AND/OR
Sample No. Location Blows/ Foot PID Reading	Ground Surface Elevation (ft): N/A	P0000000000000000000000000000000000000	-	NG REMARKS ounted vault set in
5- 10- 15 20			Filter Sa	
EPS				

PROJECT: Colo	r Spectrum	Log of Bo	ring No	o. MW- 13
SITE LOCATION:	LaFayette, GA	TOP OF CASING ELE	VATION (ft):	796.24
DRILLING CONTRACTOR:	Geo Lab	DATE STARTED:	3/6/2013	DATE FINISHED: 3/6/2013
DRILLING METHOD:	Hollow Stem Auger	TOTAL DEPTH (ft.):	13	SCREEN INTERVAL (ft.): 3-13
DRILLING EQUIPMENT:	Geoprobe	DEPTH TO WATER A' OF BORING (ft.):		CASING (ft.):
SAMPLING METHOD:	N/A	BOREHOLE DIAMETER (In.):	7.25	WELL DIAMETER (In.): 2
LOGGED BY:	B. Crowe			
SAMPLES	P DESCRIPTION			ONSTRUCTION
DEPTH (feet) (feet) No. Location Blows/ Foot PID Reading	Ground Surface Elevation (ft): N/A			NILS AND/OR NG REMARKS
0			concrete Grout 1- Bentonit	
EPS		-1	'	

PROJE		nte	c I	ndustrie	s, Inc.	Lo	og (of Bo	ring No	o. MV	V -14
SITE L	OCATION	:		La Fayett	e, GA	TOF	OF C	ASING ELE	VATION (ft):	N/A	
DRILLI	NG CONT	RACTO	R:	N/A		DAT	E STA	RTED:	8/6/2014	DATE FINISHED: 8/6	/2014
DRILLI	NG METH	OD:		Hand A	uger	тот	AL DE	PTH (ft.):	8	SCREEN INTERVA	
DRILLI	NG EQUIF	PMENT:		Hand A	uger		TH TC	WATER A	T TIME 2.5	CASING (ft.):	0-3
SAMPL	ING MET	HOD:		N/A		BOR	REHOL	E	4	WELL DIAMETER (In.):	2
LOGG	ED BY:		Bei	n Crowe / Ale	ex Testoff	1		,			
F (c)	SAMP		ng		DESCRIPTION					ONSTRUCTION	
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): N/A					ILS AND/OR IG REMARKS	
0 _	0			Top or Casing L	sand and roc	its			Grout		
- -					clayey sand	i			Bentonite	Э	
5-				ପଞ୍ଜର ପ୍ରତ୍ୟକ୍ତ ପଞ୍ଜର ପଞ୍ଜର ପଞ୍ଜର ପଞ୍ଚଳ ପ୍ରତ୍ୟକ୍ତ ପଞ୍ଚଳ ପଞ୍ଚଳ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ	sandy grave	el .			Filter Sar	nd	
-					clay				Terminat	ed at 8 ft-bls.	
10-									Tommac	od at o it bio.	
-											
15—											
-											
20-											
-											
-											
25—											
-											
30-											
-											
35											
-											
40-											
-											
45—											
- -											
=											
50-											
	DC	1					l				

	Sy	nte	c I	ndustries	, Inc.	Lo	g of Bori	ng No	DW-
SITE L	OCATION:			La F	ayette, GA	TOP C	OF CASING ELEVA	TION (ft):	N/A
DRILLI	NG CONTE	RACTO	R:	ESN Southe		DATE	STARTED: 6/21/07		DATE FINISHED: 6/22/07
DRILLI	NG METHO	DD:		Hollow Stem	Auger	TOTAL	DEPTH (ft.):	46	SCREEN INTERVAL (ft.)
RILLI	NG EQUIP	MENT:		Deitrich			H TO WATER AT T PRING (ft.):		CASING (ft.): 0-36
SAMPI	LING METH	IOD:		N/A		BORE			WELL DIAMETER (In.):
.OGG	ED BY:		N/A	G. Henry	,	DI WIL			DIJ WILL LETC (111.):
т.	SAMPL				DESCRIPTION			WELL C	ONSTRUCTION
DEPTH (feet)	Sample No. Location	Blows/ Foot	PID Reading						ILS AND/OR NG REMARKS
0	_ °° °	Вπ		Top of Casing Ele	evation (ft): N/A Gravel				
5— - -				_	Red clay and o			Bore hole Well dia:	e dia: 10.25 in 4 in
10— - - - 15—					Brown-tan clay v Brown cla				
20—					Bedrock with some fr unconsolidated n	actures and		to 20ft-k	le dia: 4 in
45—	DC							50ft-bls.	encountered at Cave in occurred 5 to 50ft-bls.

PROJE	ECT:	Cold	or Spectru	ım		of Bor		
SITE L	OCATION	:	15 Probasco S	Street, LaFayette, GA	TOP OF	CASING ELEV	/ATION (ft):	794.73
DRILLI	NG CONT	RACTOR:	Atlas Geo-Sa	mpling	DATE ST	ARTED: 6/21/2007	,	DATE FINISHED: 6/21/2007
DRILLI	NG METH	IOD:	Direct Push a	and HSA	TOTAL DI	EPTH (ft.):	16	SCREEN INTERVAL (ft.): 5.5-15.5
DRILLI	NG EQUIF	PMENT:	AMS Power	Probe	DEPTH T OF BORII	O WATER AT		CASING (ft.): 0-5.5
SAMPL	ING MET	нор:Мас	rocore with A	cetate Liner	BOREHO DIAMETE	DLE	3.5	WELL DIAMETER (In.): 1
LOGG	ED BY:		G.Henry	/		().	0.0	12.0.000
DEPTH (feet)	SAMP		Di D	DESCRIPTION				ONSTRUCTION AILS AND/OR
DEI)	Sample No. Location	Blows/ Foot PID	Top of Casing E	evation (ft): 794.73				NG REMARKS
0 _				Dark brown clayey s	and			
5 -				Weathered rock				
- - -				Dark brown clayey sand (v	very wet)			
10-				Green to tan clay with	rock		Termina	ated at 16 ft-bls.
20-								
25— -								
30-								
35—								
40—								
45— -								
50-								
E	PS							

PROJE	ECT:	C	olo	r Spectrı	ım		g of Boı		
SITE LO	OCATIO	N:	1	15 Probasco	Street, LaFayette, GA	TOP C	OF CASING ELE	/ATION (ft):	801.74
DRILLII	NG CON	TRACT	OR: A	Atlas Geo-Sa	mpling	DATE	STARTED: 6/22/2007	 7	DATE FINISHED: 6/22/2007
DRILLII	NG MET	HOD:		Direct Push	and HSA	TOTAL	DEPTH (ft.):	14	SCREEN INTERVAL (ft.): 3.5-13.5
DRILLI	NG EQU	IPMEN	Γ:	AMS Power	Probe		H TO WATER AT		CASING (ft.): 0-3.5
SAMPL	ING ME	тнод: /	/lacr	ocore with A	cetate Liner	BORE		3.5	WELL DIAMETER (In.): 1
LOGGI	ED BY:			G.Henr	у		,	0.0	
Ŧ,		PLES	gu)	DESCRIPTION				CONSTRUCTION
DEPTH (feet)	Sample No.	Blows/	PID	Top of Casing E					AILS AND/OR ING REMARKS
0]	<u> </u>	188		Top of Casing E	Concrete				
					Red clay with gra	avel			
10-					Red-brown clay with s	ome rock		Refusa 14ft-bls	al encountered at S.
20-									
30-									
35—									
40-									
45—									
50-									
E	PS								

PROJECT:	ntec I	ndustrie	s, Inc.		Log	g of Bori	ing No	o. TW-3
SITE LOCATION:		La l	ayette, GA	١	TOP O	F CASING ELEV	ATION (ft):	N/A
DRILLING CONTI	RACTOR:	N/A			DATE S	6/27/09		DATE FINISHED: 6/27/09
DRILLING METH	OD:	Direct P	ush		TOTAL	DEPTH (ft.):	SCREEN INTERVAL (ft.): 0-4	
DRILLING EQUIP	MENT:	Hand Au	ger			TO WATER AT RING (ft.):	TIME	CASING (ft.): N/A
SAMPLING METH	HOD:	N/A			BOREH		4	WELL DIAMETER (In.): 1
LOGGED BY:		G. Henr	у		'			
SAMPI			DESCRI	PTION				ONSTRUCTION
DEPTH (feet) Sample No. Location	Blows/ Foot PID Reading	Top of Casing E	levation (ft):	N/A				NILS AND/OR NG REMARKS
0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Organic material				ted at 4 ft-bls. Well ned immediately after g.
10-								
15—								
25-								
30-								
35—								
40-								
45-								
EPS								

PROJ	ECT:		C	olo	or Spectrum Inc.	Logo	f Boring	No. SE	8-1 to SB-19
PROJE	CT LC	CATI	ON:	La	a Fayette, GA	GROUND S	SURFACE ELEVA N	ATION AN	ID DATUM:
DRILL	ING C	ONTR	ACTO	R: A	tlas Geo-Sampling	DATE INSTA		19/06	
DRILL	ING M	ETHC	D:		Direct Push	TOTAL DE	TH (ft.): 15 (average		SCREEN INTERVAL (ft.):
DRILL	ING E	QUIPN	MENT:	ΑN	MS Powerprobe	DEPTH TO WATER:			
SAMP	LING	ИЕТН	OD:		N/S	LOGGED BY: K. Moore / G. Henry			
		AMPL	ES		DESCRIPTION	+	W	/ELL CC	DNSTRUCTION
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing Elevation: N/M				ILS AND/OR NG REMARKS
0									
1-									
2-									
3-									
4-									
5-									
6-									
7-									oils collected, adwater collected with
8-					No Soil Samples Collected			scree Borin	en point sampler. gs were abandoned sampling.
9-								arter	sampling.
10-									
11-									
-									
12-									
13-									
14-									
15-					-				
16									
		10			+				

PROJ	ECT:		C	olo	or Spectrum Inc.			_). SB-20
PROJE	CT LO	CATIO	ON:	La	a Fayette, GA			ation an J/M	ID DATUM:
DRILL	ING C	ONTR	ACTO	R:	ESN Southeast	DATE INS		19/06	
DRILL	ING M	ETHO	D:		Direct Push	TOTAL D	EPTH (ft.):		SCREEN INTERVAL (ft.): 9-14
DRILL	ING E	QUIPN	MENT:		GeoProbe	DEPTH T WATER:	O FIRST: ~10	8.51	CASING: 0-9
SAMP	LING N	ИЕТН	OD:		N/S	LOGGED K. N	_{BY:} loore		
_		AMPL		g	DESCRIPTION	ı	v		ONSTRUCTION
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing Elevation: N/M				ILS AND/OR IG REMARKS
1-									
2-									
3-									
4-									
5-									
6-									
7-					No Soil Samples Collecte	ed			
8-									
9-									
10-									
11-									
12-									
13-									
14-								Borin ft-bls	g terminated at 14 . Temporary well
15-								aban	doned after collection bundwater sample.
16	- 4 -				+				

PROJECT:		Со	lor Spectrum Inc.	Log	of Boring No	D. SB-21
PROJECT LO	CATIO	N:	La Fayette, GA	GROUND	SURFACE ELEVATION AIN N/M	ND DATUM:
DRILLING C	ONTRA		ESN Southeast	DATE INST		
DRILLING N	IETHOD	D:	Direct Push	TOTAL DE	EPTH (ft.):	SCREEN INTERVAL (ft.): 10-15
DRILLING E	QUIPM	ENT:	GeoProbe	DEPTH TO WATER:	FIRST: COMPL. ~14.5	CASING:
SAMPLING	METHO	DD:	N/S	LOGGED		
S	AMPLE	s	DESCRIPT			ONSTRUCTION
O DEPTH (feet) Sample No.	Sample	Blows/ Foot PID	Top of Casing Elevation: N/M		- DETA	ILS AND/OR NG REMARKS
1-						
2—						
3-						
4-						
5—						
6—						
7-			No Soil Sample	es Collected		
8-						
9—						
10-						
11-						
12-						
13-					Direct ft-bls abar	
14—					Direct ft-ble	et push refusal at 15 s. Temporary well
15—					abar of gr	doned after collection oundwater sample.
16						

PROJ	Color Spectrum Inc.						Log of Boring No. SB-22				
PROJE	CT LO	CATIO	ON:	La	a Fayette, GA			ation an I/M	ID DATUM:		
DRILL	ING C	ONTR	АСТО	R:	ESN Southeast	DATE INS		19/06			
DRILL	ING M	ETHO	D:		Direct Push	TOTAL D 15	EPTH (ft.):	. 0, 00	SCREEN INTERVAL (ft.): 10-15		
DRILL	ING E	QUIPN	ΛΕΝΤ:		GeoProbe	DEPTH T WATER:		11.39	CASING: 0-10		
SAMP	LING N	ИЕТН	OD:		N/S	LOGGED K. N	BY: Moore				
_		AMPLI		D	DESCRIPTION		V		ONSTRUCTION		
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing Elevation: N/M				ILS AND/OR NG REMARKS		
1-											
2-											
3-											
4-											
5-											
6-											
7-					No Soil Samples Collecte	ed					
8-											
9-											
10-											
11-											
12-											
13-											
14-								Direc	t push refusal at 15		
15-								aband	. Temporary well doned after collection bundwater sample.		
16	- 4 -				+						

PROJEC	CT:		C	ole	or Spect	rum Inc.	_	of Bori	_		
PROJEC	T LO	CATIO	ON:	La	a Fayette, G	A	GROUND S	JRFACE ELI	EVATION AN	ND DATUM:	
DRILLIN	IG C	ONTR	ACTO	R:	ESN Southe	east		2/19/06		DATE FINISHED: 12/19/06	
DRILLIN	IG MI	ETHO	D:		Direct Push		TOTAL DEP	TH (ft.):		SCREEN INTERVAL (ft.): 5-15	
DRILLIN	IG E	QUIPN	ЛENT:	(GeoProbe		DEPTH TO WATER:	FIRST:	8.07	CASING: 0-5	
SAMPLI	NG N	ΛΕΤΗ	OD:	N	lacrocore Ad	cetate Liner	LOGGED BY: K. Moore				
_		AMPLI		lg		DESCRIPTION	ON WELL CONSTRUCTION DETAILS AND/OR				
	0) 0) ===									NG REMARKS	
1						Concrete/concrete base-no recov	ery				
3-4-				0		Red orange fine grain sandy clay v gravel inclusions (fill)	with				
5— 6—				1		Red orange medium grain sandy clay gravel size dolomite inclusions					
7	SB-24			1.1		Red orange coarse grain sandy clay gravel size dolomite	with				
9-						Orange red clay with yellow mottling-satured-tight trace dolomite	gravel				
11- 12- 13- 14-						No recovery-saturated					
15— - 16									Term	inate boring at 15 ft-bls	
	-					_					

PROJEC	CT:		C	ole	or Spect	rum Inc.	Log	of Borin	g No	o. SB-26
PROJEC	T LOC	CATIO	ON:	Lá	a Fayette, G	Ą	GROUND S	SURFACE ELEV	ATION AN	ND DATUM:
DRILLIN	IG CO	NTR	АСТО	R:	ESN Southe	east	DATE STA			DATE FINISHED: 12/19/06
DRILLIN	IG ME	THO	D:		Direct Push		TOTAL DE			SCREEN INTERVAL (ft.): 5-15
DRILLIN	IG EQ	UIPN	ΛΕΝΤ:	(GeoProbe		DEPTH TO WATER:	FIRST:	7.87	CASING: 0-5
SAMPLI	NG M	ETH	OD:	٨	Macrocore Ad	cetate Liner	LOGGED E			
	SA	MPLE		_		DESCRIPTION		v	/ELL CO	ONSTRUCTION
	Sample No.	Sample	Blows/ Foot	PID Reading	Top of Casing	Elevation: 106.41		-		ILS AND/OR NG REMARKS
0 1 						Concrete with large concrete aggre	egate			
2- - 3- -						Orange brown fine grain sandy clay	r-tight		Bore h Well di	ole dia: 3.5 in ia: 1 in
4— - 5— -				0		Red orange coarse grain sandy clay medium dolomite inclusions 1-2 cm	/ with -tight			
	SB-26			0		Red orange medium grain sandy cla yellow mottling - dry-tight	y with			
8— - 9— -				1.5		Yellow orange red fine grain sandy with large dolomite inclusions > 2 of saturated and loose	clay cm -			
10-										
11-										
12-						N				
13-						No recovery				
14—										
15—					_				Term	inate boring at 15 ft-bls
16										

PROJ	ECT:		C	olo	or Spect	rum Inc.	_	of Bor	_	
PROJE	CT LO	CATIO	ON:	La	a Fayette, GA	Ą		URFACE EL	EVATION AN N/A	ND DATUM:
DRILL	ING CO	ONTR	АСТО	R:	ESN Southe	ast		2/20/06		DATE FINISHED: 12/20/06
DRILL	ING ME	ETHO	D:		Direct Push		TOTAL DEF			SCREEN INTERVAL (ft.): 5-10
DRILL	ING EC	QUIPN	ΛΕΝΤ:	(GeoProbe		DEPTH TO WATER:	FIRST:	COMPL. 4.63	CASING: 0-5
SAMP	LING M	ИЕТΗ	OD:	M	1acrocore Ac	etate Liner	LOGGED B	y: pore	'	
F.		AMPLI		bu		DESCRIPTION	I			DNSTRUCTION ILS AND/OR
O (feet)	Sample No.	Sample	Blows/ Foot	PID Readii	Top of Casing E	Elevation: 102.35		П		NG REMARKS
_						Gravel/road bed				
1						Yellow orange silty clay-loos	e and dry		I	nole dia: 3.5 in
3- 4-						Terra cotta with soot (from	burning)		Weire	lia: 1 in
5— 6— 7— 8— 9— 10—						No recovery			Term	inate boring at 10 ft-bls
						+				
7.)				Т				

PROJECT: Color Spec	trum Inc.	Log of Boring No. SB-28				
PROJECT LOCATION: La Fayette,		GROUND SURFACE ELEVATION AND DATUM: N/A				
DRILLING CONTRACTOR: ESN Sout		DATE START	TED: 2/19/06	. 4// 1	DATE FINISHED: 12/19/06	
DRILLING METHOD: Direct Pus	 h	TOTAL DEPT			SCREEN INTERVAL (ft.): 5-10	
DRILLING EQUIPMENT: GeoProbe		DEPTH TO WATER:	FIRST:	COMPL. 7.75	CASING: 0-5	
SAMPLING METHOD: Macrocore	Acetate Liner	LOGGED BY		1.70	0.0	
SAMPLES	DESCRIPTION					
TH / (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	DEGOINI HON			WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS		
Chept HTTH (feet) (feet	g Elevation: 99.84					
0						
1-	Yellow orange silty clay with gr dolomite inclusions <2 c	avel size cm				
2-						
_	Black chared/organics from	burning		Bore hole dia: 3.5 in		
3-	Terra cotta fragments			Well d	ia: 1 in	
4-	Brown black organic rich silty o	elay - tight				
5—						
6-						
	Brown black organic rich silty o	lay - tight				
7—						
8-						
	Yellow orange tan mottled med	ium grain				
9-	sandy clay					
10-				Term	inate boring at 10 ft-bls	

PROJECT: Color Spectrum					L	Log of Boring No. SB-29							
SITE LOCATION: 15 Probasco Street, LaFayette, GA						TOP OF CASING ELEVATION (ft): N/A							
DRILLING CONTRACTOR: Atlas Geo-Sampling					DA [*]	DATE STARTED: 6/22/2007			DATE FINISHED: 6/22/2007				
DRILLING METHOD: Direct Push and HSA				ТО	TOTAL DEPTH (ft.):			SCREEN INTERVAL (ft.): N/A					
DRILLING EQUIPMENT: AMS Power Probe						DEPTH TO WATER AT TII OF BORING (ft.):			CASING (ft.): N/A				
SAMPLING METHOD: Macrocore with Acetate Liner					ВО	BOREHOLE DIAMETER (In.):			WELL DIAMETER (In.): N/A				
LOGG	ED B	Y:			G.Henr			DIF	NIL I LI	Х (III.).	3.5	DIAMETER (III.). 14/A	
SAMPLES										WELL C	CONSTRUCTION		
DEPTH (feet)	ample	No. Location	Blows/ Foot	PID Reading	T (0 : F					DET		AILS AND/OR LING REMARKS	
0 _	S		шш	17.5	Top of Casing E	elevation (ft):	N/A Concrete						
_	SB-29			17.5									
5—	SB-29 (4) SB-29 (1)		1	13.9		F	vel						
-	Ø			12.6							Terminated at 8ft-bls.		
10-											Terriiri	ateu at ort-bis.	
10_													
-													
15— -													
_													
20-													
-													
25—													
_													
30-													
-													
-													
35-													
_													
40-													
-													
45-													
-													
50—													
E	P	S											

PROJI	ECT:		Co	olo	r Spectru	ım	Lo	og c	of Bor	ring N	o. SB-30
SITE L	OCAT	TION:			5 Probasco	Street, LaFayette, GA				/ATION (ft):	
DRILLI	NG C	ONTR	ACTO		Atlas Geo-Sa		DATE	STAR	TED: 22/2007	7	DATE FINISHED: 6/22/2007
DRILLI					Direct Push		TOTA	L DEP	TH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILLI	NG E	QUIPI	MENT:		AMS Power	Probe			WATER AT	TIME	CASING (ft.):
					ocore with A	cetate Liner	BOR	ORING		N/A	N/A WELL
LOGG	ED B	Y:			G.Henr	V	DIAIV	IETER	(in.):	3.5	DIAMETER (In.): N/A
_		SAMPL	ES			DESCRIPTION				WFII (CONSTRUCTION
DEPTH (feet)	ample	No. Location	Blows/ Foot	PID Reading						DET	AILS AND/OR ING REMARKS
0	Se	_ <u>°</u>	图氏	1.1	Top of Casing E	levation (ft): N/A Concrete					
5— -	SB-30 (4) SB-30 (1)			1.6		Red clay with grav	el			Termina	ated at 8ft-bls.
10— - -											
15—											
20-											
25—											
30-											
35—											
40-											
45—											
50-											
E	P	S	<u> </u>		<u> </u>						

PROJ	ECT:		Co	olo	r Spectru	ım	Lo	g of	Boring N	lo. SB-31
SITE L	OCA	ΓΙΟN:		1	5 Probasco	Street, LaFayette, GA	ТОР	OF CASII	NG ELEVATION (ft):	N/A
DRILL	ING C	ONTR	ACTO		tlas Geo-Sa		DATE	STARTE	:D: 2/2007	DATE FINISHED: 6/22/2007
DRILL	ING M	1ETHC	D:		Direct Push	and HSA	TOTA	L DEPTH	I (ft.):	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIPI	MENT:		AMS Power	Probe		H TO WA	ATER AT TIME	CASING (ft.): N/A
SAMP	LING	METH	od:N	lacro	ocore with A	cetate Liner	BORE	EHOLE ETER (In		WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			G.Henr	y		(<u>,, </u>	
I.		AMPL		БL		DESCRIPTION				CONSTRUCTION
DEPTH (feet)	ample	No. Location	Blows/ Foot	PID Reading	T					AILS AND/OR ING REMARKS
0 _		_ <u>``</u>	шш	2.3	Top of Casing E	Concrete				
5—	(7) SB-31 (1)			1.8		Red clay with gravel				
10-	SB-31 (7)			2.0					Termin	ated at 8ft-bls.
15— -										
20-										
25— -										
30-										
35— - -										
40-										
45— - - -										
50-										
E	P	S								

	ECT:		Co	olo	r Spectru	ım	Lo	og of B	oring N	lo. SB-32
SITE L	OCA1	ΓΙΟΝ:		1	5 Probasco	Street, LaFayette, GA			ELEVATION (ft):	
ORILL	ING C	ONTR	ACTO		Atlas Geo-Sa		DATI	E STARTED: 6/22/2	007	DATE FINISHED: 6/22/2007
		1ETHC			Direct Push		ТОТ	AL DEPTH (ft.)	: 8	SCREEN INTERVAL (ft.): N/A
ORILL	ING E	QUIPI	MENT:		AMS Power	Probe		TH TO WATE	R AT TIME	CASING (ft.): N/A
SAMP	LING	METH	od: N	lacro	ocore with A	cetate Liner	BOR	BORING (ft.): EHOLE METER (In.):	N/A 3.5	WELL DIAMETER (In.): N/A
_OGG	ED B	Y:			G.Henr	V	DIAN	WETER (III.).	3.5	DIAMETER (III.). 11/A
		AMPL	ES	g		DESCRIPTION			WELL	CONSTRUCTION
DEPTH (feet)	ample	No. Location	Blows/ Foot	PID Reading					DET	AILS AND/OR LING REMARKS
0	S	<u>ا</u>	மட்	8.8	Top of Casing E	levation (ft): N/A Concrete				
5— 5-	SB-32 (4) SB-32 (1)			3		Red clay with grave	I			
10-									Termin	ated at 8ft-bls.
15-										
20-										
25—										
30-										
35—										
40-										
45—										
50-										

PROJ	ECT:		Co	olo	r Spectru	ım	Lo	og	of Bori	ing N	o. SB-33
SITE L	.OCAT	ΓΙΟΝ:		1	5 Probasco	Street, LaFayette, GA	ТОР	OF C	ASING ELEV	ATION (ft):	N/A
DRILL	ING C	ONTR	ACTO		Atlas Geo-Sa	<u> </u>	DATE		RTED: 5/21/2007		DATE FINISHED: 6/21/2007
DRILL	ING M	1ETHC	D:		Direct Push	and HSA	ТОТ	AL DE	PTH (ft.):	12	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIPI	MENT:		AMS Power	Probe			WATER AT		CASING (ft.): N/A
SAMP	LING	METH	od:N	lacro	ocore with A	cetate Liner	BOR	EHOL		3.5	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			G.Henr	у	'				
Ε÷		AMPL		ing		DESCRIPTION					CONSTRUCTION
DEPTH (feet)	Sample	No. Location	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): N/A		_			AILS AND/OR ING REMARKS
0 _				0.8	rop or odomig L	Concrete					
_	SB-33 (4) SB-33 (1)			0.4							
5-	SB-33			0.4		-					
- -				0.3		Red clay with grave	l				
10-											
_										Termina	ated at 12ft-bls.
15—											
-											
20-											
20-											
- -											
25-											
_											
30-											
-											
35-											
_											
40-											
_											
45-											
-											
-											
50-											
F	P	7		ı							

PROJ	ECT:		Сс	olo	r Spectru	ım	Lo	og c	of Bor	ing N	o. SB-34
SITE L	OCA	ΓΙΟΝ:		1	5 Probasco	Street, LaFayette, GA			SING ELEV		N/A
DRILL	ING C	ONTR	ACTO		Atlas Geo-Sa		DATE	STAR	TED: 21/2007		DATE FINISHED: 6/21/2007
DRILL	ING M	1ETHC	D:		Direct Push	and HSA	TOTA	L DEP	TH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIPI	MENT:		AMS Power	Probe		TH TO V	WATER AT		CASING (ft.): N/A
SAMP	LING	METH	od:N	lacro	ocore with A	cetate Liner	BORE	EHOLE IETER		3.5	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			G.Henr	у	<i>Dir</i> ((v)		(111.).	0.0	Divinier Ere (iii.). 14/7 (
Ι.		AMPL		БL		DESCRIPTION					ONSTRUCTION
DEPTH (feet)	ample	No. Location	Blows/ Foot	PID Reading	T						AILS AND/OR NG REMARKS
0 _	S	Ľ	шш	2	Top of Casing E	Concrete					
5— 5-	SB-34 (7) SB-34 (1)			3		Red clay with gravel				Termina	ited at 8ft-bls.
10-	SB										
15— -											
20-											
25—											
30-											
35—											
40-											
45— -											
50-											
E	P	S									

PROJ	ECT:		Co	olo	r Spectru	ım	Lo	og	of Bori	ing N	o. SB-35
SITE L	OCA1	ΓΙΟΝ:		1	5 Probasco S	Street, LaFayette, GA	TOP	OF C	ASING ELEV	ATION (ft):	N/A
DRILL	ING C	ONTR	ACTO	R: A	Atlas Geo-Sa	mpling	DATE		RTED: 5/21/2007		DATE FINISHED: 6/21/2007
DRILL	ING M	1ETHC	D:		Direct Push a	and HSA	TOTA	AL DE	PTH (ft.):	12	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIPI	MENT:		AMS Power	Probe) WATER AT G (ft.):		CASING (ft.): N/A
SAMP	LING	METH	od:N	lacro	ocore with A	cetate Liner	BOR	EHOL	. ,	3.5	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			G.Henry	У					
Εç		AMPL _		ing		DESCRIPTION					CONSTRUCTION
DEPTH (feet)	Sample	No. Location	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): N/A					AILS AND/OR ING REMARKS
0 _	(1) 20			0	assessment of the second of th	Concrete					
-	SB-35 (4)SB-35 (1)			0.0		Red clay with gravel					
5-	SB-3			0.2							
-				0		Red clay with gravel (wet	·)				
10-						ned oldy min graver (ned	,				
-										Termina	ated at 12ft-bls.
- 15—											
-											
20-											
20-											
-											
25-											
_ _ _											
30-											
-											
35-											
-											
40-											
-											
45-											
-											
-											
50-											
F	P	7	•		1					•	

PROJ	ECT:		Co	olo	r Spectru	ım	Lo	og (of Bor	ing N	o. SB-36
SITE L	OCAT	ION:		1	5 Probasco	Street, LaFayette, GA			ASING ELEV		N/A
DRILL	ING C	ONTR	ACTO		Atlas Geo-Sa		DATE		RTED: /21/2007	,	DATE FINISHED: 6/21/2007
DRILL	ING M	ETHO	D:		Direct Push	and HSA	TOTA	AL DE	PTH (ft.):	12	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIPN	MENT:		AMS Power	Probe			WATER AT G (ft.):		CASING (ft.): N/A
SAMP	LING I	METH	od:N	lacro	ocore with A	cetate Liner	BORI	EHOL		3.5	WELL DIAMETER (In.): N/A
LOGG	ED B	Y :			G.Henr	у				0.0	, , , , , , ,
F a		AMPL		ng		DESCRIPTION					CONSTRUCTION
DEPTH (feet)	Sample	ocatio	Blows/ Foot	PID Reading	Top of Casing E	levation (ft): N/A					AILS AND/OR ING REMARKS
0 _		Ĺ		0.6	. op or odding L	Concrete					
5—	SB-36 (4) SB-36 (1)			0.6		Red clay with grave	el				
10-										Termina	ated at 12ft-bls.
15—											
20-											
25-											
30-											
35—											
40-											
45— 											
50-											
E	PS	5									

PROJE	ECT:		Сс	olo	r Spectru	ım	L	og (of Bor	ing N	o. SB-3
SITE L	OCAT	ION:		1	5 Probasco S	Street, LaFayette, GA	TOF	P OF C	ASING ELEV	ATION (ft):	N/A
DRILLI	NG C	ONTR	ACTO		Atlas Geo-Sa	-	DAT	E STAF	RTED: /26/2007		DATE FINISHED: 6/26/2007
DRILLI	NG M	ETHC	D:		Direct Push a	and HSA	ТОТ	AL DEF	PTH (ft.):	8	SCREEN INTERVAL (ft.)
DRILLI	NG E	QUIPI	MENT:		AMS Power	Probe		TH TO	WATER AT		CASING (ft.): N/A
SAMPL	ING I	METH	od: N	lacro	ocore with A	cetate Liner	BOF	REHOLI METER		_ 	WELL DIAMETER (In.): 2
LOGG	ED B	Y:			G.Henry	/			(,		
I O		AMPL				DESCRIPTION				WELL C	CONSTRUCTION
DEPTH (feet)	Sample	ocation	Blows/ Foot	PID Reading	Top of Cooing E						AILS AND/OR ING REMARKS
0		<u> </u>	шш		Top of Casing E	Concrete and ro	ck				
	SB-37 (SB-37 (1)			2.3		Red-orange clay with so					
5— - -	SB-37					Red-brown clay with some	e rock (wet)			Termin	ated at 8ft-bls.
10-										Terrinin	ated at oit bis.
15—											
-											
20-											
-											
25—											
-											
30-											
-											
35—											
-											
40-											
- -											
45											
-											
50-											
E	PS	5	I								

PROJ	ECT:		Сс	olo	r Spectru	ım	Lo	og of Bor	ing No	o. SO-1
SITE L	OCATI	ON:			LaFayette,	GA	TOP	OF CASING ELEV	'ATION (ft):	N/A
DRILLI	NG CC	NTR	АСТО	R: A	tlas Geo-Sa	mpling	DATE	STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILLI	NG ME	THO	D:		Direct P	ush	TOTA	AL DEPTH (ft.):	3	SCREEN INTERVAL (ft.): N/A
DRILLI	NG EQ	UIPM	ЛЕNT:		AMS Power	Probe		TH TO WATER AT ORING (ft.):		CASING (ft.):
SAMPI	_ING M	ETH	OD: [Mac	rocore w/ Ac	etate Liner	BORE	EHOLE IETER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED BY:	:			R. Jone	s	'			
Εæ		MPLI		ing		DESCRIPTION				ONSTRUCTION
DEPTH (feet)	Sample No.	ocatio	Blows/ Foot	PID Reading	Ground Surface	Elevation (ft): N/A				NILS AND/OR NG REMARKS
0		_				Gravel, gray sand				
_	09279-SO-1-2			0		Red clay with rock (qu	artz)			
	60			0		Red clay with sand and weat	hered rock	(Boring t land sur	erminated at 3-ft below face.
				U						
_										
5-										
-										
-										
-										
_										
10-										
_										
-										
-										
-										
15—										
-										
_										
_										
20										
20—										
E	PS	1			l			ı		

PROJ	ECT:		Cc	olo	r Spectru	ım	Lo	og of Bo	oring No	o. SO-2
SITE L	OCATI	ION:			LaFayette,	GA	TOP	OF CASING EL	EVATION (ft):	N/A
DRILLI	NG CC	ONTR	АСТО	R: A	tlas Geo-Sa	mpling	DATE	STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILLI	ING ME	ETHO	D:		Direct P	ush	TOTA	AL DEPTH (ft.):	3	SCREEN INTERVAL (ft.): N/A
DRILLI	NG EC	QUIPN	ΛΕΝΤ:		AMS Power	Probe		TH TO WATER ORING (ft.):		CASING (ft.):
SAMPI	LING M	/ETH	OD: [Mac	rocore w/ Ac	etate Liner	BORE	EHOLE METER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED BY	·:			R. Jone	S	,			
Ε¢		AMPLI) ing		DESCRIPTION				ONSTRUCTION
DEPTH (feet)	Sample No.	ocatio	Blows/ Foot	PID Reading	Ground Surface	Elevation (ft): N/A				NILS AND/OR NG REMARKS
0		_				Gravel, gray sand				
_	09279-SO-2-2			0		Red clay with rock (qu	artz)			
	60			0		Red clay with sand and weat	hered rock	<	Boring t land sur	erminated at 3-ft below face.
				U						
5—										
-										
-										
-										
-										
10-										
_										
-										
-										
-										
15—										
-										
_										
_										
20										
20—										
E	PS	5							1	

PROJE	ECT:		Co	olo	r Spectru	m	Lo	g of	Boring N	o. SO-3
SITE L	OCAT	ION:			LaFayette,	GA	TOP	OF CASING	G ELEVATION (ft):	N/A
DRILLI	NG C	ONTR	RACTO	R: A	Atlas Geo-Sar	mpling	DATE	STARTED	10/6/09	DATE FINISHED: 10/6/09
DRILLI	NG M	IETHC	DD:		Direct Po	ısh	ТОТА	L DEPTH (SCREEN INTERVAL (ft.): N/A
DRILLI	NG E	QUIPI	MENT:		AMS Power	Probe		H TO WAT DRING (ft.)	ER AT TIME	CASING (ft.):
SAMPI	LING I	METH	od: I	Mac	rocore w/ Ace	etate Liner	BORE	HOLE ETER (In.):	_	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			R. Jones	<u> </u>	DIAW	LTLIX (III.).	<u> </u>	DIAWETER (III.). 14/7
E (£		AMPL		Jing		DESCRIPTION				ONSTRUCTION AILS AND/OR
DEPTH (feet)	Sample	ocatic	Blows/ Foot	PID Reading	Ground Surface	Elevation (ft): N/A				NG REMARKS
0	0,					Concrete, gravel and g	ray sand			
-	09279-SO-3-2			6.26.14.3		Sand with clay and weat	hered rock			
_				4.5		Red clay with sand and we	eathered rock			
5				4.45.27.3		Red clay with weather	red rock		Boring land su	terminated at 8-ft below rface.
10-										
15-										
20-										
E	PS	5								

			Co	olo	r Spectru	ım	Lo	og of Bo	ring No	o. SO-4
SITE L	OCA1	TION:			LaFayette,	GA	TOP	OF CASING ELE	VATION (ft):	N/A
DRILL	ING C	ONTF	RACTO	R: A	Atlas Geo-Sai	mpling	DATE	STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILL	ING M	IETHO	DD:		Direct Po	ush	TOTA	AL DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
ORILL	ING E	QUIPI	MENT:		AMS Power	Probe		TH TO WATER AT		CASING (ft.):
SAMP	LING	METH	IOD:	Mac	rocore w/ Ace	etate Liner	BOR	EHOLE METER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			R. Jones	S		(,		1-11-11-11-11-11-11-11-11-11-11-11-11-1
본 <i>휷</i>		AMPL		Jing		DESCRIPTION				ONSTRUCTION NILS AND/OR
DEPTH (feet)	Samp	No. Location	Blows/ Foot	PID Reading	Ground Surface	Elevation (ft): N/A				NG REMARKS
0 5 10	09279-SO-4-5			2.9 3 2.7 2.7 6.4 6.7 1.7		Concrete, gravel and Sand with clay and wea	nthered rock reathered rock	K	Boring t land sui	erminated at 8-ft below face.
15—	P	7								

			Co	olo	r Spectru	m	Lo	og of Bo	ring No	o. SO-5
SITE L	OCAT	ΓΙΟΝ:			LaFayette,	GA	TOF	OF CASING ELE	VATION (ft):	N/A
DRILL	ING C	ONTF	RACTO	R: A	Atlas Geo-Sar	npling	DAT	E STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILL	ING M	1ETHC	DD:		Direct Pu	ısh	ТОТ	AL DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIP	MENT:		AMS Power	Probe		TH TO WATER AT BORING (ft.):		CASING (ft.):
SAMP	LING	METH	IOD:	Mac	rocore w/ Ace	etate Liner	BOR	REHOLE METER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			R. Jones	S				1
Εæ		SAMPL		ng		DESCRIPTION				ONSTRUCTION
DEPTH (feet)	sample	No. Location	Blows/ Foot	PID Reading	Ground Surface	Elevation (ft): N/A				AILS AND/OR NG REMARKS
0	0)				Olouliu Sullace	Concrete, gravel and	gray sand			
-				4.7						
_				4.7		Sand with clay and wea	thered rock			
-	SO-5-4			4.4						
-	09279-SO-5-4			4.8		Red clay with sand and w	eathered roc	k		
5-				4.2						
-				6.3						
=				6.3		Red clay with weather	ered rock		Paring t	erminated at 8-ft below
_									land sui	
-										
10-										
_										
_										
4-										
15—										
_										
-										
-										
-										
20-										
-										
	PS									

PROJ	ECT:		Co	olo	r Spectru	ım	Lc	og of Bor	ing N	o. SO-6
SITE L	OCA	TION:			LaFayette,	GA	ТОР	OF CASING ELEV	/ATION (ft):	N/A
DRILL	ING C	ONTE	RACTO	R: A	Atlas Geo-Sai	mpling	DATE	STARTED:	10/6/09	DATE FINISHED: 10/6/09
DRILL	ING N	ИЕТНО	DD:		Direct P	ush	TOTA	AL DEPTH (ft.):	8	SCREEN INTERVAL (ft.): N/A
DRILL	ING E	QUIP	MENT:	:	AMS Power	Probe		TH TO WATER AT ORING (ft.):		CASING (ft.): N/A
SAMP	LING	METH	IOD:	Mac	rocore w/ Ace	etate Liner	BORE	EHOLE IETER (In.):	3	WELL DIAMETER (In.): N/A
LOGG	ED B	Y:			R. Jones	 S	DIAW	ILTER (III.).		DIAMETER (III.). 14/A
F (SAMPL		ng		DESCRIPTION				ONSTRUCTION
DEPTH (feet)	ample	No. Location	Blows/ Foot	PID Reading	Cround Surface					AILS AND/OR NG REMARKS
0	S	_ <u></u>	ш ш		Ground Surface	Concrete, gravel and	gray sand			
_				4.1						
_				4.2		Sand with clay and wea	thered rock			
_	7-6-4			5.1						
_	09279-SO-6-4			5.2		Red clay with sand and w	eathered rock	(
5—	10			4.1						
				4.5						
				4.5		Red clay with weather	ered rock			
=									Boring t	terminated at 8-ft below
_									lana sa	
_										
10-										
_										
_										
_										
_										
15—										
10										
_										
-										
-										
20-										
_										
E	D									
L)								

Non-Residential Freon-113 Groundwater

GW-ADV	CALCULATE RI	SK-BASED GROU	NDWATER CON	ICENTRATION ((enter "X" in "YES"	box)						
Version 3.1; 02/04		YES		٦								
Reset to		123	OR	_								
Defaults	CALCULATE IN	CREMENTAL RISH		AL GROUNDW <i>A</i>	ATER CONCENTR	ATION (enter "X" in	"YES" box and initial	groundwater cond	. below)			
			V	7								
		YES	Х									
	ENTER	ENTER										
	Chemical	Initial groundwater										
	CAS No.	conc.,										
	(numbers only, no dashes)	C _W (μg/L)			Chemical							
			=		Chemical							
	76131	2.70E+04		1,1,2-T	richloro-1,2,2-tri	fluoroethane						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	
MORE	Average	Depth below grade		l otals mus	st add up to value of Thickness	Thickness			Soil stratum A		User-defined	
Ψ	soil/	to bottom	Depth	Thickness	of soil	of soil	Soil		SCS		stratum A	
	groundwater temperature,	of enclosed space floor,	below grade to water table,	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	stratum directly above	SCS soil type	soil type (used to estimate	OR	soil vapor permeability,	
	T _S	space noor, L _F	L _{WT}	h _A	h _B	(Enter value or 0)	water table,	directly above	soil vapor	UK	permeability, k _v	
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability)		(cm ²)	
	20	15	213.36	213.36	0	0	A	SC	SC			
	20	15	213.30	213.30	0	U	А	30	SC			J
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
-												
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C
MORE ↓	SCS	soil dry	soil total	soil water-filled	SCS	soil dry	soil total	soil water-filled	SCS	soil dry	soil total	soil water-filled
	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,
	SCS	soil dry	soil total	soil water-filled	SCS	soil dry	soil total porosity, n ^B	soil water-filled	SCS	soil dry	soil total porosity, n ^C	soil water-filled
	SCS soil type Lookup Soil Parameters	soil dry bulk density, $\rho_b{}^A \end{pmatrix}$ (g/cm 3)	soil total porosity, n ^A (unitless)	soil water-filled porosity, θ_w^A (cm^3/cm^3)	SCS soil type Lookup Soil Parameters	soil dry bulk density, ${ ho_b}^B$ (g/cm ³)	soil total porosity, n ^B (unitless)	soil water-filled porosity, $\theta_w^{\ B} \\ (cm^3/cm^3)$	SCS soil type Lookup Soil Parameters	soil dry bulk density, ${\rho_b}^C$ (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
	SCS soil type	soil dry bulk density, ρ _b ^A	soil total porosity, n ^A	soil water-filled porosity, $\theta_{\text{w}}^{\text{ A}}$	SCS soil type Lookup Soil	soil dry bulk density, ρ _b ^B	soil total porosity, n ^B	soil water-filled porosity, $\theta_w^{\ B}$	SCS soil type	soil dry bulk density,	soil total porosity, n ^C	soil water-filled porosity, $\theta_w^{\ \ C}$
.	SCS soil type Lookup Soil Parameters SC ENTER	soil dry bulk density, $\rho_b{}^A \end{pmatrix}$ (g/cm 3)	soil total porosity, n ^A (unitless) 0.385 ENTER	soil water-filled porosity, θ_w^A (cm^3/cm^3) 0.197 ENTER	SCS soil type Lookup Soil Parameters	soil dry bulk density, ${ ho_b}^B$ (g/cm ³)	soil total porosity, n ^B (unitless)	soil water-filled porosity, $\theta_w^{\ B} \\ (cm^3/cm^3)$	SCS soil type Lookup Soil Parameters SC ENTER	soil dry bulk density, ${\rho_b}^C$ (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
	SCS soil type Lookup Soil Parameters SC	soil dry bulk density, ρ_b^A (g/cm³)	soil total porosity, n ^A (unitless)	soil water-filled porosity, θ_{w}^{A} (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters	soil dry bulk density, $\rho_b{}^B$ (g/cm³)	soil total porosity, n ^B (unitless)	soil water-filled porosity, $\theta_w^{\ B} \\ (cm^3/cm^3)$	SCS soil type Lookup Soil Parameters	soil dry bulk density, ${\rho_b}^C$ (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
₩ORE	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor	soil dry bulk density, p _b ^A (g/cm³) 1.63 ENTER Soil-bldg, pressure	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space	soil dry bulk density, pb (g/cm³) 1.63 ENTER Floor-wall seam crack	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange	soil water-filled porosity, θ_w^B (cm^3/cm^3)	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
₩ORE	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness,	soil dry bulk density,	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor length,	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width,	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height,	soil dry bulk density, pb (g/cm³) 1.63 ENTER Floor-wall seam crack width,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate,	soil water-filled porosity, θ_w^B (cm^3/cm^3)	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
₩ORE	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor	soil dry bulk density, p _b ^A (g/cm³) 1.63 ENTER Soil-bldg, pressure	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space	soil dry bulk density, pb (g/cm³) 1.63 ENTER Floor-wall seam crack	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
₩ORE	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, Lcrack (cm)	soil dry bulk density, Pb ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²)	soil total porosity, n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm)	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W _B (cm)	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, HB (cm)	soil dry bulk density, pb (g/cm³) 1.63 ENTER Floor-wall seam crack width, w (cm)	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
₩ORE	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, L _{crack}	soil dry bulk density, $\rho_b{}^A$ (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor length, L _B	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W_B	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B	soil dry bulk density, pb B (g/cm³) 1.63 ENTER Floor-wall seam crack width, w	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil}	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
WORE ↓	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, Lorack (cm) 10 ENTER	soil dry bulk density, ρ_b^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²)	soil total porosity, n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm)	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W _B (cm)	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER	soil dry bulk density, pb B (g/cm³) 1.63 ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
₩ORE →	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, Lorack (cm) 10 ENTER Averaging	soil dry bulk density, Pb^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W_B (cm) 4572 ENTER	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER Target	soil dry bulk density,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
WORE ↓	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, Lorack (cm) 10 ENTER Averaging time for carcinogens,	soil dry bulk density, Pb ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	soil total porosity, n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration,	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W _B (cm) 4572 ENTER Exposure frequency,	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER Target risk for carcinogens,	soil dry bulk density,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
WORE ↓	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, Lorack (cm) 10 ENTER Averaging time for carcinogens, AT _C	soil dry bulk density, Pb ^A (g/cm³) 1.63 ENTER Soil-bldg, pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	soil total porosity, n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration, ED	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W_B (cm) 4572 ENTER Exposure frequency, EF	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER Target risk for carcinogens, TR	soil dry bulk density,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
WORE ↓	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, L _{crack} (cm) 10 ENTER Averaging time for carcinogens, AT _C (yrs)	soil dry bulk density, Pb^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration, ED (yrs)	soil water-filled porosity, \$\theta_w^A\$ (cm³/cm³) 0.197 ENTER Enclosed space floor width, \$\text{W}_B\$ (cm) 4572 ENTER Exposure frequency, \$\text{EF}\$ (days/yr)	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER Target risk for carcinogens, TR (unitless)	soil dry bulk density,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
WORE ↓	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, Lorack (cm) 10 ENTER Averaging time for carcinogens, AT _C	soil dry bulk density, Pb ^A (g/cm³) 1.63 ENTER Soil-bldg, pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	soil total porosity, n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration, ED	soil water-filled porosity, θ_w^A (cm³/cm³) 0.197 ENTER Enclosed space floor width, W_B (cm) 4572 ENTER Exposure frequency, EF	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER Target risk for carcinogens, TR	soil dry bulk density,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$
WORE ↓	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space floor thickness, L _{crack} (cm) 10 ENTER Averaging time for carcinogens, AT _C (yrs)	soil dry bulk density, Pb^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	soil total porosity, n ^A (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration, ED (yrs)	soil water-filled porosity, \$\theta_w^A\$ (cm³/cm³) 0.197 ENTER Enclosed space floor width, \$\text{W}_B\$ (cm) 4572 ENTER Exposure frequency, \$\text{EF}\$ (days/yr)	SCS soil type Lookup Soil Parameters SC ENTER Enclosed space height, H _B (cm) 670.56 ENTER Target risk for carcinogens, TR (unitless) 1.0E-05 Used to calcul	soil dry bulk density,	soil total porosity, n ^B (unitless) 0.385 ENTER Indoor air exchange rate, ER (1/h)	soil water-filled porosity, $\theta_{w}^{\ B}$ (cm^{3}/cm^{3}) 0.197	SCS soil type Lookup Soil Parameters SC ENTER Average vapor flow rate into bldg. OR eave blank to calcula Q _{soil} (L/m)	soil dry bulk density, Pb ^C (g/cm ³)	soil total porosity, n ^c (unitless)	soil water-filled porosity, $\theta_w^{\ C} \\ (cm^3/cm^3)$

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K_{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m³)
7.80E-02	8.20E-06	4.80E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01

Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability.	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	L _T	θ_a^A	θ_a^B	θ_a^{C}	S_te	k _i	k _{rq}	k _v	L _{cz}	n _{cz}	$\theta_{a.cz}$	$\theta_{w.cz}$	X _{crack}
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
(555)	(4111)	(/	()	(* /	(**************************************	(*)	(-)	(-)	(4)	(, , , ,	(**************************************	((5111)
7.88E+08	198.36	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, Deff A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} C (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	6,840	3.94E-01	1.64E+01	1.78E-04	2.01E-03	0.00E+00	0.00E+00	4.65E-06	3.04E-05	198.36
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)	4.002-00	3.041-03	130.50
15	4.42E+08	0.10	8.33E+01	2.01E-03	3.92E+03	6.52E+45	2.94E-06	1.30E+03	NA	3.0E+01			

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

						Incremental	Hazard
	Indoor	Indoor	Risk-based	Pure	Final	risk from	quotient
	exposure	exposure	indoor	component	indoor	vapor	from vapor
	groundwater	groundwater	exposure	water	exposure	intrusion to	intrusion to
	conc.,	conc.,	groundwater	solubility,	groundwater	indoor air,	indoor air,
	carcinogen	noncarcinogen	conc.,	S	conc.,	carcinogen	noncarcinogen
_	(μg/L)	(μg/L)	(μ g/L)	(μg/L)	(μg/L)	 (unitless)	(unitless)
_							
Γ	NA	NA	NA	1.70E+05	NA	NA	3.0E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

Non-Residential Freon-113 Soil

SL-ADV Version 3.1; 02/04	CALCULATE RISH	K-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
Reset to		YES	OR]											
Defaults	CALCULATE INCP			L CONCENTRATION (enter "X" in "YES"	box and initial soil or	onc. below)								
	ENTER	YES ENTER	Х	J											
	Chemical	Initial soil													
	CAS No.	conc.,													
	(numbers only,	C _R													
	no dashes)	(μg/kg)	_		Chemical										
	76131	4.20E+03	j	1,1,2-Trichl	oro-1,2,2-trifluo	proethane									
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER					
MORE		Depth		Depth below	Totals mus	st add up to value of	L _t (cell G28)	Soil							
•		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil	of soil	SCS		stratum A					
	soil	of enclosed	grade to top	(enter value of 0	of soil	stratum B,	stratum C,	soil type		soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,	. ,	(Enter value or 0)	(used to estimate	OR	permeability,					
	T _s	L _F	L,	L _b	h _A	h _B	hc	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	. ,	(cm ²)					
	20	15	30.48	213.36	30.48	0	0	SC	1 1						
	20	10	30.40	210.00	30.40	Ü	Ü								
MORE	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum A	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum B	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C	ENTER Stratum C
MORE ↓	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,
		ρ _b ^A	n ^A	θ_w^A	f _{oc} ^A		ρ _b	n ^B	θ_w^B	f _{oc} ^B		ρ _b ^C	n ^C	θ_w^c	f _{oc} ^C
	Lookup Soil Parameters			(cm³/cm³)	(unitless)	Lookup Soil Parameters	(g/cm³)		(cm ³ /cm ³)	(unitless)	Lookup Soil Parameters	(g/cm ³)		(cm ³ /cm ³)	
		(g/cm ³)	(unitless)										(unitless)	(Cm /cm)	(unitless)
				, , ,	(unitiess)	$\overline{}$	(9/0111)	(unitless)	(GIII / GIII)	(unitiess)	$\overline{}$	(3 - 7		, ,	
	SC	1.63	0.385	0.197	0.002	SC	1.63	(unitless) 0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
			•	0.197	0.002		1.63	, ,	0.197	(**************************************	SC		0.385	,	0.002
MORE	ENTER	1.63 ENTER	ENTER	0.197 ENTER	, ,	SC ENTER		, ,	0.197 ENTER	(**************************************	SC		0.385	,	0.002
MORE ↓			•	0.197	0.002		1.63	0.385	0.197	0.002	SC		0.385	,	0.002
	ENTER Enclosed	ENTER	ENTER Enclosed	0.197 ENTER Enclosed	0.002 ENTER	ENTER	1.63 ENTER	0.385	0.197 ENTER Average vapor	0.002	sc		0.385	,	0.002
	ENTER Enclosed space	ENTER Soil-bldg. pressure differential,	ENTER Enclosed space	0.197 ENTER Enclosed space floor width,	0.002 ENTER Enclosed	ENTER Floor-wall	1.63 ENTER Indoor air exchange rate,	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul	0.002	sc		0.385	,	0.002
	ENTER Enclosed space floor	ENTER Soil-bldg. pressure differential, ΔP	ENTER Enclosed space floor	0.197 ENTER Enclosed space floor	0.002 ENTER Enclosed space	ENTER Floor-wall seam crack	1.63 ENTER Indoor air exchange	0.385	0.197 ENTER Average vapor flow rate into bldg OR	0.002	sc		0.385	,	0.002
	ENTER Enclosed space floor thickness,	ENTER Soil-bldg. pressure differential,	ENTER Enclosed space floor length,	0.197 ENTER Enclosed space floor width,	0.002 ENTER Enclosed space height,	ENTER Floor-wall seam crack width,	1.63 ENTER Indoor air exchange rate,	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul	0.002	sc		0.385	,	0.002
	ENTER Enclosed space floor thickness, L _{crack} (cm)	ENTER Soil-bldg. pressure differential,	ENTER Enclosed space floor length, L _B (cm)	ENTER Enclosed space floor width, W _B (cm)	0.002 ENTER Enclosed space height, H _B (cm)	ENTER Floor-wall seam crack width, w (cm)	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	sc		0.385	,	0.002
	ENTER Enclosed space floor thickness, L _{crack}	ENTER Soil-bldg. pressure differential, ΔP	ENTER Enclosed space floor length, L _B	0.197 ENTER Enclosed space floor width, W _B	0.002 ENTER Enclosed space height, H _B	ENTER Floor-wall seam crack width,	1.63 ENTER Indoor air exchange rate, ER	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{scil}	0.002	SC		0.385	,	0.002
	ENTER Enclosed space floor thickness, L _{crack} (cm) 10 ENTER	ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER	ENTER Enclosed space floor length, L _B (cm)	ENTER Enclosed space floor width, W _B (cm)	0.002 ENTER Enclosed space height, H ₆ (cm) 670.56 ENTER	ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	SC		0.385	,	0.002
	ENTER Enclosed space floor thickness, Lcrack (cm) 10 ENTER Averaging	ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging	ENTER Enclosed space floor length, L _B (cm) 15036.8	0.197 ENTER Enclosed space floor width, W _B (cm) 4572 ENTER	0.002 ENTER Enclosed space height, H ₆ (cm) 670.56 ENTER Target	Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	SC		0.385	,	0.002
	ENTER Enclosed space floor thickness, Lenck (cm) 10 ENTER Averaging time for	ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for	ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure	0.197 ENTER Enclosed space floor width, Ws (cm) 4572 ENTER Exposure	0.002 ENTER Enclosed space height, He (cm) 670.56 ENTER Target risk for	ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	SC		0.385	,	0.002
	ENTER Enclosed space floor thickness, L _{crack} (cm) 10 ENTER Averaging time for carcinogens,	ENTER Soil-bidg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	ENTER Enclosed space floor length, Ls (cm) 15036.8 ENTER Exposure duration,	0.197 ENTER Enclosed space floor width, Wa (cm) 4572 ENTER Exposure frequency,	0.002 ENTER Enclosed space height, He (cm) 670.56 ENTER Target risk for carcinogens,	Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens,	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	SC		0.385	,	0.002
	ENTER Enclosed space floor thickness, Lenck (cm) 10 ENTER Averaging time for	ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure	0.197 ENTER Enclosed space floor width, Ws (cm) 4572 ENTER Exposure	0.002 ENTER Enclosed space height, He (cm) 670.56 ENTER Target risk for	ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	sc		0.385	,	0.002
	ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER Averaging time for carcinogens, ATc	ENTER Soil-bidg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration, ED	0.197 ENTER Enclosed space floor width, W _B (cm) 4572 ENTER Exposure frequency, EF	0.002 ENTER Enclosed space height, H _b (cm) 670.56 ENTER Target risk for carcinogens, TR	Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	SC		0.385	,	0.002
	ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER Averaging time for carcinogens, ATc	ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Enclosed space floor length, L _B (cm) 15036.8 ENTER Exposure duration, ED	0.197 ENTER Enclosed space floor width, W _B (cm) 4572 ENTER Exposure frequency, EF	0.002 ENTER Enclosed space height, H _b (cm) 670.56 ENTER Target risk for carcinogens, TR	Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ	1.63 ENTER Indoor air exchange rate, ER (1/h)	0.385	0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Qsol (L/m)	0.002	SC		0.385	,	0.002

Used to calculate risk-based soil concentration.

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm³/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Physical state at soil temperature, (S,L,G)
7.80E-02	8.20E-06	4.80E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01	L

	Source-	Stratum A soil	Stratum B soil	Stratum C soil	Stratum A effective	Stratum A soil	Stratum A soil	Stratum A soil	Floor- wall	Initial soil	Bldg.	
Exposure	building	air-filled	air-filled	air-filled	total fluid	intrinsic	relative air	effective vapor	seam	concentration	ventilation	
duration,	separation,	porosity,	porosity,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	used,	rate,	
τ	L_{T}	θ_a^A	$\theta_a^{\ B}$	$\theta_a{}^C$	S _{te}	k _i	k _{rg}	k _v	X_{crack}	C_R	Q _{building}	
(sec)	(cm)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/kg)	(cm ³ /s)	_			
7.88E+08	15.48	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	4.20E+03	3.20E+06]
Area of							Stratum	Stratum	Stratum	Total		
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	Α	В	С	overall		
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	effective	effective	effective	Diffusion	Convection
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	diffusion	diffusion	diffusion	path	path
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	coefficient,	coefficient,	coefficient,	length,	length,
A _B	η	Z_{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	D ^{eff} _A	D ^{eff} _B	D ^{eff} C	D^{eff}_{T}	L _d	L_{p}
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)	(cm)
6.93E+07	5.66E-05	15	6,840	3.94E-01	1.64E+01	1.78E-04	2.01E-03	0.00E+00	0.00E+00	2.01E-03	15.48	15
0.93L+07	3.00L-03	13	0,040	3.94L-01	1.04LT01	1.70L-04	2.01L-03	0.00L+00	0.00L+00	2.01L-03	13.46	13
						Exponent of	Infinite					
			Average	Crack		equivalent	source	Infinite				Exposure
Soil-water	Source		vapor	effective		foundation	indoor	source			Time for	duration >
partition	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.	Finite	Finite	source	time for
coefficient,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,	source	source	depletion,	source
K_d	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A_{crack}	exp(Pe ^t)	α	$C_{building}$	β term	ψ term	τ_{D}	depletion
(cm ³ /g)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m³)	(unitless)	(sec) ⁻¹	(sec)	(YES/NO)
2.23E+01	2.83E+06	0.10	8.33E+01	2.01E-03	3.92E+03	6.52E+45	NA	NA	1.09E+02	3.48E-06	3.91E+08	YES
Finite	Mass	Finite	Final									
source indoor	limit	source	finite	Unit								
attenuation	bldg.	bldg.	source bldg.	risk	Reference							
coefficient,	conc.,	conc.,	conc.,	factor,	conc.,							
<α>	C _{building}	C _{building}	C _{building}	URF	RfC							
(unitless)	(μg/m ³)	(μg/m ³)	(μg/m ³)	(μg/m ³) ⁻¹	(mg/m ³)							
	,, ,	,, ,	, ,		_	-						
NA	3.44E+01	NA	3.44E+01	NA	3.0E+01	_						

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

					Increme	ntal Hazard
Indoor	Indoor	Risk-based		Final	risk fro	m quotient
exposure	exposure	indoor	Soil	indoor	vapo	r from vapor
soil	soil	exposure	saturation	exposure	intrusior	to intrusion to
conc.,	conc.,	soil	conc.,	soil	indoor a	air, indoor air,
carcinogen	noncarcinogen	conc.,	C_{sat}	conc.,	carcino	gen noncarcinogen
(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(unitles	s) (unitless)
NA	NA	NA	4.13E+06	NA	NA	7.8E-04

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

END

SL-ADV-Feb04_Freon 1 of 1

Non-Residential Tetrachloroethene Groundwater

GW-ADV Version 3.1; 02/04	CALCULATE RIS	SK-BASED GROUI	NDWATER CON	CENTRATION	(enter "X" in "YES"	box)						
Reset to		YES	OR]								
Defaults	CALCULATE INC	CREMENTAL RISK		L GROUNDW	ATER CONCENTE	RATION (enter "X" in	"YES" box and initial o	groundwater conc	. below)			
		YES	Х]								
	ENTER Chemical	ENTER Initial groundwater										
	CAS No. (numbers only, no dashes)	conc., C _W (μg/L)			Chemical							
	127184	3.50E+02	:		Tetrachloroethy	/lene						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1
MORE ↓	Average soil/ groundwater temperature, T _S	Depth below grade to bottom of enclosed space floor, L _F	Depth below grade to water table, L_{WT}	Thickness of soil	Thickness of soil stratum B, (Enter value or 0)	Thickness of soil stratum C, (Enter value or 0)	Soil stratum directly above water table,	SCS soil type directly above	Soil stratum A SCS soil type (used to estimate soil vapor	OR	User-defined stratum A soil vapor permeability, k _v	
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability)	•	(cm ²)	
	20	15	213.56	213.56	0	0	А	SC	SC			j
MORE ¥	ENTER Stratum A SCS soil type	ENTER Stratum A soil dry bulk density,	ENTER Stratum A soil total porosity,	ENTER Stratum A soil water-filled porosity,	ENTER Stratum B SCS soil type	ENTER Stratum B soil dry bulk density,	ENTER Stratum B soil total porosity,	ENTER Stratum B soil water-filled porosity,	ENTER Stratum C SCS soil type	ENTER Stratum C soil dry bulk density,	ENTER Stratum C soil total porosity,	ENTER Stratum C soil water-filled porosity,
	Lookup Soil Parameters	ρ_b^A (g/cm ³)	n ^A (unitless)	θ _w ^A (cm ³ /cm ³)	Lookup Soil Parameters	$\rho_{\rm b}^{\ \ B}$ (g/cm ³)	n ^B (unitless)	$\theta_{\rm w}^{\rm B}$ (cm ³ /cm ³)	Lookup Soil Parameters	ρ _b ^C (g/cm ³)	n ^C (unitless)	$\theta_{\rm w}^{\rm C}$ (cm ³ /cm ³)
	SC	1.63	0.385	0.197	SC	1.63	0.385	0.197	SC	1.63	0.385	0.197
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor			
_ ↓	space floor thickness,	Soil-bldg. pressure differential,	space floor length,	space floor width,	Enclosed space height,	Floor-wall seam crack width,	Indoor air exchange rate,	Le	flow rate into bldg. OR eave blank to calcula	ite		
	L _{crack} (cm)	ΔP (g/cm-s ²)	L _B (cm)	W _B (cm)	H _B (cm)	w (cm)	ER (1/h)	_	Q _{soil} (L/m)			
	10	40	15036.8	4572	670.56	0.1	0.25]	5	· 		
MORE 🔱	ENTER Averaging time for carcinogens, AT _C	ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Exposure duration, ED	ENTER Exposure frequency, EF	ENTER Target risk for carcinogens, TR	ENTER Target hazard quotient for noncarcinogens, THQ						
	(yrs) 70	(yrs) 25	(yrs) 25	(days/yr)	(unitless) 1.0E-05	(unitless)	: 					
END	, , ,		20	200	Used to calcu	ulate risk-based						

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m ³)
7.20E-02	8.20E-06	1.84E-02	25	8,288	394.40	620.20	1.55E+02	2.00E+02	2.6E-07	4.0E-02

Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability.	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	L _T	θ_a^A	θ_a^B	θ_a^{C}	S_te	k _i	k _{rq}	k _v	L _{cz}	n _{cz}	$\theta_{a.cz}$	$\theta_{w.cz}$	X_{crack}
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
(333)	(5111)	(/	(, , , ,	(* * * * * * * * * * * * * * * * * * *	(**************************************	(*)	(-)	(-)	(4)	(, , , ,	(2))	(/	(5111)
7.88E+08	198.56	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	39,218
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm²/s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} C (cm ² /s)	Capillary zone effective diffusion coefficient, $D^{\rm eff}_{\ cz}$ $({\rm cm}^2/{\rm s})$	Total overall effective diffusion coefficient, Deff (cm²/s)	Diffusion path length, L _d (cm)
3.20E+06	6.93E+07	5.66E-05	15	9,451	1.40E-02	5.81E-01	1.78E-04	1.86E-03	0.00E+00	0.00E+00	7.21E-06	4.67E-05	198.56
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)			
15	2.03E+05	0.10	8.33E+01	1.86E-03	3.92E+03	4.18E+49	4.26E-06	8.67E-01	2.6E-07	4.0E-02]		

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)

Indoor exposure groundwater	Indoor exposure groundwater	Risk-based indoor exposure	Pure component water	Final indoor exposure	risk from vapor intrusion to
conc.,	conc.,	groundwater	solubility,	groundwater	indoor air,
carcinogen	noncarcinogen	conc.,	S	conc.,	carcinogen
(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(unitless)
_	-		•		
NA	NA	NA	2.00E+05	NA	5.5E-08

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

Non-Residential Tetrachloroethene Soil

SL-ADV /ersion 3.1; 02/04	CALCULATE RISK		NCENTRATION (ent	er "X" in "YES" box)											
Reset to Defaults	CALCULATE INCR	YES REMENTAL RISKS	OR FROM ACTUAL SO	」 IL CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х]											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No.	conc.,													
	(numbers only, no dashes)	C _R (μg/kg)	_		Chemical		_								
	127184	1.50E+01]	Tet	rachloroethyler	ne]								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1				
MORE		Depth		Depth below	Totals mu	st add up to value of	f L _t (cell G28)	Soil							
Ψ	A	below grade	Double holow	grade to bottom	Thistores	Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom of enclosed	Depth below grade to top	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,		(Enter value or 0)	(used to estimate	OR	permeability,					
	Ts	L_F	L	L _b	h _A	h _B	h _C	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	_	(cm ²)					
	20	15	60.96	152.4	60.96	0	0	SC	ר						
											='				
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
•	SCS	soil dry bulk density,	soil total	soil water-filled	soil organic carbon fraction,	SCS	soil dry bulk density,	soil total	soil water-filled porosity,	soil organic carbon fraction,	SCS	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,
	Soil type Lookup Soil	ρ _b ^A	porosity, n ^A	porosity, θ _w ^A	f _{oc} ^A	Soil type Lookup Soil	ρ _b	porosity, n ^B	θ_w^B	f _{oc} ^B	Soil type Lookup Soil	ρ _b ^C	n ^C	ροιοsity, θ _w ^C	f _{oc} c
	Parameters	(g/cm³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
		1		1					1			1		1	
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER						
MORE ↓	Enclosed space	Soil-bldg.	Enclosed space	Enclosed space	Enclosed	Floor-wall	Indoor		Average vapor flow rate into bldo						
	floor	pressure	floor	floor	space	seam crack	air exchange		OR						
	thickness,	differential,	length,	width,	height,	width,	rate,	Le	ave blank to calcu	late					
	L _{crack}	ΔP	L _B	W _B	H _B	w	ER		Q _{soil}						
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		(L/m)	•					
	10	40	15036.8	4572	670.56	0.1	0.25		5						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER									
	Averaging	Averaging			Target	Target hazard									
						quotient for									
	time for	time for	Exposure	Exposure	risk for										
	time for carcinogens,	time for noncarcinogens,	duration,	frequency,	carcinogens,	noncarcinogens,									
	time for	time for					=								
	time for carcinogens, AT _C	time for noncarcinogens, AT _{NC}	duration, ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ	= 1								
	time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	carcinogens, TR (unitless)	noncarcinogens, THQ (unitless)	<u>-</u> -								
END	time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	carcinogens, TR (unitless) 1.0E-05 Used to calcu	noncarcinogens, THQ (unitless)	=]								

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Physical state at soil temperature, (S,L,G)
7.20E-02	8.20E-06	1.84E-02	25	8,288	394.40	620.20	1.55E+02	2.00E+02	2.6E-07	4.0E-02	L

	Source-	Stratum A soil	Stratum B soil	Stratum C soil	Stratum A effective	Stratum A soil	Stratum A soil	Stratum A soil	Floor- wall	Initial soil	Bldg.	
Exposure	building	air-filled	air-filled	air-filled	total fluid	intrinsic	relative air	effective vapor	seam	concentration	ventilation	
duration,	separation,	porosity,	porosity,	porosity,	saturation,	permeability,	permeability,	permeability,	perimeter,	used,	rate,	
τ	L_T	θ_a^A	$\theta_a^{\ B}$	θ_a^{C}	S _{te}	k _i	k _{rg}	k _v	X_{crack}	C_R	Q _{building}	
(sec)	(cm)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/kg)	(cm ³ /s)	_			
7.88E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	39,218	1.50E+01	3.20E+06	
Area of							Stratum	Stratum	Stratum	Total		
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	Α	В	С	overall		
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	effective	effective	effective	Diffusion	Convection
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	diffusion	diffusion	diffusion	path	path
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	coefficient,	coefficient,	coefficient,	length,	length,
A _B	η	Z_{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	D ^{eff} _A	D ^{eff} _B	D ^{eff} _C	D^{eff}_{T}	L _d	L_{p}
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)	(cm)
6.93E+07	5.66E-05	15	9,451	1.40E-02	5.81E-01	1.78E-04	1.86E-03	0.00E+00	0.00E+00	1.86E-03	45.96	15
0.33L+01	3.00L-03	10	3,431	1.40L-02	3.01L-01	1.70L-04	1.00L-03	0.00L+00	0.002+00	1.002-03	45.90	13
						Exponent of	Infinite					
			Average	Crack		equivalent	source	Infinite				Exposure
Soil-water	Source		vapor	effective		foundation	indoor	source			Time for	duration >
partition	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.	Finite	Finite	source	time for
coefficient,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,	source	source	depletion,	source
K_d	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A_{crack}	exp(Pe ^t)	α	$C_{building}$	β term	ψ term	τ_{D}	depletion
(cm ³ /g)	(μg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m ³)	(unitless)	(sec) ⁻¹	(sec)	(YES/NO)
3.10E-01	1.75E+04	0.10	8.33E+01	1.86E-03	3.92E+03	4.18E+49	NA	NA	3.47E+01	6.31E-07	1.13E+08	YES
												_
Finite	Mass	Finite	Final									
source indoor	limit	source	finite	Unit								
attenuation	bldg.	bldg.	source bldg.	risk	Reference							
coefficient,	conc.,	conc.,	conc.,	factor,	conc.,							
<α>	C _{building}	C _{building}	C _{building}	URF	RfC							
(unitless)	(μg/m ³)	(μg/m ³)	(μg/m ³)	(μg/m ³) ⁻¹	(mg/m ³)							
	11 0 /		1, 5	110 /	, , ,	<u> </u>						
NA	6.14E-02	NA	6.14E-02	2.6E-07	4.0E-02							

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

							Incremental	Hazard
	Indoor	Indoor	Risk-based		Final		risk from	quotient
	exposure	exposure	indoor	Soil	indoor		vapor	from vapor
	soil	soil	exposure	saturation	exposure		intrusion to	intrusion to
	conc.,	conc.,	soil	conc.,	soil		indoor air,	indoor air,
	carcinogen	noncarcinogen	conc.,	C_{sat}	conc.,		carcinogen	noncarcinogen
	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	_	(unitless)	(unitless)
l	NA	NA	NA	9.96E+04	NA		3.9E-09	1.1E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

END

SL-ADV-Feb04_PCE 1 of 1

Residential Freon-113 Groundwater

GW-ADV	CALCULATE RI	SK-BASED GROUI	NDWATER CON	CENTRATION	(enter "X" in "YES"	box)						
Version 3.1; 02/04				7								
		YES										
Reset to Defaults			OR									
Delauits	CALCULATE IN	CREMENTAL RISK	(S FROM ACTU	AL GROUNDW	ATER CONCENTR	ATION (enter "X" in	"YES" box and initial of	groundwater conc	. below)			
		YES	Х	1								
		IES	^									
	ENTER	ENTER										
		Initial										
	Chemical CAS No.	groundwater conc.,										
	(numbers only,	C _W										
	no dashes)	(μg/L)	_,		Chemical							
	76131	2.70E+04]	1.1.2-T	richloro-1,2,2-tri	fluoroethane						
				.,.,= .			l					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1
		Depth		Totals mu	st add up to value o				Soil			
MORE ↓	Average soil/	below grade to bottom	Donth	Thickness	Thickness of soil	Thickness of soil	Soil		stratum A SCS		User-defined stratum A	
	groundwater	of enclosed	Depth below grade	of soil	stratum B,	stratum C,	stratum	SCS	soil type		soil vapor	
	temperature,	space floor,	to water table,	stratum A,	(Enter value or 0)		directly above	soil type	(used to estimate	OR	permeability,	
	Ts	L _F	L_{WT}	h _A	h _B	h _C	water table,	directly above	soil vapor		k _v	
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability)		(cm ²)	
		1 45	24.44	04.44				1 00	20		Γ	1
	20	15	91.44	91.44	0	0	А	SC	SC			J
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE ↓	Stratum A SCS	Stratum A soil dry	Stratum A soil total	Stratum A soil water-filled	Stratum B SCS	Stratum B soil dry	Stratum B soil total	Stratum B soil water-filled	Stratum C SCS	Stratum C soil dry	Stratum C soil total	Stratum C soil water-filled
	soil type	bulk density,	porosity,	porosity,	soil type	bulk density,	porosity,	porosity,	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	ρ_b^A	n ^A	θ_w^A	Lookup Soil	$\rho_b^{\ B}$	n ^B	$\theta_{w}^{\;B}$	Lookup Soil	$\rho_b{}^C$	n ^c	θ _w c
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
			, , , , , , , , , , , , , , , , , , , ,				, ,				,	
	SC	1.63	0.385	0.197	SC	1.63	0.385	0.197	SC	1.63	0.385	0.197
<u></u>	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE	Enclosed		Enclosed	Enclosed					Average vapor			
•	space floor	Soil-bldg.	space	space floor	Enclosed	Floor-wall seam crack	Indoor		flow rate into bldg. OR			
	thickness,	pressure differential,	floor length,	width,	space height,	width,	air exchange rate,	Le	eave blank to calcula	te		
	L _{crack}	ΔΡ	L _B	W _B	H _B	w	ER		Q _{soil}			
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	_	(L/m)			
		_	1	1		ı	ı	_				
	10	40	1000	1000	244	0.1	0.25	_	5			
MORE	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER						
Ψ.	Averaging	Averaging			Target	Target hazard						
	time for	time for	Exposure duration,	Exposure	risk for	quotient for						
	carcinogens, AT _C	noncarcinogens, AT _{NC}	duration, ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ						
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	<u>.</u>					
			-	050	1.05.00		- 1					
	70	30	30	350	1.0E-06	1						
						late risk-based						
FND					aroundwater	concentration	I					

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K_{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m³)
7.80E-02	8.20E-06	4.80E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01

Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	L _T	θ_a^A	$\theta_a^{\ B}$	θ_a^{C}	S _{te}	k _i	k _{rg}	k _v	L _{cz}	n _{cz}	$\theta_{a,cz}$	$\theta_{w,cz}$	X_{crack}
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
0.465.00	76.44	0.400	0.188	0.400	0.200	4 77F 00	0.027	4.400.00	20.00	0.205	0.020	0.255	4.000
9.46E+08	76.44	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
Bldg. ventilation rate, Q _{building}	Area of enclosed space below grade, A _B	Crack- to-total area ratio, η	Crack depth below grade, Z _{crack}	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS}	Henry's law constant at ave. groundwater temperature,	Henry's law constant at ave. groundwater temperature, H' _{TS}	Vapor viscosity at ave. soil temperature, μτs	Stratum A effective diffusion coefficient, D ^{eff} A	Stratum B effective diffusion coefficient, D ^{eff} B	Stratum C effective diffusion coefficient, Deff	Capillary zone effective diffusion coefficient, D ^{eff} _{CZ}	Total overall effective diffusion coefficient, D ^{eff} _T	Diffusion path length, L _d
(cm ³ /s)	(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)
		(, , , , , , , , , , , , , , , , , , , ,		(105			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
1.69E+04	1.06E+06	3.77E-04	15	6,840	3.94E-01	1.64E+01	1.78E-04	2.01E-03	0.00E+00	0.00E+00	4.65E-06	1.18E-05	76.44
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	$ \begin{array}{c} \text{Infinite} \\ \text{source} \\ \text{indoor} \\ \text{attenuation} \\ \text{coefficient,} \\ \alpha \\ \text{(unitless)} \end{array} $	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (μg/m³)-1	Reference conc., RfC (mg/m³)			
15	4.42E+08	0.10	8.33E+01	2.01E-03	4.00E+02	#NUM!	9.64E-06	4.26E+03	NA	3.0E+01]		

RESULTS SHEET

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (μg/L)	Indoor exposure groundwater conc., noncarcinogen (μg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (μg/L)	Final indoor exposure groundwater conc., (µg/L)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
NA	NA NA	NA	1.70E+05	NA	NA	1.4E-01

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

Residential Freon-113 Soil

SL-ADV /ersion 3.1; 02/04	CALCULATE RISE	K-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
Reset to		YES	OR]											
Defaults	CALCULATE INC	REMENTAL RISKS	FROM ACTUAL SOI	L CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	Х												
	Chemical CAS No. (numbers only, no dashes)	ENTER Initial soil conc., C _R (µg/kg)	_		Chemical										
	76131	6.34E+03]	1,1,2-Trichl	oro-1,2,2-triflu	oroethane]								
MORE	ENTER	ENTER Depth	ENTER	ENTER Depth below	ENTER Totals mu	ENTER st add up to value of	ENTER L _t (cell G28)	ENTER Soil		ENTER					
_ ↓	Average soil temperature, T _S	below grade to bottom of enclosed space floor, L _F	Depth below grade to top of contamination, L _t	grade to bottom of contamination, (enter value of 0 if value is unknown) L _b	Thickness of soil stratum A, h _A	h _B	Thickness of soil stratum C, (Enter value or 0) h _C	stratum A SCS soil type (used to estimate soil vapor	OR	User-defined stratum A soil vapor permeability, k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	-	(cm ²)					
	20	15	30.48	213.36	30.48	0	0	SC]						
MORE ¥	ENTER Stratum A SCS soil type Lookup Soil Parameters	ENTER Stratum A soil dry bulk density, Pb (g/cm³)	ENTER Stratum A soil total porosity, n ^A (unitless)	ENTER Stratum A soil water-filled porosity, θ_w^A (cm^3/cm^3)	ENTER Stratum A soil organic carbon fraction, foc (unitless)	ENTER Stratum B SCS soil type Lookup Soil Parameters	ENTER Stratum B soil dry bulk density, Pb (g/cm³)	ENTER Stratum B soil total porosity, nB (unitless)	ENTER Stratum B soil water-filled porosity, θ_w^B (cm^3/cm^3)	ENTER Stratum B soil organic carbon fraction, foc B (unitless)	ENTER Stratum C SCS soil type Lookup Soil Parameters	ENTER Stratum C soil dry bulk density,	ENTER Stratum C soil total porosity, n ^C (unitless)	ENTER Stratum C soil water-filled porosity, θ_w^c (cm^3/cm^3)	ENTER Stratum C soil organic carbon fraction, foc (unitless)
	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002	SC	1.63	0.385	0.197	0.002
MORE 🔱	ENTER Enclosed space floor thickness, L _{crack} (cm)	ENTER Soil-bldg. pressure differential,	ENTER Enclosed space floor length, L _B (cm)	ENTER Enclosed space floor width, W _B (cm)	Enclosed space height, H _B (cm)	Floor-wall seam crack width, w (cm)	Indoor air exchange rate, ER (1/h)	Le	ENTER Average vapor flow rate into bldg OR eave blank to calcul Q _{scil} (L/m)						
	10	40	1000	1000	244	0.1	0.25		5						
	ENTER Averaging time for carcinogens, AT _C	ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Exposure duration, ED	ENTER Exposure frequency, EF	ENTER Target risk for carcinogens, TR	ENTER Target hazard quotient for noncarcinogens, THQ									
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)	•								
	70	30	30	350	1.0E-06	1									

Used to calculate risk-based soil concentration.

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm³/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Physical state at soil temperature, (S,L,G)
7.80E-02	8.20E-06	4.80E-01	25	6,463	320.70	487.30	1.11E+04	1.70E+02	0.0E+00	3.0E+01	L

Exposu duratio		Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Floor- wall seam perimeter,	Initial soil concentration used,	Bldg. ventilation rate,	
τ	L_T	$\theta_a^{\ A}$	$\theta_a^{\;B}$	$\theta_a^{\ C}$	S_te	k_i	k_{rg}	k_v	X_{crack}	C_R	$Q_{building}$	
(sec)	(cm)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/kg)	(cm ³ /s)	_			
9.46E+	08 15.48	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	6.34E+03	1.69E+04	
0.1021	10.10	0.100	0.100	0.100	0.200	1.772 00	0.007	1.102 00	1,000	0.012100	1.002101	
Area o	√t						Stratum	Stratum	Stratum	Total		
enclose		Crack	Enthalpy of	Henry's law	Henry's law	Vapor	A	B	C	overall		
space		depth	vaporization at	constant at	constant at	viscosity at	effective	effective	effective	effective	Diffusion	Convection
below		below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	diffusion	diffusion	diffusion	path	path
grade	, ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	coefficient,	coefficient,	coefficient,	length,	length,
A_B	η	Z_{crack}	$\Delta H_{v,TS}$	H_{TS}	H' _{TS}	μ_{TS}	D^{eff}_{A}	D ^{eff} _B	D^{eff}_{C}	$D^{eff}T$	L_d	L_p
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)	(cm)
1.06E+	06 3.77E-04	15	6,840	3.94E-01	1.64E+01	1.78E-04	2.01E-03	0.00E+00	0.00E+00	2.01E-03	15.48	15
			Average	Crack		Exponent of equivalent	Infinite source	Infinite				Exposure
Soil-wa	ter Source		vapor	effective		foundation	indoor	source			Time for	duration >
partitio		Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.	Finite	Finite	source	time for
coefficie	ent, conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,	source	source	depletion,	source
K_d	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A _{crack}	exp(Pef)	α	$C_{building}$	β term	ψ term	τ_{D}	depletion
(cm ³ /g		(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(µg/m³)	(unitless)	(sec) ⁻¹	(sec)	(YES/NO)
2.23E+	01 4.27E+06	0.10	8.33E+01	2.01E-03	4.00E+02	#NUM!	NA	NA	2.66E+00	3.48E-06	2.91E+07	YES
Z.ZJLT	01 4.272+00	0.10	0.33LT01	2.01L-03	4.00L+02	#INOIVI:	INA	INA	2.001+00	3.40L-00	2.912+07	ILS
Finite												
source		Finite	Final									
indoo		source	finite	Unit	5.4							
attenuat		bldg.	source bldg.	risk	Reference							
coefficie		conc.,	conc.,	factor, URF	conc., RfC							
<α>	Danang	C _{building}	C _{building}	_								
(unitles	ss) (μg/m³)	(μg/m³)	(μg/m³)	(μg/m³) ⁻¹	(mg/m ³)	_						
NA	1.25E+02	NA	1.25E+02	NA	3.0E+01							

RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

						Incremental	Hazard
Indoor	Indoor	Risk-based		Final		risk from	quotient
exposure	exposure	indoor	Soil	indoor		vapor	from vapor
soil	soil	exposure	saturation	exposure		intrusion to	intrusion to
conc.,	conc.,	soil	conc.,	soil		indoor air,	indoor air,
carcinogen	noncarcinogen	conc.,	C_{sat}	conc.,		carcinogen	noncarcinogen
(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	_	(unitless)	(unitless)
					_		
NA	NA	NA	4.13E+06	NA	1 [NA	4.0E-03

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

Residential Tetrachloroethene Groundwater

GW-ADV Version 3.1; 02/04	CALCULATE RIS	SK-BASED GROU	NDWATER CON	CENTRATION	(enter "X" in "YES"	box)						
Version 5.1, 02/04		YES		1								
Reset to			OR	-								
Defaults	CALCULATE IN	CREMENTAL RISH	KS FROM ACTU	AL GROUNDW	ATER CONCENTR	ATION (enter "X" in	"YES" box and initial o	groundwater conc	. below)			
		YES	Х	1								
		ILS										
	ENTER	ENTER										
	Chemical	Initial groundwater										
	CAS No.	conc.,										
	(numbers only,	C _w										
	no dashes)	(μg/L)	=		Chemical		•					
	127184	3.50E+02]		Tetrachloroethy	lene						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1
		Depth		Totals mu	st add up to value o	,			Soil			
MORE ↓	Average soil/	below grade to bottom	Depth	Thickness	Thickness of soil	Thickness of soil	Soil		stratum A SCS		User-defined stratum A	
	groundwater	of enclosed	below grade	of soil	stratum B,	stratum C,	stratum	SCS	soil type		soil vapor	
	temperature,	space floor,	to water table,	stratum A,	(Enter value or 0)	(Enter value or 0)	directly above	soil type	(used to estimate	OR	permeability,	
	Ts	L _F	L_{WT}	h _A	h _B	h _C	water table,	directly above	soil vapor		k _v	
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability)	ì	(cm ²)	
	20	15	91.44	91.44	0	0	A	SC	SC			1
				_								_
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C
Ψ.	SCS soil type	soil dry	soil total	soil water-filled		soil dry bulk density,	soil total	soil water-filled	SCS soil type	soil dry bulk density,	soil total	soil water-filled
	Lookup Soil	bulk density, ρ _b ^A	porosity, n ^A	porosity, $\theta_w^{\ A}$	soil type	ρ _b ^B	porosity, n ^B	porosity, $\theta_w^{\ B}$	Lookup Soil	ρ _b ^C	porosity, n ^C	porosity, θ _w ^C
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Lookup Soil Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
		,		, ,		,	,	,			,	, ,
	SC	1.63	0.385	0.197	SC	1.63	0.385	0.197	SC	1.63	0.385	0.197
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE ↓	Enclosed	Cail blda	Enclosed	Enclosed	Factored	Close well	Indoor		Average vapor			
	space floor	Soil-bldg. pressure	space floor	space floor	Enclosed space	Floor-wall seam crack	Indoor air exchange		flow rate into bldg. OR			
	thickness,	differential,	length,	width,	height,	width,	rate,	Le	eave blank to calcula	ite		
	L_{crack}	ΔΡ	L_{B}	W_B	H _B	W	ER		Q_{soil}			
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	=	(L/m)	:		
	10	40	1000	1000	244	0.1	0.25		5			
MORE	ENTED	ENTED	ENTED	ENTED	ENTED	ENTER		_	•			
MORE •	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER Target	ENTER Target hazard						
	time for	time for	Exposure	Exposure	risk for	quotient for						
	carcinogens,	noncarcinogens,	duration,	frequency,	carcinogens,	noncarcinogens,						
	AT _C (yrs)	AT _{NC} (yrs)	ED (yrs)	EF (days/yr)	TR (unitless)	THQ (unitless)						
	(913)	(915)	(yro)	(uayə/yi)	(uniness)	(uiiiuess)	•					
	70	30	30	350	1.0E-06	1						
					Used to calcu	late risk-based						
END						concentration.						

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
7.20E-02	8.20E-06	1.84E-02	25	8,288	394.40	620.20	1.55E+02	2.00E+02	2.6E-07	4.0E-02

Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability.	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
duration,		θ_a^A	θ_a^B	θ_a^C	S _{te}				. ′	,	,	,	
τ .	L _T		(cm ³ /cm ³)			k _i	k _{rg}	k _v	L _{cz}	n _{cz}	θ _{a,cz}	θ _{w,cz}	X _{crack}
(sec)	(cm)	(cm ³ /cm ³)	(cm ⁻ /cm ⁻)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
9.46E+08	76.44	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	30.00	0.385	0.030	0.355	4,000
3.40L+00	70.44	0.100	0.100	0.100	0.233	1.77 = 03	0.037	1.402-03	30.00	0.505	0.030	0.555	4,000
Bldg. ventilation rate,	Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. groundwater temperature,	Henry's law constant at ave. groundwater temperature,	Henry's law constant at ave. groundwater temperature,	Vapor viscosity at ave. soil temperature,	Stratum A effective diffusion coefficient,	Stratum B effective diffusion coefficient,	Stratum C effective diffusion coefficient,	Capillary zone effective diffusion coefficient,	Total overall effective diffusion coefficient,	Diffusion path length,
Q _{building}	A_B	η	Z_{crack}	$\Delta H_{v,TS}$	H_{TS}	H' _{TS}	μ_{TS}	D ^{eff} _A	D ^{eff} _B	D^{eff}_{C}	D ^{eff} cz	D^{eff}_{T}	L _d
(cm ³ /s)	(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)
			` '	,		,	,						
1.69E+04	1.06E+06	3.77E-04	15	9,451	1.40E-02	5.81E-01	1.78E-04	1.86E-03	0.00E+00	0.00E+00	7.21E-06	1.83E-05	76.44
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coefficient,	Area of crack,	Exponent of equivalent foundation Peclet number,	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,	Unit risk factor,	Reference conc.,			
L_p	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A _{crack}	exp(Pe ^t)	α	C_{building}	URF	RfC			
(cm)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m³)	(μg/m³) ⁻¹	(mg/m ³)	_		
15	2.03E+05	0.10	8.33E+01	1.86E-03	4.00E+02	#NUM!	1.49E-05	3.03E+00	2.6E-07	4.0E-02]		

RESULTS SHEET

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

						Incremental	Hazard
	Indoor	Indoor	Risk-based	Pure	Final	risk from	quotient
	exposure	exposure	indoor	component	indoor	vapor	from vapor
	groundwater	groundwater	exposure	water	exposure	intrusion to	intrusion to
	conc.,	conc.,	groundwater	solubility,	groundwater	indoor air,	indoor air,
	carcinogen	noncarcinogen	conc.,	S	conc.,	carcinogen	noncarcinogen
_	(μg/L)	(μg/L)	(μ g/L)	(μg/L)	(μg/L)	 (unitless)	(unitless)
_							
Γ	NA	NA	NA	2.00E+05	NA	3.2E-07	7.3E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

Residential Tetrachloroethene Soil

SL-ADV /ersion 3.1; 02/04	CALCULATE RISK	-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
()		YES]											
Reset to Defaults	CALCULATE INCR	EMENTAL RISKS	OR FROM ACTUAL SOI	L CONCENTRATION (enter "X" in "YES"	box and initial soil co	onc. below)								
		YES	х	1			,								
				J											
	ENTER	ENTER Initial													
	Chemical	soil													
	CAS No. (numbers only,	conc., C _R													
	no dashes)	C _R (μg/kg)	_		Chemical		-								
	127184	3.00E+02]	Tet	rachloroethyler	ne]								
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER					
MORE		Depth		Depth below		st add up to value of		Soil							
•		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average soil	to bottom of enclosed	Depth below grade to top	of contamination, (enter value of 0	Thickness of soil	of soil stratum B,	of soil stratum C,	SCS soil type		stratum A soil vapor					
	temperature,	space floor,	of contamination,	if value is unknown)	stratum A,		(Enter value or 0)	(used to estimate	OR	permeability,					
	Ts	L _F	L	L _b	h _A	h _B	h _C	soil vapor		k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	. ,	(cm ²)					
	20	15	60.96	152.4	60.96	0	0	SC	1 1						
	20	13	00.50	102.4	00.30	Ů.	, o	- 60							
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C	Stratum C
¥	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic	SCS	soil dry	soil total	soil water-filled	soil organic
· · · · · · · · · · · · · · · · · · ·	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,	soil type	bulk density,	porosity,	porosity,	carbon fraction,
						3011 type									f _{oc} C
	Lookup Soil	ρ_b^A	n ^A	θ_w^A	f _{oc} ^A	Lookup Soil	$\rho_b^{\ B}$	n ^B	θ_w^B	f _{oc} ^B	Lookup Soil	ρ _b ^C	n ^C	θ _w ^C	
	Lookup Soil Parameters					$\overline{}$		n ^B (unitless)	θ _w ^B (cm ³ /cm ³)	f _{oc} ^B (unitless)	Lookup Soil Parameters	ρ _ь ^C (g/cm³)	n ^C (unitless)	θ _w ^C (cm ³ /cm ³)	(unitless)
		ρ_b^A	n ^A	θ_w^A	f _{oc} ^A	Lookup Soil	$\rho_b^{\ B}$								
	Parameters	ρ _b ^A (g/cm ³)	n ^A (unitless)	θ _w ^A (cm³/cm³)	f _{oc} ^A (unitless) 0.002	Lookup Soil Parameters	ρ _b ^B (g/cm ³)	(unitless)	(cm ³ /cm ³) 0.197	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
MORE	SC ENTER	ρ _b ^A (g/cm ³)	n ^A (unitless) 0.385 ENTER	6w ^A (cm³/cm³) 0.197 ENTER	f _{oc} ^A (unitless)	Lookup Soil Parameters	ρ _b ^B (g/cm ³)	(unitless)	(cm³/cm³) 0.197 ENTER	(unitless)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
MORE ↓	SC ENTER Enclosed space	ρ _b ^A (g/cm³) 1.63 ENTER Soil-bldg.	n^ (unitless) 0.385 ENTER Enclosed space	0,4 (cm³/cm³) 0.197 ENTER Enclosed space	f _{oc} ^A (unitless) 0.002 ENTER Enclosed	Lookup Soil Parameters SC ENTER Floor-wall	(g/cm³) 1.63 ENTER Indoor	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor	p, h (g/cm³) 1.63 ENTER Soil-bldg. pressure	n ^A (unitless) 0.385 ENTER Enclosed space floor	0, w (cm³/cm³) 0.197 ENTER Enclosed space floor	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space	Lookup Soil Parameters SC ENTER Floor-wall seam crack	(g/cm³) 1.63 ENTER Indoor air exchange	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness,	ρ _b ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential,	n^A (unitless) 0.385 ENTER Enclosed space floor length,	0,4 (cm³/cm³) 0.197 ENTER Enclosed space floor width,	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height,	Lookup Soil Parameters SC ENTER Floor-wall seam crack width,	(g/cm³) 1.63 ENTER Indoor air exchange rate,	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor	P _b ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP	n^ (unitless) 0.385 ENTER Enclosed space floor length,	e, a complete the	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, W	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, Lerack (cm)	Pb ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, AP (g/cm-s²)	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm)	0, 0 Cm ³ /cm ³) 0.197 ENTER Enclosed space floor width, W _B (cm)	f _{cc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm)	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm)	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, L-crack	P _b ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP	n^ (unitless) 0.385 ENTER Enclosed space floor length,	e, a complete the	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, W	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, Lenack (cm) 10 ENTER	P _b ^Δ (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm)	0, 0 Cm ³ /cm ³) 0.197 ENTER Enclosed space floor width, W _B (cm)	f _{cc} ^A (unitless) 0.002 ENTER Enclosed space height, H _a (cm) 244	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	Parameters SC ENTER Enclosed space floor thickness, L_crack (cm) 10 ENTER Averaging	Pb ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER	0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 244 ENTER Target	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, Lenek (cm) 10 ENTER Averaging time for	Pb ^A (g/cm³) 1.63 ENTER Soil-bidg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure	e, a complete the	f _{cc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 244 ENTER Target risk for	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER Averaging time for carcinogens,	P _b ^Δ (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER	0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 244 ENTER Target	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, Lenek (cm) 10 ENTER Averaging time for	Pb ^A (g/cm³) 1.63 ENTER Soil-bidg. pressure differential, ΔP (g/cm-s²) 40 ENTER Averaging time for	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure duration,	0, 0 Com ² /cm ³) 0.197 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency,	f _{cc} ^A (unitless) 0.002 ENTER Enclosed space height, H _a (cm) 244 ENTER Target risk for carcinogens,	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard rougent for noncarcinogers,	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	SC ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER Averaging time for carcinogens, ATc	Pb ^A (g/cm³) 1.63 ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	n^ (unitless) 0.385 ENTER Enclosed space floor length, Ls (cm) 1000 ENTER Exposure duration, ED	0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, He (cm) 244 ENTER Target risk for carcinogens, TR	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THO	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	Parameters SC ENTER Enclosed space floor thickness, L_crack (cm) 10 ENTER Averaging time for carcinogens, AT _C (yrs)	Pb ^A (g/cm³) 1.63 ENTER Soil-bidg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure duration, ED (yrs)	0, a cm²/cm²) 0.197 ENTER Enclosed space floor width, Wa (cm) 1000 ENTER Exposure frequency, EF (days/yr)	f _{cc} ^A (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm) 244 ENTER Target risk for carcinogens, TR (unitless)	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THO (unitless)	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)
	Parameters SC ENTER Enclosed space floor thickness, L_crack (cm) 10 ENTER Averaging time for carcinogens, AT _C (yrs)	Pb ^A (g/cm³) 1.63 ENTER Soil-bidg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	n^ (unitless) 0.385 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure duration, ED (yrs)	0, a cm²/cm²) 0.197 ENTER Enclosed space floor width, Wa (cm) 1000 ENTER Exposure frequency, EF (days/yr)	f _{oc} ^A (unitless) 0.002 ENTER Enclosed space height, H _B (cm) 244 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 Used to calcul	Lookup Soil Parameters SC ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogers, THQ (unitless)	(g/cm³) 1.63 ENTER Indoor air exchange rate, ER (1/h)	(unitless) 0.385	(cm³/cm³) 0.197 ENTER Average vapor flow rate into bldg OR ave blank to calcul Q _{soil} (L/m)	(unitless) 0.002	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(unitless)

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Physical state at soil temperature, (S,L,G)
7.20E-02	8.20E-06	1.84E-02	25	8,288	394.40	620.20	1.55E+02	2.00E+02	2.6E-07	4.0E-02	L

Exposure building air-filled duration, separation, porosity, porosity, separation, separati		Source-	Stratum A soil	Stratum B soil	Stratum C soil	Stratum A effective	Stratum A soil	Stratum A soil	Stratum A soil	Floor- wall	Initial soil	Bldg.	
τ L _T θ _s ^A θ _s ^B θ _s ^C S _a k _s k _s g k _s X _{crack} C _R Q _{building} (sec) (cm) (cm) ² /cm ²) (cm ² /cm ²) (cm ²)													
(sec) (cm) (cm³/cm³) (cm³/cm³) (cm³/cm²) (cm²/cm²) (cm²)		•								•			
9.46E+08							• •	-				•	
Area of enclosed Crack Crack Enthalpy of Henry's law vopor area below diffusion diffusion diffusion coefficient, coefficient, coefficient, com	(360)	(CIII)	(OIII /OIII)	(cm /cm)	(cm /cm)	(om /om)	(om)	(CIII)	(CIII)	(CIII)	(µg/ку)	(611 73)	_
enclosed Crack- Crack Enthalpy of Henry's law space to-total depth vaporization at constant at below area below area below area below area below area below avaporization at constant at ave. soil diffusion coefficient, co	9.46E+08	45.96	0.188	0.188	0.188	0.299	1.77E-09	0.837	1.48E-09	4,000	3.00E+02	1.69E+04	
enclosed Crack- Crack Enthalpy of Henry's law space to-total depth vaporization at constant at below area below area below area below area below area below avaporization at constant at ave. soil diffusion coefficient, co													
space to-total depth vaporization at seleow area below area. Soil ave. Soil diffusion dif	Area of							Stratum	Stratum	Stratum	Total		
below area below ave soil ave soil ave soil ave soil ave soil ave soil diffusion diffusion coefficient, coeff	enclosed	Crack-			Henry's law	Henry's law	Vapor						
grade, ratio, grade, temperature, temperature, temperature, temperature, coefficient, $Coefficient$, $Coeffici$													
A _B η Z _{crack} ΔH _{V,TS} H _{TS} H'TS μTS D ^{eff} _A D ^{eff} _B D ^{eff} _C D ^{eff} _T L _g L _p												•	•
(cm²) (unitless) (cm) (cal/mol) (atm-m³/mol) (unitless) (g/cm-s) (cm²/s)	=	ratio,	-	•	•	•	temperature,		,	,		-	length,
1.06E+06 3.77E-04 15 9,451 1.40E-02 5.81E-01 1.78E-04 1.86E-03 0.00E+00 0.00E+00 1.86E-03 45.96 15		η	Z_{crack}	$\Delta H_{v,TS}$			μ_{TS}					L _d	L_p
Average Crack Exponent of equivalent Source Infinite Source Vapor Effective Foundation Indoor Source Infinite Infinite Source Infinite Infinite Source Infinite Source Infinite Infinite Source Infinite Infin	(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm ² /s)	(cm)	(cm)
Average Crack Exponent of equivalent Source Infinite Source Vapor Effective Foundation Indoor Source Infinite Infinite Source Infinite Infinite Source Infinite Source Infinite Infinite Source Infinite Infin	1.065+06	2 77E 04	15	0.451	1.405.02	5 91E 01	1 795 04	1 965 03	0.005+00	0.005+00	1 965 03	45.06	15
Soil-water Source Vapor effective effective effective attenuation vapor Crack flow rate diffusion Area of peclet attenuation bldg. Coefficient, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., source source depletion, source (cm³/g) (μg/m³) (cm) (cm³/s) (cm²/s) (cm²/s) (cm²/s) (cm²) (unitless) (unitless) (μg/m³) (unitless) (sec)¹ (sec) (YES/NO) Silve Finite Finit	1.002+00	3.77L=04	13	3,431	1.40L-02	J.61L-01	1.70L-04	1.00L-03	0.00L+00	0.00L+00	1.00L-03	45.90	13
Soil-water Source vapor effective diffusion Area of Peclet attenuation bldg. Finite Finite Source time for coefficient, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., source source depletion, source (cm³/g) (μg/m³) (cm) (cm³/s) (cm²/s) (cm²/s) (cm²) (unitless) (unitless) (μg/m³) (unitless) (sec) (yES/NO) 3.10E-01 3.50E+05 0.10 8.33E+01 1.86E-03 4.00E+02 #NUM! NA NA 1.51E+00 6.31E-07 7.92E+06 YES Finite source Mass Finite Final indoor limit source finite Unit attenuation bldg. bldg. source bldg. risk Reference coefficient, conc., conc							Exponent of	Infinite					
partition vapor Crack flow rate diffusion coefficient, conc., radius, into bldg., coefficient, conc., radius, into bldg., coefficient, coefficient, conc., radius, into bldg., coefficient, coefficient, conc., radius, into bldg., conc., conc., conc., radius, into bldg., coefficient, conc., radius, into bldg., coefficient, conc., conc., radius, into bldg., coefficient, conc., radius, into bldg., coefficient, conc., conc.				Average	Crack		equivalent	source	Infinite				Exposure
coefficient, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., source source depletion, source K_d C_{source} r_{crack} Q_{soil} Q				•									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•							•				
Com ³ /g) (μg/m ³) (cm) (cm ³ /s) (cm ²) (cm ² /s) (cm ²) (unitless) (unitless) (μg/m ³) (unitless) (sec) (YES/NO)	coefficient,		radius,	•		crack,		coefficient,	conc.,		source	depletion,	source
3.10E-01 3.50E+05 0.10 8.33E+01 1.86E-03 4.00E+02 #NUM! NA NA 1.51E+00 6.31E-07 7.92E+06 YES	K_d	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A_{crack}	exp(Pe')	α	$C_{building}$	β term	ψ term	τ_{D}	depletion
	(cm ³ /g)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m ³)	(unitless)	(sec) ⁻¹	(sec)	(YES/NO)
	3 10F-01	3 50E±05	0.10	8 33F±01	1 86F-03	4.00E±02	#NILIMI	NΔ	NΔ	1.51E±00	6 31F-07	7 02F±06	VES
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3.10L-01	3.30L+03	0.10	0.33L+01	1.00L-03	4.00L+02	#INOIVI:	IVA	INA	1.512+00	0.51L-07	7.32L+00	110
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Finite												
attenuation bldg. bldg. source bldg. risk Reference coefficient, conc., conc., conc., factor, conc., $< \alpha > $ $C_{building}$			Finite										
coefficient, conc., conc., conc., factor, conc., <α> C _{building} C _{building} C _{building} URF RfC	indoor												
$< lpha > C_{ m building} C_{ m building}$ $C_{ m building}$ URF RfC		•	•	•									
- ballang - ballang - ballang -													
(unitless) (μg/m³) (μg/m³) (μg/m³) (μg/m³) ⁻¹ (mg/m³)					_								
	(unitless)	(μg/m³)	(μg/m ³)	(μg/m³)	(μg/m³) ⁻¹	(mg/m³)	_						
NA 2.96E+00 NA 2.96E+00 2.6E-07 4.0E-02	NA	2.96E+00	NA	2.96E+00	2.6E-07	4.0E-02	7						

RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

						mental	Hazard
Indoor	Indoor	Risk-based		Final	risk	from	quotient
exposure	exposure	indoor	Soil	indoor	Vä	apor	from vapor
soil	soil	exposure	saturation	exposure	intru	sion to	intrusion to
conc.,	conc.,	soil	conc.,	soil	indo	or air,	indoor air,
carcinogen	noncarcinogen	conc.,	C_{sat}	conc.,	carc	inogen	noncarcinogen
(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(uni	tless)	(unitless)
NA	NA	NA	9.96E+04	NA	3.2	E-07	7.1E-02

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"