CONTENTS

Qualified Groundwater Scientist Certification .. i

1.0 INTRODUCTION .. 1
 1.1 Introduction ... 1
 1.2 Site Description ... 2
 1.3 Property Setting and Adjacent Properties ... 3
 1.4 Site History ... 3
 1.5 Project Health and Safety ... 4

2.0 APPLICATION/CHECKLIST ... 5

3.0 CONCEPTUAL SITE MODEL .. 6
 3.1 Regulated Substances Released/Constituents of Concern 6
 3.2 Soil, Groundwater, Surface Water and Sediment ... 7
 3.3 Delineation of Constituents of Concern .. 7
 3.4 Hydrogeologic Characteristics ... 9
 3.5 Potential Receptors/Exposure Pathways ... 12

4.0 INVESTIGATION AND REMEDIATION PLAN .. 14
 4.1 Delineation Criteria and Standards ... 14
 4.2 Proposed Additional Investigation and Corrective Actions 15
 4.3 Milestone Schedule ... 15
 4.4 Groundwater Contaminant Fate and Transport Modeling 15

5.0 SITE INVESTIGATION AND REMEDIATION .. 17
 5.1 Groundwater Sampling ... 17
 5.2 Groundwater Sampling Results .. 18
 5.3 Source Removal ... 19
 5.4 Groundwater Polishing ... 20

6.0 CONCLUSIONS AND RECOMMENDATIONS .. 21
 6.1 Conclusions ... 21
 6.2 Recommendations .. 22
FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site Location Map</td>
</tr>
<tr>
<td>2</td>
<td>Site Layout Map</td>
</tr>
<tr>
<td>3</td>
<td>Potential Receptor Map</td>
</tr>
<tr>
<td>4</td>
<td>Groundwater Elevations, Upper Surficial Aquifer – October 17, 2016</td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Quality Map – October 17, 2016</td>
</tr>
<tr>
<td>6</td>
<td>Soil Excavation Map</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VRP Milestone Schedule</td>
</tr>
<tr>
<td>2</td>
<td>Delineation Criteria and Standards</td>
</tr>
<tr>
<td>3</td>
<td>Monitoring Well and Groundwater Elevation Data</td>
</tr>
<tr>
<td>4</td>
<td>Groundwater Analytical Data</td>
</tr>
<tr>
<td>5</td>
<td>Monitoring Well Sampling Schedule</td>
</tr>
</tbody>
</table>
APPENDICES

APPENDIX A – HISTORICAL SOIL AND GROUNDWATER RESULTS
APPENDIX B – GEOLOGIC CROSS SECTIONS
APPENDIX C – TYPE 3 GROUNDWATER RRS CALCULATIONS
APPENDIX D – FIELD LOGS
APPENDIX E – LABORATORY REPORTS
APPENDIX F – SOIL AND GROUNDWATER REMEDIATION DOCUMENTATION
"I certify that I am a qualified groundwater scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields as demonstrated by state registration and completion of accredited university courses that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my direction."

Aaron Getchell, P.G.

P.G. Certification Number: PG002203
1.0 INTRODUCTION

1.1 Introduction

Gannett Fleming, Inc. (GF) was retained by the David J. Joseph Company/Trademark Metals Recycling, LLC (TMR) to perform a site investigation and prepare a Conceptual Site Model (CSM) pursuant to the Georgia Department of Natural Resources (GDNR), Environmental Protection Division (EPD) Voluntary Remediation Program (VRP) for the qualifying property (consistent with Code Section 12-8-105) listed in the Hazardous Site Inventory (HSI) and located at 2000 West Savannah Avenue, Valdosta, Lowndes County, Georgia (Figures 1 and 2). In March 2013, a Voluntary Investigation and Remediation Plan (VIRP) and VRP Application were submitted pursuant to the VRP Act (Code Section 12-8-100). The VIRP and VRP Application were approved by the EPD in a letter dated May 22, 2014.

An Interim Site Assessment Report/VRP Status Report (Progress Report No.1) was submitted to EPD in December 2014 and provided a summary of historical site assessment and remediation findings and results of the site assessment activities performed by GF in 2014. This report also included previous reports completed by Stillwater Technologies, Inc. (STI). VRP Progress Report No. 2 was submitted to the EPD on May 28, 2015. TMR and GF met with EPD representatives at the site on August 6, 2015, to conduct an inspection and discuss further assessment and remediation requirements. Additional soil and groundwater assessment activities were completed and summarized in VRP Progress Report No. 3 dated December 15, 2015. VRP Progress Report No. 4 was submitted on May 31, 2016, and summarized the results of the April 2016 semi-annual groundwater monitoring. VRP Progress Report No. 5 was submitted on September 15, 2016, and summarized the site investigation activities conducted in the vicinity of MW-8; and provided EPD with a technical justification for discontinuing groundwater sampling in certain areas of the site. This VRP Progress Report No. 6 has been prepared to summarize soil and groundwater remediation activities in the vicinity of MW-8; and summarize the results of the October 2016 groundwater monitoring.
Assessment and remediation activities were performed in accordance with standard field investigation methods and conducted in general accordance with the EPD requirements. Groundwater sampling was performed in accordance with United States Environmental Protection Agency (USEPA) Operating Procedure SESDPROC-301-R3 dated March 4, 2013.

The purpose of conducting assessment and remediation activities at this site is to pursue risk-based corrective action with EPD and ultimately delist the site in the HSI. With the history of industrial land use at the site; and the proposed future land use of the site for industrial purposes, risk-based corrective action planned for the site include institutional controls in accordance with Code Section 12-8-102(a)(9).

1.2 Site Description

The site (VRP No. VRP1348601340 and HSI No. 10923) consists of 27.57 acres with approximately 1,000 feet of frontage along West Savannah Avenue. As shown on Figure 2, the site (Lowndes County Parcel Number 0121A 026) is unpaved and primarily wooded in the eastern portion which is not being used to support business operations. A pond is located on the southeastern portion of the site. The surrounding parcels include a mix of residential, commercial, and industrial properties.

Structures and improvements to the site (shown on Figure 2) include: an office building that is approximately 1,630 square feet; a warehouse building that is approximately 20,000 square feet; a shear building that contains a metal shear for processing the scrap metal; and a metal shed which provides cover for a metal bailer and a truck scale. The site has access to a 1,000-foot rail spur that is inactive, and has one storage tank that is located within a concrete containment dike. The site is secured with a 6.0-foot chain link fence and a locking entrance gate located along West Savannah Avenue. As of November 2015, the site has been closed and recycling operations have ceased because of the decline in scrap metal market conditions.
1.3 Property Setting and Adjacent Properties

Elevation at the site is approximately 205 feet above mean sea level and the area topography is generally flat with a slight downward trend to the south. The site is located in a mixed use area that consist of residential, commercial, and industrial. The site is bordered to the north by West Savannah Avenue; to the east by vacant, undeveloped land and then residential properties; the south by vacant, undeveloped land; and the west by A-1 Towing.

1.4 Site History

The site was previously owned and operated by Rice Iron & Metals, Inc., as a scrap metal processing business reportedly beginning in the mid-1960s. TMR contracted with STI to perform a pre-purchase environmental site investigation in 2011. The site investigation revealed the presence of soil and groundwater impacts in several areas on the site including: 1) the outdoor metal bailing area; 2) the metal shearing machine area; 3) the torch cutting area; 4) the motor block storage area; and 5) the train car load-out area. The history of any previous chemical release(s) was unknown. Since assessment has been initiated, soil and groundwater assessment activities have been conducted in several areas of the site including the Northern Operations Area and the Southern Operations Area. Results of the site assessment revealed the presence of chlorinated solvents, petroleum hydrocarbons, and metals at concentrations above Maximum Contaminant Levels (MCLs).

A Soil Excavation and Groundwater Investigation Report was completed by STI in February 2012, and was included in GF’s Progress Report No. 1. The investigation included the installation of 11 monitoring wells (MW-1 through MW-11) in five potential source areas and background areas across the site, and the completion of groundwater monitoring to assess the site. Source removal soil excavation was also conducted by STI in six areas of the site to remove impacted soil (Area #1, metal shear building, motor block storage, rail car loadout, oil water separator drainage swale, baler shed). Following the soil excavations, STI collected confirmation soil samples and the results indicated that no constituent of concern (COC) exceeded their respective cleanup criteria.
1.5 Project Health and Safety

During site assessment and remediation activities, GF has adhered to a site-specific Health and Safety Plan (HASP) that was prepared in accordance to USEPA Standard Operating Safety Guidelines and Occupational Safety and Health Administration (OSHA) Health and Safety Practices, 29 Code of Federal Regulations, Part 1910. GF personnel who participated in field activities at the subject site have completed Hazardous Waste Operations and Emergency Response (HAZWOPER) training courses that meet the criteria of OSHA regulations stipulated in 29 CFR 1910.120. Assessment work conducted by GF has been performed using Level D personal protective equipment.
2.0 APPLICATION/CHECKLIST

A Voluntary Investigation and Remediation Plan (VIRP) Application and Checklist was submitted to EPD on March 8, 2013. The VIRP Application was approved by EPD in a letter dated May 22, 2014, and indicated that the final Compliance Status Report (CSR) is due to EPD on or before April 18, 2019. Previous soil sampling data conducted by GF and submitted to EPD is summarized in tables included in Appendix A. These VRP milestones are listed in Table 1.
3.0 CONCEPTUAL SITE MODEL

3.1 Regulated Substances Released/Constituents of Concern

Historical soil and groundwater analytical data were reviewed to evaluate potential COCs at the site. Based on historical land use, a Phase II Environmental Site Assessment (ESA) was completed by STI to evaluate environmental impacts in the soil and groundwater. The Phase II ESA data indicated that the COCs included: Volatile Organic Compounds (VOCs), metals, Polycyclic Aromatic Hydrocarbons (PAHs), and Polychlorinated Biphenyls (PCBs). Additional assessment of the soil and groundwater at the site was completed by STI in 2011, and based on the results of the assessment, soil excavation was completed in six areas as reported in STI’s February 2012 Soil Excavation and Groundwater Investigation Report. COCs have been assessed at the following areas of concern: outdoor metal bailing area; aboveground storage tank (AST), former underground storage tank (UST), and non-ferrous processing building area; metal shearing machine area; and the motor block storage area. GF has conducted assessment and remediation work at the site since 2014 to bring the site towards regulatory closure with institutional controls (such as restricting future land use to industrial activity) in accordance with 12-8-102(a)(9).

Based on the assessment and remediation activities conducted to date, there are currently two contaminant source areas at the site: the outdoor metal bailing area and the motor block storage area (shown on Figure 2). GF evaluated historic soil and groundwater sampling data (included in Appendix A) against non-residential Type Risk Reduction Standards (RRSs) that have been calculated for this site (Table 2). Based on this evaluation, the current COCs at the outdoor metal bailing area include: tetrachloroethene (PCE), trichloroethene (TCE), cis-1,1-dichloroethene (DCE), 1,1-DCE, and arsenic in groundwater. The current COCs at the motor block storage area include benzene, toluene, and total xylenes.
3.2 Soil, Groundwater, Surface Water and Sediment

No soil samples were collected during this VRP Progress Report No. 6 period of record. Soil remediation activities conducted in the motor block storage area in October 2016 were based on previous soil sampling data collected in July 2016 (included in Appendix A). Previous soil sampling data that was collected by GF and submitted to EPD in VRP Progress Reports is summarized in tables included in Appendix A.

Groundwater samples were collected from monitoring wells for laboratory analysis during this VRP Progress Report No. 6 period of record. These monitoring wells were located in the outdoor metal bailing area and the motor block storage area. Previous groundwater sampling data from these two areas of concern, and previous areas of concern, that has been collected by GF and submitted to EPD is summarized in tables included in Appendix A.

A surface water body is located in the southeast portion of the site (Figure 2). This surface water body has not been connected to or in close proximity of industrial/commercial operations conducted at the site. Surface water and sediment sampling were not included as part of assessment activities since these areas were not expected to have been adversely affected by industrial operations conducted at the site.

3.3 Delineation of Constituents of Concern

Historical sampling at the site indicates that groundwater is impacted with chlorinated VOCs and arsenic at the outdoor metal bailing area; and VOCs the motor block storage area. Groundwater samples collected from point of demonstration (POD) monitoring wells MW-3 and MW-11 indicated that COCs did not exceed their respective Type 3 RRSs that are listed in Table 2. Based on the most recent groundwater sampling results, it appears that the COCs have been delineated to their respective Type 3 RRSs onsite.

GF has discontinued groundwater sampling in the southern source area at the metal shearing machine area at monitoring wells MW-5, MW-5D, MW-6, MW-12, and MW-13. Monitoring well
locations are shown on Figure 2 and the laboratory data has been summarized in tables included in Appendix A.

STI conducted soil source removal activities at two locations in this area in October 2011. Based on confirmation soil samples collected by STI following soil source removal activities, no COC exceeded their respective cleanup criteria. Following soil source removal activities, monitoring wells MW-5, MW-6, MW-7, and MW-9 were sampled for VOCs and metals. Laboratory results indicated that benzene was detected above the Type 3 RRS in 2011. Subsequently, detections of benzene in MW-5 were below the Type 3 RRS for three consecutive sampling events performed by GF in April 2015, October 2015, and April 2016. No COCs have been detected exceeding their respective Type 3 RRSs in MW-5D for four consecutive sampling events conducted in August 2014, April 2015, October 2015, and April 2016. No COCs have exceeded their respective Type 3 RRSs in MW-6 for three consecutive sampling events conducted in July 2014, April 2015, and October 2015. No COCs have exceeded their respective Type 3 RRSs in MW-12 or MW-13 for four consecutive sampling events conducted in August 2014, April 2015, October 2015, and April 2016. The results of groundwater monitoring in this area indicates that the detection of benzene identified in 2011 has naturally attenuated to below the Type 3 RRS. Therefore, based on the source removal conducted in October 2011 by STI (including confirmation soil sampling), and the results of groundwater monitoring conducted for up to four consecutive groundwater monitoring events (in accordance with EPD’s May 22, 2014, VRP Application approval letter), no further monitoring or assessment is warranted in the metal shearing machine area of the site.

GF has discontinued groundwater sampling in the northern source area at the AST, former UST and non-ferrous processing building areas at monitoring wells MW-3, MW-4, MW-10, and MW-14; and the water well. Monitoring well locations are shown on Figure 2 and the laboratory data has been summarized in tables included in Appendix A.

STI conducted soil source removal activities at this area in October 2011. Based on confirmation soil samples collected by STI following soil source removal activities, no COC exceeded their respective cleanup criteria. Following soil source removal activities, monitoring wells MW-3 and MW-4 were sampled for metals. Laboratory results indicated that no metals were detected at
concentrations above their respective RRSs. Groundwater samples collected from MW-3, MW-4, and MW-10 indicate that no COCs have been detected above their respective Type 3 RRSs for four consecutive sampling events (conducted in July 2014, April 2015, October 2015, and April 2016). Groundwater monitoring has been conducted at MW-11 for VOCs in July 2014, April 2015, October 2015, and April 2016; and results indicate that COCs have not been detected exceeding their respective Type 3 RRSs. Groundwater monitoring has been conducted at MW-14 for VOCs and arsenic in September 2014, August 2015, October 2015, and April 2016; and results indicate that COCs have not been detected exceeding their respective Type 3 RRSs. The water well has been sampled for VOCs and arsenic in April 2015, October 2015, and April 2016; and results indicate that COCs have not been detected exceeding their respective Type 3 RRSs. Therefore, based on the source removal conducted in October 2011 by STI (including confirmation soil sampling), and the results of groundwater monitoring conducted for up to four consecutive groundwater monitoring events (in accordance with EPD’s May 22, 2014, VRP Application approval letter), no further monitoring or assessment is warranted in the AST, former UST and non-ferrous processing building areas of the site.

3.4 Hydrogeologic Characteristics

According to the United States Department of Agriculture Soil Conservation Service’s State Soil Geographic Database, the subject property soils have been mapped and classified as Albany and Chipley Sand. The soil surface texture is sand; soils are not hydric; and these Class A soils are poorly drained to moderately well drained.

Georgia consists of four distinct geologic regions (Geologic Map of Georgia, GDNR, Geologic and Water Resources Division, and Georgia Geological Society, 1976). Lowndes County is situated in South Georgia in the Coastal Plain geologic region. The Coastal Plain is a region comprised of Pleistocene and Pliocene sands and gravels; and Cretaceous and Cenozoic sedimentary rocks. The sedimentary rocks of the Coastal Plain partly consist of sediment eroded from the Piedmont over the last 100 million years and are partly limestone. These strata dip towards the southeast and are younger nearer the coast of the Atlantic Ocean. The sedimentary rocks are underlain by igneous and metamorphic rocks.
Four soil borings (B-1 through B-4) were advanced on August 5 through 7, 2014, at the site to 50 feet below land surface (bls) using the direct push drilling method. Soil samples were collected at 5.0-foot intervals using a Geoprobe with a stainless steel macrocore sampler (summarized in Progress Report No. 1, geologic cross-sections were originally provided in Progress Report No. 2 and have been included in this Progress Report as Appendix B). The general site lithology consists of sand from approximately 0.0 to 5.0 feet bls, then sandy clay from approximately 5.0 to 15 feet bls, and then sandy clay or clay with various layers of medium grain sand lenses from approximately 15 to 50 feet bls. Groundwater was generally encountered during drilling at approximately 9.0 feet bls. These unconsolidated sands and the occurrence of an unconfined water table is consistent with the hydrogeology of the Surficial Aquifer.

The Coastal Plain geologic region of Southeast Georgia is underlain by the Coastal Plain Aquifer System that includes the Floridan Aquifer System (Hydrogeology of the Southeastern Coastal Plain Aquifer System in Mississippi, Alabama, Georgia, and South Carolina, USGS Professional Paper 1410-B, 1996). In the immediate vicinity of the site, the Floridan Aquifer System consists of the Surficial Aquifer (corresponding to the Pleistocene and Pliocene undifferentiated sediments consisting of sands and gravels with varying amounts of clay) that serves to recharge deeper aquifers; the Intermediate Confining Unit (corresponding to the Hawthorn Formation) which is comprised of less permeable material (such as clays, phosphatic sands and limestone/dolostone lenses) and acts as a confining unit between the Surficial Aquifer and the Floridan Aquifer; and the Floridan Aquifer (consisting of the Avon Park Formation) which is generally comprised of limestone. Based on soil boring logs from monitoring wells installed as part of assessment activities, the Surficial Aquifer has been assessed, and no assessment has occurred in the Intermediate Confining Unit or the Floridan Aquifer.

Groundwater quality parameters collected during purging to evaluate aquifer stabilization, are generally consistent with published values for the unconfined surficial aquifer in the Coastal Plain (Water Quality of Surficial Aquifers in the Georgia-Florida Coastal Plain, USGS Water-Resources Investigations Report 95-4269, 1996). For example, the mean published temperature values for temperature and pH indicate 22°C Celsius and a slightly acidic pH, which is generally consistent with water quality parameters observed in MW-1R, MW-1D, and MW-1DD. Published values also
indicate an aerobic dissolved oxygen [greater than 1 milligram per liter (mg/L)] and fresh water specific conductivity [less than 10,000 microsiemens per centimeter (µS/cm) which is also generally consistent with values recorded during purging MW-1R, MW-1D, and MW-1DD.

Water level measurements have been collected during each groundwater monitoring event (listed in Table 3) to evaluate hydraulic gradients and groundwater flow direction at the site. The top of casings of each of the monitoring wells has been surveyed to a common benchmark. The average depth to water measured in the upper surficial aquifer is approximately 6.0 feet bls, with seasonal variability. Groundwater flow direction in the upper surficial aquifer at the site has fluctuated seasonally and has been shown towards the west. There has been some variability in the northern portion of the site with groundwater flow to the southwest and southeast. Groundwater flow direction in the intermediate portion of the surficial aquifer has generally been consistent with the upper surficial aquifer. To evaluate vertical gradients at the site, groundwater elevations measured on April 5, 2016, in wells MW-1R (upper surficial aquifer), MW-1D (intermediate surficial aquifer), and MW-1DD (lower surficial aquifer) were used with the midpoint elevation of the well screen. Based on this data, the upper, intermediate, and lower portions of the surficial aquifer exhibited a downward vertical gradient ranging from 0.04 to 0.83 feet per foot (ft/ft). Horizontal and vertical gradients indicate that the upper and intermediate portions of the surficial aquifer are hydraulically connected.

Slug testing was performed on September 23, 2014, in shallow monitoring wells MW-12, MW-13, and MW-14 to estimate physical aquifer properties at the site. Each of the shallow monitoring wells is approximately 20 feet deep (with 10 feet of screen) and is screened in the unconfined upper surficial aquifer. The slug test data were analyzed using the software package AQTESOLV (Geraghty & Miller, Inc., 1987) and the analytical method outlined by Bouwer and Rice (1976), resulting in a value for hydraulic conductivity (K) in feet per minute. These values were converted into feet/day (ft/day) and ranged from 0.0016 ft/day in MW-13 to 0.0392 ft/day in MW-14 for an average hydraulic conductivity value for the upper surficial aquifer of 0.0144 ft/day. On September 23, 2014, depth to water was measured in each monitoring well and converted to an elevation. The groundwater elevations from monitoring well pairs MW-15/MW-3, MW-8/MW-11, and MW-12/MW-6 were used to establish an average hydraulic gradient from east to west with groundwater
flow direction. The average hydraulic gradient in the upper surficial aquifer was 0.0011 ft/ft. Based on the observed lithology (sand and clayey sand), an average effective porosity of 30% was established for the sediments in the upper surficial aquifer. Therefore, where the average hydraulic conductivity (K) is 0.0144 ft/day; the average hydraulic horizontal gradient (i) is 0.0011 ft/ft; and the average estimated effective porosity (n) is 30%; the average linear groundwater velocity (V) where \(V = \frac{K \cdot i}{n} \) is 0.0001 ft/day or 0.019 feet per year.

3.5 Potential Receptors/Exposure Pathways

The nearest water wells and the nearest surface water bodies within the general area of the site is shown on Figure 3. POD monitoring wells MW-3 and MW-11 are also shown on Figure 3 with an indication of a 1,000-foot radius from the COC-impacted groundwater at the outdoor metal bailing area and the motor block storage area. The exposure pathway of COC-impacted groundwater migrating to these potential receptors was evaluated by conducting a potable well survey for a ½-mile radius of the site during multiple site visits for the period of July through November 2014. Available data regarding potable wells in the site vicinity were collected from the following sources:

1. Georgia Environmental Protection Division
2. Lowndes County Health Department
3. Well survey to visually locate any private or irrigation wells not found in the records

The site contains two water wells. One water well is located along the northeast property boundary of the site and one water well is located in the southern area of the site, near MW-5 (shown on Figure 2). The northeast well was in use at the facility for non-potable water prior to closure of the facility. The water well in the southern area has been capped and closed. Residential properties with private water wells are located less than ½ mile to the east and southwest of the property. Well proximity was noted when evaluating potential human exposure. The locations of nearby drinking water supply wells were verified; however the depths of the wells could not be verified by inspection. No public water supply wells were identified during the ½-mile radius survey performed around the site. Based on review of state records, the site was not found to be located within a
wellhead protection zone for any public water supply or well field. No public water supply wells, public supply conversion (top 20) wells, or public supply conversion/reclass wells were identified within a ½-mile radius of the site. No industrial wells were identified within a ½-mile radius of the site. The results from the potable well and sensitive receptor survey map were included in previous Progress Reports.

Based on soil remediation conducted by STI in 2011 and subsequent soil sampling conducted by GF, there does not appear to be COC-impacted soil at the site that exceeds a non-residential Type 3 RRS (equation 7). Groundwater assessment activities completed to date by GF indicated that COCs associated with former industrial scrap metal operations appear to have been delineated to their applicable Type 3 RRSs onsite and do not appear to have migrated offsite to adversely impact potential receptors. Therefore the exposure pathway to potential receptors within 1,000 feet appears to be incomplete.
4.0 INVESTIGATION AND REMEDIATION PLAN

4.1 Delineation Criteria and Standards

The proposed delineation standards for COCs in groundwater are summarized in Table 2. The proposed delineation standards were developed based on the “Process Chart for the Development of RRS at HSRA, Brownfield, and VRP Sites (Rule 391-3-19-.07)” (included in Appendix C).

The site was developed for industrial uses and the historic use of the site has been for conducting industrial business operations relating to scrap metal processing. The proposed future use of the site is for industrial purposes, and therefore GF has selected non-residential RRS for delineation criteria and standards at the site as described below:

- For groundwater, the non-residential default Type 3/4 RRS have been selected for delineation criteria and standards. During the development of institutional controls for risk based corrective action at the site, land use will be restricted to industrial, therefore Type 1 and Type 2 RRSs were not considered to be applicable. Additionally, groundwater sampling data has shown that application of Type 3/4 RRSs will not result in an unacceptable risk to downgradient receptors or result in non-compliance with applicable cleanup standards on downgradient offsite properties.

- For soil, the non-residential default Type 3/4 RRS have been selected for delineation criteria and standards. Calculations for Type 3 RRS equations 6 and 7 are included in Appendix C and have been summarized in Table 3. During the development of institutional controls for risk based corrective action at the site, land use will be restricted to industrial, therefore Type 1 and Type 2 RRSs were not considered to be applicable.
Soil and groundwater delineation criteria are consistent with Code Section 12-8-108(1)(A) through (E). Based on the proposed delineation standards, it has been demonstrated that horizontal delineation of impacted soil and groundwater within the boundaries of the site has been achieved.

4.3 Proposed Additional Investigation and Corrective Actions

The following additional investigation and corrective actions are proposed for the site during 2017. These investigation and corrective action activities will be conducted in conjunction with groundwater monitoring at the outdoor metal bailing area and the motor block storage area.

- A groundwater model will be prepared for COC-impacted groundwater at the outdoor metal bailing area. Pending the results of future groundwater sampling, a groundwater model may be prepared for impacts at the motor block storage area.

- Before the next groundwater monitoring event, monitoring well MW-8R will be installed in the immediate vicinity as the former MW-8, and the casing on MW-11 will be repaired and re-surveyed.

4.4 Milestone Schedule

A VRP milestone schedule is included in Table 1. This milestone schedule was prepared based on the VRP application approved on May 22, 2014; a minimum of two semi-annual status reports per year; and the due date for the CSR on or before April 18, 2019.

4.5 Groundwater Contaminant Fate and Transport Modeling

Groundwater contaminant fate and transport modeling will be completed to evaluate potential risks to Points of Exposure (POEs) downgradient of the site. Modeling will be evaluated for COCs detected in groundwater at concentrations greater than Type 3/4 RRS (listed in Table 2) which also exceed the Type 1/2 RRS used for groundwater modeling. The COCs include chlorinated VOCs,
benzene, toluene, xylenes and arsenic. BIOCHLOR (or similar such as Bioplume II or BIOSCREEN) will be used for conducting groundwater modeling.
5.0 SITE INVESTIGATION AND REMEDIATION

The purpose of this section is to provide the results of site investigation and remediation activities that have been completed since submittal of the last VRP Status Report and to provide additional data for a CSM. The additional site assessment and remediation activities are described in the following sections and included: groundwater sampling and source removal.

5.1 Groundwater Sampling

During the October 2016 sampling event, ten monitoring wells (shown on Figure 2) were sampled. Groundwater samples were collected from monitoring wells installed in the motor block storage area to evaluate the spike in VOC impacted groundwater and evaluate delineation. GF collected groundwater samples from MW-8 (the source well), MW-11 (downgradient), and MW-16 (upgradient). Groundwater samples were also collected from monitoring wells installed in the outdoor metal bailing area to evaluate delineation of VOC and arsenic impacted groundwater. GF collected groundwater samples from: MW-1R (the source well); MW-1D and MW-1DD (for vertical delineation); MW-2R and MW-14 (crossgradient); MW-15 (upgradient); and MW-3 (downgradient). The groundwater samples were submitted to SGS Accutest for laboratory analysis; groundwater sampling was performed in accordance with USEPA Operating Procedure SESDPROC-301-R3 dated March 4, 2013.

Prior to groundwater sampling on October 17, 2016, depth to water was measured from each accessible monitoring well at the site and converted to groundwater elevations to evaluate the inferred groundwater flow direction. The inferred groundwater flow direction for the monitoring wells screened in the upper surficial aquifer, is generally toward the east, showing some variability which is likely the result of seasonal rainfall fluctuations; but are generally consistent with groundwater elevations documented in previous groundwater monitoring events. The groundwater elevation data is listed in Table 3 and plotted on Figure 5.
Before sampling, each monitoring well was purged with a peristaltic pump and new disposable polyethylene tubing using the low-flow sampling technique. During purging, physical water quality parameters (pH, temperature, specific conductivity, dissolved oxygen, turbidity, oxygen reduction potential, and observations) were recorded on groundwater sampling logs to evaluate aquifer stabilization, and characterize the aquifer environment for the capacity to sustain biotic natural attenuation of dissolved petroleum hydrocarbons. Groundwater sampling and calibration logs are included in Appendix D.

The water supply well located in the southern portion of the property, near monitoring well MW-5, will be maintained and used if operations at the site resume. If the well remains unused for three years or more from November 2015 (the approximate timeframe the facility ceased operations) it will be permanently abandoned in accordance with 12-5-134(6) of the Georgia Water Well Standards Act of 1985, et. seq. If the well is permanently decommission, documentation, including well abandonment field logs, will be submitted to the Response and Remediation Program within 60 days of abandonment.

5.2 Groundwater Sampling Results

The laboratory report from the October 2016 sampling event is summarized in Table 4, plotted on Figure 5, and included in Appendix E. Historic groundwater analytical data is summarized on Tables included in Appendix A. The following is a summary of notable observations:

- No free product or sheens were noted during groundwater sampling activities.

- Laboratory analysis of groundwater samples collected from monitoring well MW-1R (outdoor metal bailing area) indicated that PCE, TCE, cis-1,1-DCE, and arsenic exceeded their respective Type 3 RRSs. Groundwater quality in the outdoor metal bailing area continues to improve, as 1,1-DCE was not detected above the Type 3 RRS for the first time since sampling was initiated by GF in August 2014.
• A detection in MW-1DD (screened 70 to 75 feet bls) of PCE of 7.1 micrograms per liter (µg/L) exceeded the Type 3 RRS of 5 µg/L. While concentrations of COCs in MW-1D (screened 35 to 40 feet bls) have remained below Type 3 RRSs for the past five consecutive sampling events, PCE has sporadically been observed in MW-1DD (screened 70 to 75 feet bls) exceeding the Type 3 RRS.

• Laboratory analysis of groundwater samples collected from monitoring well MW-8 (motor block storage area) indicated that benzene, toluene, and total xylenes exceeded their respective Type 3 RRSs. The decreased concentrations of these COCs is likely due to the fluctuating groundwater table which has decreased by 5.81 feet since these COCs were first detected during the April 2016 groundwater monitoring event.

5.3 Source Removal

During the July 2016 mobilization (summarized in VRP Status Report #5) a soil assessment was conducted in the area of monitoring well MW-8 to evaluate a spike in petroleum-related COCs. A monitoring well (MW-16) was also installed upgradient of MW-8 and both monitoring wells were sampled to assess groundwater quality in this area of the site. Based on the soil and groundwater data, it appears that the petroleum compound impacts at MW-8 are limited to groundwater as the result of residual petroleum compounds in the smear zone being mobilized to groundwater by a fluctuating groundwater table (as much as 5.81 feet from April 2016 to October 2016). GF conducted the source removal at MW-8 in conjunction with the October 2016 groundwater monitoring event. The July 2016 soil boring locations and the footprint of the October 2016 source removal are shown on Figure 6.

In accordance with the Georgia Utility Facility Protection Act, GF notified Georgia 811 on October 10, 2016, of excavation activities (Ticket Number 10106-276-012-000) to have underground utilities marked that may be in conflict with the excavation. On October 17, 2016, before excavation activities, monitoring well MW-8 was properly abandoned by Partridge Well Drilling Company, Inc. (Georgia Water Well Contractor License GA 409 WD). Following well abandonment, approximately 107.09 tons of soil in the immediate vicinity of monitoring well MW-8 were
excavated to a depth of approximately 12 feet bls (the footprint of the excavation is shown on Figure 6). The soil was profiled as non-hazardous waste and disposed of at the Evergreen Landfill; non-hazardous waste manifests and weight tickets are included in Appendix D. Following soil excavation activities, imported backfill (recycled - concrete) was placed in lifts into the excavation and compacted with the excavator until it was level with land surface.

5.4 Groundwater Polishing

To facilitate groundwater polishing after the soil excavation, GF applied 110 pounds of an amendment to the backfill for placement below the groundwater table and in the smear zone. The COCs identified in this area of the site are petroleum hydrocarbons; therefore, Oxygen Release Compound (ORC) Advanced was selected as the amendment. On October 10, 2016, Underground Injection Control (UIC) Notification was emailed to GAEPD, in accordance with Procedure EPD-UIC-003, to inform GAEPD in writing of GF’s intent to use the ORC Advanced amendment at the site. The UIC Notification is included in Appendix F.
6.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations have been prepared by GF for the TMR site (VRP No. VRP1348601340 and HSI No. 10923) based historical sampling data; and assessment and remediation conducted during October 2016. Conclusions are presented in Section 6.1 and recommendations are presented in Section 6.2.

6.1 Conclusions

Based on previous sampling events and the assessment and remediation conducted in October 2016, GF concludes the following:

- As summarized in this Progress Report, Equation 6 and Equation 7 were used to calculate the Non-Residential Type 3 Soil RRSs for past and current COCs at the site. During the development of institutional controls for risk based corrective action at the site, land use will be restricted to industrial, therefore Type 1 and Type 2 RRSs were not considered to be applicable. Additionally, groundwater sampling data has shown that application of Type 3 RRSs will not result in an unacceptable risk to downgradient receptors or result in non-compliance with applicable cleanup standards on downgradient offsite properties.

- Soil remediation and groundwater polishing activities were conducted in the motor block storage area of the site to address COC-impacted groundwater at MW-8R. Remediation activities included excavating 107.09 tons of soil for offsite disposal as non-hazardous waste and applying 110 pounds of ORC Advanced to the subsurface for groundwater polishing.
• Groundwater sampling results from MW-1R indicate that water quality has generally improved at the outdoor metal bailing area. 1,1-DCE is below the Type 3 RRS for the first time and the other chlorinated VOCs have remained below their historic highs. Arsenic concentrations in MW-1R appear to be relatively consistent and below historic high concentrations.

• Groundwater sampling results from MW-8, collected before the soil and groundwater remediation activities, indicate that COCs remained above Type 3 RRSs and appear to have been fluctuating with the fluctuating groundwater table.

• COCs detected in MW-1R in the outdoor metal bailing area and MW-8 in the motor block storage area appear to be decreasing or consistent, indicating that these COC plumes are stable or shrinking. Additionally, groundwater sampling data indicates that these COC impacts have been adequately characterized and delineated.

• COCs were not detected in POD monitoring wells at the site’s property boundaries exceeding their respective Type 3 RRSs and in most cases, were not detected above laboratory method detection limits.

6.2 Recommendations

Based on previous sampling events and the conclusions noted in Section 6.1, GF recommends the following:

• GF recommends groundwater modeling for COCs remaining in groundwater at the site in the outdoor metal bailing area (MW-1R). GF anticipates that remediation activities conducted at the motor block storage area will be successful in remediating COC-impacted groundwater to below the Type 3 RRSs (however, if COCs remain elevated at MW-8R these COCs will also be included in the groundwater model). The groundwater model will be used to support the use of institutional controls during risk-based action and closure of contamination issues associated with this site.
• GF recommends installing MW-8R and repairing/re-surveying the casing on MW-11 before the next regular groundwater sampling event. The next regular groundwater sampling event will be conducted before April 2017.

• GF recommends the continuation of regular groundwater sampling which is tentatively scheduled to be completed before April 2017, to be summarized in Progress Report No. 7, and submitted to EPD for review. A monitoring well sampling list is included as Table 5.
FIGURES
TRADEMARK METALS RECYCLING
2000 WEST SAVANNAH AVENUE
VALDOSTA, GEORGIA

SITE LOCATION MAP

SCALE 1"=2,000'
U.S.G.S. 7.5 MINUTE QUADRANGLE
VALDOSTA, GEORGIA
LEGEND

Monitoring Well Location

Type 3 RRS

- Benzene in ug/L
- 1,1-Dichloroethylene in ug/L
- 1,2-Dichloroethylene in ug/L
- Tetrachloroethylene in ug/L
- Trichloroethylene in ug/L
- Vinyl Chloride in ug/L
- Arsenic in ug/L
- Toluene in ug/L
- p,p'-DDE in ug/L
- o-xylene in ug/L

ND = Non Detect
NA = Not Analyzed For Constituent
J = Value between MQL and PQL

Note: All other 8260’s are below lab detection limit (Non Detect) or below groundwater criteria listed in table.

Inferred Type 3 RRS Isocontour

GROUNDWATER QUALITY MAP

OCTOBER 17 & 18, 2016
TRADEMARK METALS RECYCLING
2000 WEST SAVANNAH AVENUE
VALDOSTA, GEORGIA
Table 1:
VRP Milestone Schedule
Trademark Metals Recycling
2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>VRP Milestone</th>
<th>Deliverable Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP Application</td>
<td>3/7/2013</td>
<td>Approved 5/22/14</td>
</tr>
<tr>
<td>VRP Status Report #1</td>
<td>11/26/2014</td>
<td>Submitted</td>
</tr>
<tr>
<td>VRP Status Report #2</td>
<td>5/28/2015</td>
<td>Submitted</td>
</tr>
<tr>
<td>VRP Status Report #3</td>
<td>12/15/2015</td>
<td>Submitted</td>
</tr>
<tr>
<td>VRP Status Report #4</td>
<td>5/31/2016</td>
<td>Submitted</td>
</tr>
<tr>
<td>VRP Status Report #5</td>
<td>9/15/2016</td>
<td>Submitted</td>
</tr>
<tr>
<td>VRP Status Report #6</td>
<td>December 2016</td>
<td>Submitted</td>
</tr>
<tr>
<td>VRP Status Report #7</td>
<td>May 2017</td>
<td>Pending</td>
</tr>
<tr>
<td>VRP Status Report #8</td>
<td>December 2017</td>
<td>Pending</td>
</tr>
<tr>
<td>VRP Status Report #9</td>
<td>May 2018</td>
<td>Pending</td>
</tr>
<tr>
<td>VRP Status Report #10</td>
<td>December 2018</td>
<td>Pending</td>
</tr>
<tr>
<td>Compliance Status Report</td>
<td>4/18/2019</td>
<td>Pending</td>
</tr>
</tbody>
</table>
Table 2: Delineation Criteria and Standards

Trademark Metals Recycling
2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Compound</th>
<th>Default Non-residential Type 3 Groundwater Risk Reduction Standard (µg/l)</th>
<th>Equation 6</th>
<th>Equation 7</th>
<th>Non-Residential Type 3 Soil Risk Reduction Standard (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCs by EPA Method 8260B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>5</td>
<td>20.9</td>
<td>866</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>7</td>
<td>-</td>
<td>5,577</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>700</td>
<td>2710</td>
<td>57,200</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>5</td>
<td>2730</td>
<td>2,889</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>1000</td>
<td>-</td>
<td>292,728</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>5</td>
<td>155</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>2</td>
<td>29</td>
<td>1,825</td>
<td></td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>10</td>
<td>-</td>
<td>21,447</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>10</td>
<td>-</td>
<td>24,460</td>
<td></td>
</tr>
<tr>
<td>PCBs by EPA Method 8882</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arochlor 1248</td>
<td>Not Applicable</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arochlor 1254</td>
<td>Not Applicable</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arochlor 1260</td>
<td>Not Applicable</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Arsenic by EPA Method 6010B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>10</td>
<td>38</td>
<td>1707</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
EPA = Environmental Protection Agency
VOCs = volatile organic compounds
mg/kg = milligrams per kilogram (parts per million)
µg/l = micrograms per liter (parts per billion)
Groundwater Default Non-residential Type 3 RRS's = Appendix III Table 1 Groundwater Criteria
Reference "Process Chart for the Development of RRS at HSRA, Brownfield, and VRP Sites (Rule 391-3-19-.07)."
- indicates a concentration could not be calculated as variables were undefined.
Table 3:
Monitoring Well and Groundwater Elevation Data

Trademark Metals Recycling, 2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-1R</th>
<th>MW-2R</th>
<th>MW-3</th>
<th>MW-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTOC)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>199.77</td>
<td>199.31</td>
<td>198.79</td>
<td>200.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>191.53</td>
<td>7.26</td>
<td>0.00</td>
</tr>
<tr>
<td>08/11/14</td>
<td>189.62</td>
<td>10.15</td>
<td>0.00</td>
<td>189.56</td>
<td>9.75</td>
<td>0.00</td>
<td>189.86</td>
<td>8.93</td>
<td>0.00</td>
</tr>
<tr>
<td>11/11/14</td>
<td>188.39</td>
<td>11.38</td>
<td>0.00</td>
<td>188.31</td>
<td>11.00</td>
<td>0.00</td>
<td>188.89</td>
<td>9.90</td>
<td>0.00</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.52</td>
<td>5.25</td>
<td>0.00</td>
<td>194.44</td>
<td>4.87</td>
<td>0.00</td>
<td>195.11</td>
<td>3.68</td>
<td>0.00</td>
</tr>
<tr>
<td>10/19/15</td>
<td>194.10</td>
<td>5.67</td>
<td>0.00</td>
<td>193.89</td>
<td>5.42</td>
<td>0.00</td>
<td>195.15</td>
<td>3.64</td>
<td>0.00</td>
</tr>
<tr>
<td>04/05/16</td>
<td>196.76</td>
<td>3.01</td>
<td>0.00</td>
<td>197.64</td>
<td>2.57</td>
<td>0.00</td>
<td>196.51</td>
<td>2.28</td>
<td>0.00</td>
</tr>
<tr>
<td>07/27/16</td>
<td>192.21</td>
<td>7.56</td>
<td>0.00</td>
<td>192.17</td>
<td>7.14</td>
<td>0.00</td>
<td>193.00</td>
<td>5.79</td>
<td>0.00</td>
</tr>
<tr>
<td>10/17/16</td>
<td>190.08</td>
<td>9.69</td>
<td>0.00</td>
<td>189.82</td>
<td>9.49</td>
<td>0.00</td>
<td>188.84</td>
<td>9.95</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-5</th>
<th>MW-5D</th>
<th>MW-6</th>
<th>MW-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
<td>Intermediate Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTOC)</td>
<td>10</td>
<td>5.0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>197.10</td>
<td>197.22</td>
<td>196.79</td>
<td>198.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>191.92</td>
<td>5.18</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>191.32</td>
<td>5.47</td>
<td>0.00</td>
</tr>
<tr>
<td>08/11/14</td>
<td>190.62</td>
<td>6.48</td>
<td>0.00</td>
<td>188.39</td>
<td>8.83</td>
<td>0.00</td>
<td>190.09</td>
<td>6.70</td>
<td>0.00</td>
</tr>
<tr>
<td>11/11/14</td>
<td>189.75</td>
<td>7.35</td>
<td>0.00</td>
<td>187.23</td>
<td>9.99</td>
<td>0.00</td>
<td>188.92</td>
<td>7.87</td>
<td>0.00</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.73</td>
<td>2.37</td>
<td>0.00</td>
<td>192.45</td>
<td>4.77</td>
<td>0.00</td>
<td>194.91</td>
<td>1.88</td>
<td>0.00</td>
</tr>
<tr>
<td>10/19/15</td>
<td>194.62</td>
<td>2.48</td>
<td>0.00</td>
<td>191.71</td>
<td>5.51</td>
<td>0.00</td>
<td>193.80</td>
<td>2.99</td>
<td>0.00</td>
</tr>
<tr>
<td>04/05/16</td>
<td>196.38</td>
<td>0.72</td>
<td>0.00</td>
<td>194.87</td>
<td>2.35</td>
<td>0.00</td>
<td>Not Available</td>
<td>196.58</td>
<td>1.84</td>
</tr>
<tr>
<td>07/27/16</td>
<td>193.01</td>
<td>4.09</td>
<td>0.00</td>
<td>190.04</td>
<td>7.18</td>
<td>0.00</td>
<td>192.10</td>
<td>6.41</td>
<td>0.00</td>
</tr>
<tr>
<td>10/17/16</td>
<td>190.91</td>
<td>6.19</td>
<td>0.00</td>
<td>188.48</td>
<td>8.74</td>
<td>0.00</td>
<td>190.38</td>
<td>6.41</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-10</th>
<th>MW-11</th>
<th>MW-12</th>
<th>MW-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTOC)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>200.16</td>
<td>197.00</td>
<td>197.67</td>
<td>197.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>191.65</td>
<td>8.51</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>190.41</td>
<td>7.26</td>
<td>0.00</td>
</tr>
<tr>
<td>08/11/14</td>
<td>189.95</td>
<td>10.21</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>190.41</td>
<td>7.26</td>
<td>0.00</td>
</tr>
<tr>
<td>11/11/14</td>
<td>188.78</td>
<td>11.38</td>
<td>0.00</td>
<td>188.91</td>
<td>8.09</td>
<td>0.00</td>
<td>189.49</td>
<td>8.18</td>
<td>0.00</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.96</td>
<td>5.20</td>
<td>0.00</td>
<td>194.52</td>
<td>2.48</td>
<td>0.00</td>
<td>195.35</td>
<td>2.32</td>
<td>0.00</td>
</tr>
<tr>
<td>10/19/15</td>
<td>192.90</td>
<td>7.26</td>
<td>0.00</td>
<td>193.89</td>
<td>3.11</td>
<td>0.00</td>
<td>194.42</td>
<td>3.25</td>
<td>0.00</td>
</tr>
<tr>
<td>04/05/16</td>
<td>196.92</td>
<td>3.24</td>
<td>0.00</td>
<td>196.22</td>
<td>0.78</td>
<td>0.00</td>
<td>196.57</td>
<td>1.10</td>
<td>0.00</td>
</tr>
<tr>
<td>07/27/16</td>
<td>192.73</td>
<td>7.43</td>
<td>0.00</td>
<td>Not Available</td>
<td>192.66</td>
<td>5.01</td>
<td>0.00</td>
<td>192.52</td>
<td>4.84</td>
</tr>
<tr>
<td>10/17/16</td>
<td>190.72</td>
<td>9.44</td>
<td>0.00</td>
<td>Not Available</td>
<td>190.89</td>
<td>6.78</td>
<td>0.00</td>
<td>191.01</td>
<td>6.35</td>
</tr>
</tbody>
</table>
Table 3: Monitoring Well and Groundwater Elevation Data

Trademark Metals Recycling, 2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-14</th>
<th>MW-15</th>
<th>MW-1D</th>
<th>MW-1DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Intermediate Surficial</td>
<td>Lower Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>SCREEN (feet BTOC)</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>200.51</td>
<td>199.19</td>
<td>199.94</td>
<td>199.85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>MW-14 ELEV</th>
<th>MW-14 DTW</th>
<th>MW-14 FP</th>
<th>MW-15 ELEV</th>
<th>MW-15 DTW</th>
<th>MW-15 FP</th>
<th>MW-1D ELEV</th>
<th>MW-1D DTW</th>
<th>MW-1D FP</th>
<th>MW-1DD ELEV</th>
<th>MW-1DD DTW</th>
<th>MW-1DD FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>-</td>
</tr>
<tr>
<td>08/11/14</td>
<td>-</td>
</tr>
<tr>
<td>11/11/14</td>
<td>188.35</td>
<td>12.16</td>
<td>0.00</td>
<td>188.16</td>
<td>11.03</td>
<td>0.00</td>
<td>187.80</td>
<td>12.14</td>
<td>0.00</td>
<td>161.68</td>
<td>38.17</td>
<td>0.00</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.44</td>
<td>6.07</td>
<td>0.00</td>
<td>194.52</td>
<td>4.67</td>
<td>0.00</td>
<td>193.51</td>
<td>6.43</td>
<td>0.00</td>
<td>166.21</td>
<td>33.64</td>
<td>0.00</td>
</tr>
<tr>
<td>10/19/15</td>
<td>193.93</td>
<td>6.58</td>
<td>0.00</td>
<td>194.32</td>
<td>4.87</td>
<td>0.00</td>
<td>192.68</td>
<td>7.26</td>
<td>0.00</td>
<td>164.45</td>
<td>35.40</td>
<td>0.00</td>
</tr>
<tr>
<td>04/05/16</td>
<td>196.72</td>
<td>3.79</td>
<td>0.00</td>
<td>196.81</td>
<td>2.38</td>
<td>0.00</td>
<td>195.83</td>
<td>4.11</td>
<td>0.00</td>
<td>166.84</td>
<td>33.01</td>
<td>0.00</td>
</tr>
<tr>
<td>07/27/16</td>
<td>192.31</td>
<td>8.20</td>
<td>0.00</td>
<td>191.91</td>
<td>7.28</td>
<td>0.00</td>
<td>191.08</td>
<td>8.86</td>
<td>0.00</td>
<td>165.19</td>
<td>34.66</td>
<td>0.00</td>
</tr>
<tr>
<td>10/17/16</td>
<td>189.95</td>
<td>10.56</td>
<td>0.00</td>
<td>189.74</td>
<td>9.45</td>
<td>0.00</td>
<td>190.34</td>
<td>9.60</td>
<td>0.00</td>
<td>162.90</td>
<td>36.95</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>2.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTOC)</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>198.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>MW-16 ELEV</th>
<th>MW-16 DTW</th>
<th>MW-16 FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/11/14</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/11/14</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/14/15</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/19/15</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/05/16</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/27/16</td>
<td>191.57</td>
<td>6.65</td>
<td>0.00</td>
</tr>
<tr>
<td>10/17/16</td>
<td>190.00</td>
<td>8.22</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes:

- BLS = below land surface
- DTW = Depth to Water
- ELE = Elevation
- FP = Free Product
- MSL = Mean Sea Level
Table 4: Groundwater Analytical Data
Trademark Metals Recycling
2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>Default Non-residential Type 3 RRS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MW-1D</td>
</tr>
<tr>
<td>VOCs by EPA Method 8260B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>µg/l</td>
<td>5</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>µg/l</td>
<td>100</td>
</tr>
<tr>
<td>Chloroform</td>
<td>µg/l</td>
<td>80</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>µg/l</td>
<td>600</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>µg/l</td>
<td>600</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>µg/l</td>
<td>7</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>µg/l</td>
<td>70</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td>µg/l</td>
<td>100</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>µg/l</td>
<td>700</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>n-Isopropyltoluene</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>µg/l</td>
<td>600</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (total)</td>
<td>µg/l</td>
<td>75</td>
</tr>
<tr>
<td>Methyl Tert Butyl Ether</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>µg/l</td>
<td>20</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>µg/l</td>
<td>5</td>
</tr>
<tr>
<td>Toluene</td>
<td>µg/l</td>
<td>1000</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>µg/l</td>
<td>70</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>µg/l</td>
<td>5</td>
</tr>
<tr>
<td>1,2,4-Trichloroethylbenzene</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>1,3,5-Trichloroethylbenzene</td>
<td>µg/l</td>
<td>NC</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>µg/l</td>
<td>2</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>µg/l</td>
<td>10</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>µg/l</td>
<td>10</td>
</tr>
<tr>
<td>Arsenic by EPA Method 6010B</td>
<td>µg/l</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:
NC = No Criteria
ND = No Detection
J = Indicates an estimated value
b = blank spike recovery outside control limits
EPA = Environmental Protection Agency
VOCs = volatile organic compounds
µg/l = micrograms per liter (parts per billion)
Table 5:
Monitoring Well Sampling Schedule

Trademark Metals Recycling
2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Monitoring Well ID</th>
<th>Site Area</th>
<th>Comment</th>
<th>Laboratory Analysis</th>
<th>Sampling Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1R</td>
<td>Outdoor Metal Bailing</td>
<td>Source Area Monitoring Well</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-1D</td>
<td>Outdoor Metal Bailing</td>
<td>Vertical Delineation</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-1DD</td>
<td>Outdoor Metal Bailing</td>
<td>Deeper Vertical Delineation</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-2R</td>
<td>Outdoor Metal Bailing</td>
<td>Horizontal Delineation</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-3</td>
<td>Outdoor Metal Bailing</td>
<td>POD</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-4</td>
<td>AST, Former UST, and Non-ferrous Process Building</td>
<td>Source Area Monitoring Well</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-5</td>
<td>Metal Shearing Machine</td>
<td>Source Area Monitoring Well</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-5D</td>
<td>Metal Shearing Machine</td>
<td>Vertical Delineation</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-6</td>
<td>Metal Shearing Machine</td>
<td>Horizontal Delineation</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-8R</td>
<td>Motor Block Storage</td>
<td>Source Area Monitoring Well</td>
<td>VOCs</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-9</td>
<td>AST, Former UST, and Non-ferrous Process Building</td>
<td>Horizontal Delineation</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-10</td>
<td>Motor Block Storage</td>
<td>POD</td>
<td>VOCs</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-11</td>
<td>Motor Block Storage</td>
<td>Horizontal Delineation</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-12</td>
<td>Metal Shearing Machine</td>
<td>Horizontal Delineation</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-13</td>
<td>Metal Shearing Machine</td>
<td>Horizontal Delineation</td>
<td>Discontinue</td>
<td>Discontinue</td>
</tr>
<tr>
<td>MW-14</td>
<td>Outdoor Metal Bailing</td>
<td>Horizontal Delineation</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-15</td>
<td>Outdoor Metal Bailing</td>
<td>Horizontal Delineation</td>
<td>VOCs and arsenic</td>
<td>Semiannual (April and October)</td>
</tr>
<tr>
<td>MW-16</td>
<td>Motor Block Storage</td>
<td>Horizontal Delineation</td>
<td>VOCs</td>
<td>Semiannual (April and October)</td>
</tr>
</tbody>
</table>

Notes:
- AST = aboveground storage tank
- POD = Point of Demonstration
- Groundwater flow direction has generally been towards the west
- UST = underground storage tank
- VOCs = volatile organic compounds
<table>
<thead>
<tr>
<th>Client Sample ID:</th>
<th>EPA Region 3, 9 RSL - Industrial Soil</th>
<th>EPA Region 3, 9 RSL - Industrial Soil</th>
<th>B-5 6-8</th>
<th>B-6 6-8</th>
<th>B-7 6-8</th>
<th>B-8 6-8</th>
<th>B-9 6-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled:</td>
<td>THQ=1.0</td>
<td>THQ=0.1</td>
<td>Soil</td>
<td>Soil</td>
<td>Soil</td>
<td>Soil</td>
<td>Soil</td>
</tr>
<tr>
<td>Matrix:</td>
<td>(USEPA 5/14)</td>
<td>(USEPA 5/14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GC/MS Volatiles (SW846 8260B)

<table>
<thead>
<tr>
<th>Substance</th>
<th>ug/kg</th>
<th>ug/kg</th>
<th>ND (0.70)</th>
<th>ND (0.79)</th>
<th>ND (0.73)</th>
<th>ND (0.88)</th>
<th>ND (0.72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td>1300</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromof orm</td>
<td>290000</td>
<td>290000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>130000</td>
<td>130000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>5700000</td>
<td>5700000</td>
<td>ND (1.8)</td>
<td>ND (1.8)</td>
<td>ND (1.8)</td>
<td>ND (2.0)</td>
<td>ND (1.6)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1400</td>
<td>1400</td>
<td>ND (0.79)</td>
<td>ND (0.90)</td>
<td>ND (0.82)</td>
<td>ND (0.99)</td>
<td>ND (0.81)</td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>2900</td>
<td>2900</td>
<td>ND (0.78)</td>
<td>ND (1.1)</td>
<td>ND (1.0)</td>
<td>ND (1.2)</td>
<td>ND (1.0)</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>16000</td>
<td>16000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>1000000</td>
<td>1000000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>2000</td>
<td>2000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>4400</td>
<td>4400</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>3200</td>
<td>3200</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>370000</td>
<td>370000</td>
<td>ND (0.89)</td>
<td>ND (1.0)</td>
<td>ND (0.92)</td>
<td>ND (1.1)</td>
<td>ND (0.91)</td>
</tr>
<tr>
<td>cis,1,2-Dichloroethylene</td>
<td>230000</td>
<td>230000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>cis,1,3-Dichloropropene</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p- and o-Dichlorobenzene</td>
<td>930000</td>
<td>930000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>11000</td>
<td>11000</td>
<td>ND (0.79)</td>
<td>ND (0.89)</td>
<td>ND (0.81)</td>
<td>ND (0.98)</td>
<td>ND (0.81)</td>
</tr>
<tr>
<td>trans,1,2-Dichloroethylene</td>
<td>2300000</td>
<td>2300000</td>
<td>ND (0.94)</td>
<td>ND (1.1)</td>
<td>ND (0.97)</td>
<td>ND (1.2)</td>
<td>ND (0.97)</td>
</tr>
<tr>
<td>1,2-Dichloroethene (total)</td>
<td>-</td>
<td>-</td>
<td>ND (1.6)</td>
<td>ND (1.8)</td>
<td>ND (1.6)</td>
<td>ND (2.0)</td>
<td>ND (1.6)</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>-</td>
<td>-</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>30000</td>
<td>30000</td>
<td>ND (1.3)</td>
<td>ND (1.5)</td>
<td>ND (1.6)</td>
<td>ND (1.8)</td>
<td>ND (1.3)</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>460000</td>
<td>460000</td>
<td>ND (1.4)</td>
<td>ND (1.6)</td>
<td>ND (1.5)</td>
<td>ND (1.8)</td>
<td>ND (1.4)</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>1000000</td>
<td>3200000</td>
<td>ND (2.8)</td>
<td>ND (3.2)</td>
<td>ND (2.9)</td>
<td>ND (3.5)</td>
<td>ND (2.9)</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>3600000</td>
<td>3600000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>2700</td>
<td>2700</td>
<td>ND (0.99)</td>
<td>ND (1.1)</td>
<td>ND (1.0)</td>
<td>ND (1.2)</td>
<td>ND (1.0)</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>5000</td>
<td>630</td>
<td>ND (1.1)</td>
<td>ND (1.3)</td>
<td>ND (1.2)</td>
<td>ND (1.4)</td>
<td>ND (1.2)</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>100000</td>
<td>30000</td>
<td>ND (1.5)</td>
<td>ND (1.5)</td>
<td>ND (1.5)</td>
<td>ND (1.8)</td>
<td>ND (0.91)</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>6000</td>
<td>1900</td>
<td>ND (0.72)</td>
<td>ND (0.81)</td>
<td>ND (0.74)</td>
<td>ND (0.89)</td>
<td>ND (0.73)</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>3100000</td>
<td>3100000</td>
<td>ND (0.70)</td>
<td>ND (0.79)</td>
<td>ND (0.73)</td>
<td>ND (0.88)</td>
<td>ND (0.72)</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1700</td>
<td>1700</td>
<td>ND (0.72)</td>
<td>ND (0.81)</td>
<td>ND (0.74)</td>
<td>ND (0.89)</td>
<td>ND (0.73)</td>
</tr>
</tbody>
</table>

Metals Analysis

<table>
<thead>
<tr>
<th>Substance</th>
<th>ug/kg</th>
<th>ug/kg</th>
<th>ND (0.70)</th>
<th>ND (0.79)</th>
<th>ND (0.73)</th>
<th>ND (0.88)</th>
<th>ND (0.72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Chemistry

<table>
<thead>
<tr>
<th>Substance</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, Percent</td>
<td>-</td>
<td>84.8</td>
<td>82.3</td>
<td>92.3</td>
<td>90.6</td>
<td>87.4</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

* Elevated reporting limit(s) due to matrix interference.

4 results exceeded regulatory criteria.
Table 1 - Soil Analytical Data

Trademark Metals Recycling, 2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Matrix:</th>
<th>Units</th>
<th>Appendix I Regulated Substances and Soil Concentrations that Trigger Notification</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC Semi-volatiles (SW846 8082A)</td>
<td></td>
</tr>
<tr>
<td>Aroclor 1016</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (7.2)</td>
<td>-</td>
<td>ND (7.6)</td>
<td>-</td>
<td>ND (7.2)</td>
<td>-</td>
<td>ND (7.7)</td>
<td>-</td>
</tr>
<tr>
<td>Aroclor 1221</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (9.0)</td>
<td>-</td>
<td>ND (9.4)</td>
<td>-</td>
<td>ND (9.0)</td>
<td>-</td>
<td>ND (9.6)</td>
<td>-</td>
</tr>
<tr>
<td>Aroclor 1232</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (9.0)</td>
<td>-</td>
<td>ND (9.4)</td>
<td>-</td>
<td>ND (9.0)</td>
<td>-</td>
<td>ND (9.6)</td>
<td>-</td>
</tr>
<tr>
<td>Aroclor 1242</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (7.2)</td>
<td>-</td>
<td>ND (7.6)</td>
<td>-</td>
<td>ND (7.2)</td>
<td>-</td>
<td>ND (7.7)</td>
<td>-</td>
</tr>
<tr>
<td>Aroclor 1248</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (7.2)</td>
<td>-</td>
<td>ND (7.6)</td>
<td>-</td>
<td>29.2 a</td>
<td>-</td>
<td>62.8 a</td>
<td>-</td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (7.2)</td>
<td>-</td>
<td>ND (7.6)</td>
<td>-</td>
<td>ND (7.2)</td>
<td>-</td>
<td>67.7</td>
<td>-</td>
</tr>
<tr>
<td>Aroclor 1260</td>
<td>ug/kg</td>
<td>1,550</td>
<td>ND (7.2)</td>
<td>-</td>
<td>12.3 J</td>
<td>-</td>
<td>26.9</td>
<td>-</td>
<td>ND (7.7)</td>
<td>-</td>
</tr>
</tbody>
</table>

Footnotes:

a Aroclor pattern appears to be weathered.
<table>
<thead>
<tr>
<th>Matrix</th>
<th>Units</th>
<th>Appendix I Regulated Substances and Soil Concentrations that Trigger Notification</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC Semi-volatiles (SW846 8082A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1248</td>
<td>µg/kg</td>
<td>1,550</td>
<td>ND (6.5)</td>
<td>ND (7.1)</td>
<td>ND (7.5)</td>
<td>ND (7.1)</td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>µg/kg</td>
<td>1,550</td>
<td>ND (6.5)</td>
<td>ND (7.1)</td>
<td>ND (7.5)</td>
<td>ND (7.1)</td>
</tr>
<tr>
<td>Aroclor 1260</td>
<td>µg/kg</td>
<td>1,550</td>
<td>ND (6.5)</td>
<td>ND (7.1)</td>
<td>ND (7.5)</td>
<td>ND (7.1)</td>
</tr>
</tbody>
</table>

Footnotes:

Table 1 - Soil Analytical Data
Drum Storage Shed
Trademark Metals Recycling, 2000 West Savannah, Valdosta, GA
Table 5: Soil Analytical Data
Trademark Metals Recycling
2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>Trigger Notification Requirements</th>
<th>SB-1 (4-6 ft BLS)</th>
<th>SB-2 (0-2 ft BLS)</th>
<th>SB-3 (0-2 ft BLS)</th>
<th>SB-4 (2-4 ft BLS)</th>
<th>SB-5 (2-4 ft BLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCs by EPA Method 8260B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>mg/kg</td>
<td>2.47</td>
<td>0.0175 J</td>
<td>ND (0.0081)</td>
<td>0.18</td>
<td>0.119</td>
<td>ND (0.0082)</td>
</tr>
<tr>
<td>Benzene</td>
<td>mg/kg</td>
<td>0.02</td>
<td>0.0098</td>
<td>ND (0.0010)</td>
<td>ND (0.0016)</td>
<td>ND (0.0011)</td>
<td>0.0102</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>mg/kg</td>
<td>0.79</td>
<td>ND (0.0064)</td>
<td>ND (0.0072)</td>
<td>0.0267 J</td>
<td>0.0141 J</td>
<td>ND (0.0073)</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>mg/kg</td>
<td>NC</td>
<td>ND (0.00071)</td>
<td>ND (0.00080)</td>
<td>0.0227</td>
<td>0.0013 J</td>
<td>ND (0.00080)</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>mg/kg</td>
<td>20</td>
<td>0.0034 J</td>
<td>ND (0.00087)</td>
<td>0.0169</td>
<td>0.0023 J</td>
<td>0.133 J</td>
</tr>
<tr>
<td>2-Isopropylbenzene</td>
<td>mg/kg</td>
<td>21.88</td>
<td>ND (0.0010)</td>
<td>ND (0.0011)</td>
<td>0.0058 J</td>
<td>ND (0.0013)</td>
<td>ND (0.0011)</td>
</tr>
<tr>
<td>2-Isopropyltoluene</td>
<td>mg/kg</td>
<td>NC</td>
<td>ND (0.00071)</td>
<td>ND (0.00080)</td>
<td>0.0194</td>
<td>ND (0.00091)</td>
<td>ND (0.00080)</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>mg/kg</td>
<td>0.04</td>
<td>ND (0.0028)</td>
<td>ND (0.0032)</td>
<td>0.0197 B a</td>
<td>0.0054 JB a</td>
<td>ND (0.0032)</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>mg/kg</td>
<td>100</td>
<td>ND (0.0014)</td>
<td>ND (0.0016)</td>
<td>0.0065</td>
<td>0.0026 J</td>
<td>ND (0.0016)</td>
</tr>
<tr>
<td>m-Propylbenzene</td>
<td>mg/kg</td>
<td>NC</td>
<td>ND (0.00088)</td>
<td>ND (0.00099)</td>
<td>0.0026 J</td>
<td>ND (0.0011)</td>
<td>ND (0.00099)</td>
</tr>
<tr>
<td>Styrene</td>
<td>mg/kg</td>
<td>14</td>
<td>ND (0.00071)</td>
<td>ND (0.00080)</td>
<td>0.0106</td>
<td>ND (0.00091)</td>
<td>ND (0.00080)</td>
</tr>
<tr>
<td>Toluene</td>
<td>mg/kg</td>
<td>14.4</td>
<td>0.046</td>
<td>ND (0.00090)</td>
<td>0.0053 J</td>
<td>0.0011 J</td>
<td>0.0049</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>mg/kg</td>
<td>NC</td>
<td>0.0017 J</td>
<td>ND (0.00080)</td>
<td>0.0176</td>
<td>0.0043 J</td>
<td>ND (0.00080)</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>mg/kg</td>
<td>NC</td>
<td>ND (0.00071)</td>
<td>ND (0.00080)</td>
<td>0.0062 J</td>
<td>0.0012 J</td>
<td>0.0014 J</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>mg/kg</td>
<td>20 (total)</td>
<td>0.0178</td>
<td>ND (0.0014)</td>
<td>0.0099 J</td>
<td>0.0019 J</td>
<td>0.699</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>mg/kg</td>
<td>20 (total)</td>
<td>0.0136</td>
<td>ND (0.00087)</td>
<td>0.0078</td>
<td>0.0015 J</td>
<td>0.425</td>
</tr>
</tbody>
</table>

Notes:
- a = detections confirmed by dual column analysis
- B = analyte was found in the associated method blank
- EPA = Environmental Protection Agency
- ft BLS = feet below land surface
- J = Indicates an estimated value
- mg/kg = micrograms per kilogram (parts per million)
- NC = No Criteria
- ND = No Detection

This table lists compounds detected one or more times
Trigger Notification Requirements = Rule 391-3-19-.04(3)(b)
VOCs = volatile organic compounds
Table 6: Groundwater Analytical Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>Default Non-industrial Type 3 WRI</th>
<th>MW-1/D</th>
<th>MW-1-DD</th>
<th>MW-1R</th>
<th>MW-2R</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Arsenic</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Arsenic by EPA Method 6010B</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Methyl Tert Butyl Ether</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethene (total)</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>o-Dichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroform</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>g/l</td>
<td>ND (0.20)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
| 2000 West Savannah, Valdosta, GA
Trademark Metals Recycling
Groundwater Analytical Data
Table 6: Groundwater Analytical Data
| Notes: |
| ND = No Detection
< = Blank spike recovery outside control limits
b = Blank spike recovery outside control limits
J = Indicates an estimated value |
<p>| µg/l = micrograms per liter (parts per trillion) |</p>
<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>MW-3</th>
<th></th>
<th></th>
<th></th>
<th>MW-4</th>
<th></th>
<th></th>
<th></th>
<th>MW-5</th>
<th></th>
<th></th>
<th></th>
<th>MW-6</th>
<th></th>
<th></th>
<th></th>
<th>MW-7</th>
<th></th>
<th></th>
<th></th>
<th>MW-8</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>g/l</td>
<td></td>
<td>10</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>11.6</td>
<td>3830</td>
<td>2690</td>
<td>11.6</td>
<td>73.1</td>
<td>536</td>
<td>780</td>
<td>81.3</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>g/l</td>
<td></td>
<td>NC</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>4000</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td>6.1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>g/l</td>
<td></td>
<td>NC</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>4000</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td>6.1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>g/l</td>
<td></td>
<td>NC</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>4000</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td>6.1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>g/l</td>
<td></td>
<td>NC</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>4000</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td>6.1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>g/l</td>
<td></td>
<td>NC</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>4000</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td>6.1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Additional compounds</td>
<td>g/l</td>
<td></td>
<td>NC</td>
<td>5</td>
<td>70</td>
<td></td>
<td>75</td>
<td>4000</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td>6.1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NC = No Detect
- ND = No Detection
- > = Indicates an estimated value
- < = Below applicable regulatory limit
- EPA = Environmental Protection Agency
- VOCs = volatile organic compounds
- µg/l = micrograms per liter (parts per billion)
Table 6:
Groundwater Analytical Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl Chloride</td>
<td>g/l</td>
<td>-</td>
<td>ND (0.27)</td>
<td>ND (0.20)</td>
<td>ND (0.20)</td>
<td>ND (0.30)</td>
<td>ND (0.30)</td>
<td>ND (0.30)</td>
<td>ND (0.25)</td>
<td>ND (0.24)</td>
<td>ND (0.20)</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>g/l</td>
<td>-</td>
<td>ND (0.51)</td>
<td>ND (0.51)</td>
<td>ND (0.20)</td>
<td>ND (0.20)</td>
<td>ND (0.25)</td>
<td>ND (0.25)</td>
<td>ND (0.25)</td>
<td>ND (0.20)</td>
<td>ND (0.20)</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>g/l</td>
<td>-</td>
<td>ND (0.20)</td>
</tr>
<tr>
<td>Benzene</td>
<td>g/l</td>
<td>-</td>
<td>ND (0.31)</td>
</tr>
<tr>
<td>Trademark Metals Recycling</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NC = No Criteria
- ND = No Detection
+ Indicates an estimated value
- Indicates below detection limits
EPA = Environmental Protection Agency
VOCs = volatile organic compounds
µg/l = micrograms per liter (parts per billion)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>MW-14</th>
<th>MW-15</th>
<th>MW-16</th>
<th>WATER WELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes:
- NC = No Criteria
- ND = No Detection
- <10 = Blank spike recovery outside control limits
- EPA = Environmental Protection Agency
- VOCs = volatile organic compounds

µg/l = micrograms per liter (parts per billion)

Table 6: Groundwater Analytical Data

Trademark Metals Recycling
200 West Savannah, Valdosta, GA

Groundwater Analytical Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>3 MB</th>
<th>9/RB</th>
<th>9/RB</th>
<th>3 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>Acetone</td>
<td>ND</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>ND</td>
</tr>
<tr>
<td>Acetone-1,2,4-triazole</td>
<td>ND</td>
</tr>
<tr>
<td>Acetamide</td>
<td>ND</td>
</tr>
<tr>
<td>Acetaldehyde-1,2,4-triazole</td>
<td>ND</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>ND</td>
</tr>
<tr>
<td>Acetone-1,2,4-triazole</td>
<td>ND</td>
</tr>
<tr>
<td>Acetaldehyde-1,2,4-triazole</td>
<td>ND</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>ND</td>
</tr>
<tr>
<td>Acetone-1,2,4-triazole</td>
<td>ND</td>
</tr>
<tr>
<td>Acetaldehyde-1,2,4-triazole</td>
<td>ND</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND = No Detection
J = Indicates an estimated value

©Gannett Fleming 2014
APPENDIX C
Equation 6
\[C (\text{mg/kg}) = \frac{(\text{TR})(\text{BW})(\text{AT})(365 \text{ days/year})}{(\text{EF})(\text{ED})[(\text{SFo}) \times (10^{-6} \text{ kg/mg})] + (\text{IRa}) \times \left(\frac{1}{\text{VF}} + \frac{1}{\text{PEF}}\right)} \]

This is the concentration for which the upper bound excess cancer risk is less than or equal to \(10^{-5}\) (\(10^{-4}\) for class C carcinogens) from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

Equation 7
\[C (\text{mg/kg}) = \frac{(\text{THI})(\text{BW})(\text{AT})(365 \text{ days/year})}{(\text{EF})(\text{ED})[(\text{SFo}) \times (10^{-6} \text{ kg/mg})] + (\text{IRa}) \times \left(\frac{1}{\text{VF}} + \frac{1}{\text{PEF}}\right)} \]

This is the concentration unlikely to cause non-cancer toxic effects from soil ingestion and inhalation of volatiles and particulates using EQ 7 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

1,1-Dichloroethylene

This is the concentration for which the upper bound excess cancer risk is less than or equal to \(10^{-5}\) (\(10^{-4}\) for class C carcinogens) from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

Collect chemical-specific parameter values from EPA's Chemical Specific Parameters Table:

- [U.S. EPA (May 2016) Regional Screening Levels (RSLs) - Generic Tables (May 2016): Chemical Specific Parameters](http://www.epa.gov/risk/risk-based-screening-table-generic-tables). Accessible online at:

NOTE: US EPA Region 4 has approved the use of the Regional Screening Level Tables.

values were taken from Table I of Appendix III (391-3-19)
Equation 6

\[C \text{ (mg/kg)} = \left(\frac{TR}{B\text{W}} \right) \left(\frac{AT}{365 \text{ days/year}} \right) \left(\frac{EF}{ED} \right) \left[\frac{(SFo)(10^{-6} \text{ kg/mg})}{IRs} + \frac{(SFi)(IRa)}{\left(\frac{1/VF}{PEF} \right)} \right] \]

\[C = 38 \text{ mg/kg} \quad \text{EQUATION 6 NON-VOLATILE CHEMICAL} \]

Equation 7

\[C \text{ (mg/kg)} = \left(\frac{THI}{B\text{W}} \right) \left(\frac{AT}{365 \text{ days/year}} \right) \left(\frac{EF}{ED} \right) \left[\frac{1}{RfDo} \frac{(10^{-6} \text{ kg/mg})}{IRs} + \frac{1}{RfDi} \frac{(IRa)}{\left(\frac{1}{VF} \right) \left(\frac{1}{PEF} \right)} \right] \]

\[C = 1,707 \text{ mg/kg} \quad \text{EQUATION 7 NON-VOLATILE CHEMICAL} \]

CALCULATED CHEMICAL SPECIFIC TABLE

<table>
<thead>
<tr>
<th>Chemical</th>
<th>THI 1</th>
<th>TR 1.00E-05</th>
<th>BW 70 kg</th>
<th>ED 25 years</th>
<th>AT 25 years</th>
<th>AT=ED, if non-cancer risk</th>
<th>Values were taken from Table I of Appendix III (391-3-19)</th>
</tr>
</thead>
</table>

Values were taken from Table I of Appendix III (391-3-19)

Lists 0.02 in RAGS. However, under “Common Mistakes”, mentions the mishap of using 0.02 instead of 0.002. EPA uses 0.002.

Collect chemical-specific parameter values from EPA’s Chemical Specific Parameters Table:

 Values were taken from Table I of Appendix III (391-3-19)

Arsenic

- This is the concentration for which the upper bound excess cancer risk is less than or equal to 10^{-5} (10^{-4} for class C carcinogens) from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

- This is the concentration unlikely to cause non-cancer toxic effects from soil ingestion and inhalation of volatiles and particulates using EQ 7 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.
Equation 6

\[C \ (\text{mg/kg}) = \frac{(\text{TR})(\text{BW})(\text{AT})(365 \text{ days/year})}{(\text{EF})(\text{ED})[(\text{SFo})(10^{-6 \text{ kg/mg}})(\text{IRs}) + (\text{SFi})(\text{IRa})\left(\frac{1}{\text{VF}} + \frac{1}{\text{PEF}}\right)]} \]

\[C = 2.09 \times 10^{1} \ \text{mg/kg} \ EQUATION \ 6 \]

Equation 7

\[C \ (\text{mg/kg}) = \frac{(\text{THI})(\text{BW})(\text{AT})(365 \text{ days/year})}{(\text{EF})(\text{ED})\left[\frac{1}{\text{RfDo}}(10^{-6 \text{ kg/mg}})(\text{IRs}) + \frac{1}{\text{RfDi}}(\text{IRa})\left(\frac{1}{\text{VF}} + \frac{1}{\text{PEF}}\right)\right]} \]

\[C = 1040.537197 \ \text{mg/kg} \ EQUATION \ 7 \ NON-VOLATILE \ CHEMICAL \]

CALCULATED CHEMICAL SPECIFIC TABLE

<table>
<thead>
<tr>
<th>THI</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>1.00E-05</td>
</tr>
<tr>
<td>BW</td>
<td>70 kg</td>
</tr>
<tr>
<td>ED</td>
<td>25 years</td>
</tr>
<tr>
<td>AT</td>
<td>7.00E+01 years AT=ED, if non-cancer risk</td>
</tr>
<tr>
<td>VF</td>
<td>4060.79 m³/kg</td>
</tr>
<tr>
<td>EF</td>
<td>250 days/year</td>
</tr>
<tr>
<td>IRs</td>
<td>50 mg/day</td>
</tr>
<tr>
<td>IRa</td>
<td>20 m³/day</td>
</tr>
<tr>
<td>RfDo</td>
<td>0.00857 mg/kg-day</td>
</tr>
<tr>
<td>RfDi</td>
<td>0.015714286 mg/kg-day</td>
</tr>
<tr>
<td>SFi</td>
<td>0.0273 (mg/kg-day)⁻¹</td>
</tr>
<tr>
<td>SFo</td>
<td>0.055 (mg/kg-day)⁻¹</td>
</tr>
<tr>
<td>PEF</td>
<td>4.350E+09 m³/kg</td>
</tr>
<tr>
<td>k</td>
<td>0.5 L/m³</td>
</tr>
</tbody>
</table>

*values were taken from Table I of Appendix III (391-3-19)

WHERE:

\[L = \left(\frac{V}{\pi} + DH\right)(2 + 0.6\pi + D_{\alpha} + 10^{-4} \rho/\gamma) \]

\[VF = L \times V \times H \]

\[T = \frac{\pi}{\pi + \alpha} \]

\[\alpha = \frac{(D_{\alpha} E)}{0.5(1 - E)/K_{\alpha}} \]

\[T \text{ exposure interval (s)} = 7.9 \times 10^{3.25} \text{yr} \]

LISTS 0.02 in RAGS. However, under “Common Mistakes”, mentions the mishap of using 0.02 instead of 0.002. EPA uses 0.002.

Collect chemical-specific parameter values from EPA’s Chemical Specific Parameters Table:

- USEPA (May 2016) Regional Screening Levels (RSLs) - Generic Tables (May 2016): Chemical Specific Parameters.
- Accessible online at:

*values were taken from Table I of Appendix III (391-3-19)
cis-1,2 Dichloroethylene

Equation 6

This is the concentration for which the upper bound excess cancer risk is less than or equal to 10^{-5} (10^{-4} for class C carcinogens) from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

\[
C (\text{mg/kg}) = \frac{(\text{TR})(\text{BW})(\text{AT})(365 \text{ days/year})}{(\text{EF})(\text{ED})[(\text{SF}_{\text{O}})(10^{-6} \text{ kg/mg})] + (1/\text{PEF})}
\]

Equation 7

This is the concentration unlikely to cause non-cancer toxic effects from soil ingestion and inhalation of volatiles and particulates using EQ 7 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

\[
C (\text{mg/kg}) = \frac{(\text{THI})(\text{BW})(\text{AT})(365 \text{ days/year})}{(\text{EF})(\text{ED})[(1/\text{RfDo})(10^{-6} \text{ kg/mg})] + (1/\text{PEF})}
\]

<table>
<thead>
<tr>
<th>CALCIULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMICAL SPECIFIC TABLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THI</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>1.00E-04</td>
</tr>
<tr>
<td>BW</td>
<td>70 kg</td>
</tr>
<tr>
<td>ED</td>
<td>25 years</td>
</tr>
<tr>
<td>AT</td>
<td>7.00E+01 years</td>
</tr>
<tr>
<td>VF</td>
<td>19774.79 m^3/kg</td>
</tr>
<tr>
<td>EF</td>
<td>250 days/year</td>
</tr>
<tr>
<td>Irs</td>
<td>50 mg/day</td>
</tr>
<tr>
<td>Ira</td>
<td>20 m^3/day</td>
</tr>
<tr>
<td>RfDi</td>
<td>0 mg/kg-day</td>
</tr>
<tr>
<td>RfDo</td>
<td>0.002 mg/kg-day</td>
</tr>
<tr>
<td>SFi</td>
<td>0 (mg/kg-day)^{-1}</td>
</tr>
<tr>
<td>Sfo</td>
<td>0 (mg/kg-day)^{-1}</td>
</tr>
<tr>
<td>PEF</td>
<td>6.45E+09 m^3/kg</td>
</tr>
<tr>
<td>E</td>
<td>0.5 L/m^3</td>
</tr>
</tbody>
</table>

*values were taken from Table I of Appendix III (391-3-19)

*values were taken from Table I of Appendix III (391-3-19)
Equation 6

\[
C = \frac{(TR) (BW) (AT) (365 \text{ days/year})}{(EF)(ED)[(SFo)(10^{-6} \text{ kg/mg})(IRs) + (SFi)(IRa)(1/VF) + (1/PEF)]} \quad \text{EQUATION 6}
\]

EQUATION 6

\[
C = 2.71 \times 10^3 \text{ mg/kg} \quad \text{EQUATION 6 NON-VOLATILE CHEMICAL}
\]

Equation 7

\[
C = \frac{(THI) (BW) (AT) (365 \text{ days/year})}{(EF)(ED)[(1/RfDo)(10^{-6} \text{ kg/mg})(IRs) + (1/RfDi)(IRa)(1/VF) + (1/PEF)]} \quad \text{EQUATION 7}
\]

EQUATION 7

\[
C = 1.838 \times 10^{5} \text{ mg/kg} \quad \text{EQUATION 7 NON-VOLATILE CHEMICAL}
\]

CALCULATED

CHEMICAL SPECIFIC TABLE

THI – Target Hazard Index

TR – Target Excess Risk

BW – Body Weight (kg)

ED – Exposure Duration (years)

AT – Averaging Time (years) **AT = ED, if non-cancer risk**

VF – Soil to Air Volatilization Factor (m³/kg)

EF – Exposure Frequency (days/year)

IRs – Ingestion rate of soil (mg/day)

IRa – Ingestion rate of air (m³/day)

RfDi – Inhalation reference dose (mg/kg-day)

RfDo – Oral reference dose (mg/kg-day)

SFi – Inhalation cancer slope factor (mg/kg-day⁻¹)

SFo – Oral cancer slope factor (mg/kg-day⁻¹)

PEF – Particulate Emission Factor (m³/kg)

Daily water ingestion rate (L/day)

Irw

Water-to air volatilization factor (L/m³)

K₀

T – Exposure Interval (s) **T=7.90 \times 10^8 \text{ s} = 25 \text{ years}**

T – Exposure interval (s) **T = 7.90 \times 10^8 \text{ s} = 25 \text{ years}**

α

List values from Table I of Appendix III (391-3-19)

Values were taken from Table I of Appendix III (391-3-19)

Values were taken from Table I of Appendix III (391-3-19)

In soil, if the regulated substance is not volatile, then the inhalation pathway due to volatiles is incomplete and the \((1/VF)\) term can be removed from the RAGS equation. USE ALTERNATIVE NON-VOLATILE EQ 6 & EQ 7 FOR NON-VOLATILE CHEMICALS (ex. Arsenic).
Equation 6

C (mg/kg) = \((\text{TR})(\text{BW})(\text{AT})(365 \text{ days/year})\)
\[\text{EF}(\text{ED})\{(\text{SFo})(10^{-6} \text{ kg/mg}) + (\text{IRa})(1/\text{PEF})\}\]

Equation 7

C (mg/kg) = \((\text{THI})(\text{BW})(\text{AT})(365 \text{ days/year})\)
\[\text{EF}(\text{ED})\{(1/\text{RFDo})(10^{-6} \text{ kg/mg}) + (1/\text{RFDi})\}\]

CALCULATED CHEMICAL SPECIFIC TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR - Target Excess Risk</td>
<td>1.00E-04</td>
</tr>
<tr>
<td>BW - Body Weight (kg)</td>
<td>70</td>
</tr>
<tr>
<td>ED - Exposure Duration (years)</td>
<td>25</td>
</tr>
<tr>
<td>AT - Averaging Time (years)</td>
<td>70</td>
</tr>
<tr>
<td>IRs - Ingestion rate of soil (mg/day)</td>
<td>50</td>
</tr>
<tr>
<td>IRa - Ingestion rate of air (m³/day)</td>
<td>20</td>
</tr>
<tr>
<td>RfDi - Inhalation reference dose (mg/kg-day)</td>
<td>0.028571429</td>
</tr>
<tr>
<td>RfDo - Oral reference dose (mg/kg-day)</td>
<td>0.2</td>
</tr>
<tr>
<td>EF - Exposure Frequency (days/year)</td>
<td>250</td>
</tr>
<tr>
<td>RfDo (mg/kg-day)</td>
<td>0.2</td>
</tr>
<tr>
<td>PEF - Particulate Emission Factor (m³/kg)</td>
<td>4.32E+09</td>
</tr>
<tr>
<td>RfDo (mg/kg/day)</td>
<td>0.2</td>
</tr>
<tr>
<td>PEF - Particulate Emission Factor (m³/kg)</td>
<td>4.32E+09</td>
</tr>
<tr>
<td>RfDo (mg/kg/day)</td>
<td>0.2</td>
</tr>
<tr>
<td>PEF - Particulate Emission Factor (m³/kg)</td>
<td>4.32E+09</td>
</tr>
<tr>
<td>RfDo (mg/kg/day)</td>
<td>0.2</td>
</tr>
<tr>
<td>PEF - Particulate Emission Factor (m³/kg)</td>
<td>4.32E+09</td>
</tr>
<tr>
<td>RfDo (mg/kg/day)</td>
<td>0.2</td>
</tr>
<tr>
<td>PEF - Particulate Emission Factor (m³/kg)</td>
<td>4.32E+09</td>
</tr>
</tbody>
</table>

Values were taken from Table I of Appendix III (391-3-19)

NOTE: US EPA Region 4 has approved the use of the Regional Screening Level Tables.

Equation 6 NON-VOLATILE CHEMICAL

This is the concentration for which the upper bound excess cancer risk is less than or equal to 10^{-5} (10^{-4} for Class C carcinogens) from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

Equation 7 NON-VOLATILE CHEMICAL

In soil, if the regulated substance is not volatile, then the inhalation pathway due to volatiles is incomplete and the (1/VF) term can be removed from the RAGS equation. USE ALTERNATIVE NON-VOLATILE EQ 6 & EQ 7 FOR NON-VOLATILE CHEMICALS (ex. Arsenic)

Values were taken from Table I of Appendix III (391-3-19)

Collect chemical-specific parameter values from EPA’s Chemical Specific Parameters Table:

- U.S. EPA (May 2016) Regional Screening Levels (RSLs) - Generic Tables (May 2016): Chemical Specific Parameters.

NOTE: US EPA Region 4 has approved the use of the Regional Screening Level Tables.

Values were taken from Table I of Appendix III (391-3-19)
Tetrachloroethylene

Equation 6

\[C (\text{mg/kg}) = \frac{(TR)(BW)(AT)(365 \text{ days/year})}{(EF)(ED)[(SFo)(10^{-6} \text{ kg/mg})(IRs) + (SFi)(IRa){(1/VF) + (1/PEF)}]} \]

\[C = 3.729 \text{ mg/kg} \]

Equation 7

\[C (\text{mg/kg}) = \frac{(THI)(BW)(AT)(365 \text{ days/year})}{(EF)(ED)[(1/RfDo)(10^{-6} \text{ kg/mg})IRs) + (1/RfDi)(IRa){(1/VF) + (1/PEF)}]} \]

\[C = 3.889 \text{ mg/kg} \]

CHEMICAL SPECIFIC TABLE

<table>
<thead>
<tr>
<th>THI</th>
<th>TR</th>
<th>BW</th>
<th>AT</th>
<th>$C \text{ mg/kg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00E-05</td>
<td>70 kg</td>
<td>70 years</td>
<td>2,729</td>
</tr>
<tr>
<td>1.00E-05</td>
<td>70 kg</td>
<td>70 years</td>
<td>2,729</td>
<td></td>
</tr>
</tbody>
</table>

CALCULATED

<table>
<thead>
<tr>
<th>$C \text{ mg/kg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.729</td>
</tr>
</tbody>
</table>

NON-VOLATILE CHEMICAL

\[C = 27,252 \text{ mg/kg} \]

NON-VOLATILE CHEMICAL

\[C = 34,338 \text{ mg/kg} \]

1. **TR** – Target Excess Risk
 - **TR** = 1.00E-05
2. **BW** – Body Weight (kg)
 - **BW** = 70 kg
3. **ED** – Exposure Duration (years)
 - **ED** = 25 years
4. **AT** – Averaging Time (years)
 - **AT** = 70 years
5. **VF** – Soil to Air Volatilization Factor (m³/kg)
 - **VF** = 19288.51 m³/kg
6. **EF** – Exposure Frequency (days/year)
 - **EF** = 250 days/year
7. **IRs** – Ingestion rate of soil (mg/day)
 - **IRs** = 50 mg/day
8. **IRa** – Ingestion rate of air (m³/day)
 - **IRa** = 20 m³/day
9. **RfDi** – Inhalation reference dose (mg/kg-day)
 - **RfDi** = 0.011428571 mg/kg-day
10. **RfDo** – Oral reference dose (mg/kg-day)
 - **RfDo** = 0.006 mg/kg-day
11. **SFi** – Inhalation cancer slope factor (mg/kg-day)-1
 - **Sfi** = 0.00091 (mg/kg-day)-1
12. **SFo** – Oral cancer slope factor (mg/kg-day)-1
 - **SFo** = 0.0021 (mg/kg-day)-1
13. **PEF** – Particulate Emission Factor (m³/kg)
 - **PEF** = 4.63E+09 m³/kg
14. **Irw** – Daily water ingestion rate (L/day)
 - **Irw** = 1 L/day
15. **K₀** – Water-to air volatilization factor (L/m³)
 - **K₀** = 0.5 L / m³

WHERE:

- **LS** length of side of contaminated area (m) = 45
- **V** wind speed in mixing zone (m/s) = 2.25
- **DH** diffusion height (m) = 2
- **A** area of contamination (cm²) = 2.03 x 10⁷ (=0.5 acre)
- **π** = 3.14
- **α** = 5.57274E−05 cm/s

NOTE:

1. **US EPA Region 4** has approved the use of the Regional Screening Level Tables. Accessible online at:

*values were taken from Table I of Appendix III (391-3-19)
Equation 6

\[C \text{ (mg/kg)} = \frac{(TR)(BW)(AT)(365 \text{ days/year})}{(EF)(ED)[(SFo)(10^{-6} \text{ kg/mg})(IRs) + (SFi)(IRa){(1/VF) + (1/PEF)}]} \]

This is the concentration for which the upper bound excess cancer risk is less than or equal to \(10^{-5}\) (\(10^{-4}\) for class C carcinogens) from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

Equation 7

\[C \text{ (mg/kg)} = \frac{(THI)(BW)(AT)(365 \text{ days/year})}{(EF)(ED)[(1/RfDo)(10^{-6} \text{ kg/mg})(IRs) + (1/RfDi)(IRa){(1/VF) + (1/PEF)}]} \]

This is the concentration unlikely to cause non-cancer toxic effects from soil ingestion and inhalation of volatiles and particulates using EQ 7 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

CHEMICAL SPECIFIC TABLE

<table>
<thead>
<tr>
<th>THI</th>
<th>1</th>
<th>10^{-5} for Class A/B carcinogens; 10^{-4} for Class C carcinogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>1.0E-04</td>
<td>25 for non-residential; 30 for residential AT=ED, if non-cancer risk</td>
</tr>
<tr>
<td>BW</td>
<td>70 kg</td>
<td>250 for non-residential; 350 for residential</td>
</tr>
<tr>
<td>ED</td>
<td>25 years</td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>25 years</td>
<td></td>
</tr>
<tr>
<td>VF</td>
<td>39709.40 m^3/kg</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>250 days/year</td>
<td></td>
</tr>
<tr>
<td>IRs</td>
<td>50 mg/day</td>
<td>250 for non-residential; 350 for residential</td>
</tr>
<tr>
<td>IRa</td>
<td>20 m^3/day</td>
<td></td>
</tr>
<tr>
<td>RfDo</td>
<td>0.08 mg/kg-day</td>
<td></td>
</tr>
<tr>
<td>RfDi</td>
<td>1.428571429 mg/kg-day</td>
<td></td>
</tr>
<tr>
<td>SFi</td>
<td>0 (mg/kg-day)^{-1}</td>
<td></td>
</tr>
<tr>
<td>SFo</td>
<td>0 (mg/kg-day)^{-1}</td>
<td></td>
</tr>
<tr>
<td>PEF</td>
<td>4.663E+09 m^3/kg</td>
<td></td>
</tr>
<tr>
<td>K0</td>
<td>0.5 L/m^3</td>
<td></td>
</tr>
</tbody>
</table>

*values were taken from Table I of Appendix III (391-3-19)

WHERE:

- LS length of side of contaminated area (m) = 45
- V wind speed in mixing zone (m/s) = 2.25
- DH diffusion height (m) = 2
- A area of contamination (cm^2) = 2.03 x 10^7 (=0.5 acre)
- \([PI] = 3.14\)
- \(\alpha = \frac{(D_{so} + E)}{D_{so} + (1 - E)}\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le</td>
<td>0.35</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>3.11438E-05 cm/s</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.35</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.002</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.08</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>2.087E-07</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>3.14</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.002</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>3.52E-02</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.01</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.00</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.01</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>230.00</td>
</tr>
<tr>
<td>(D_{so} + E)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Collect chemical-specific parameter values from EPA’s Chemical Specific Parameters Table:

- L.C. EPA (May 2016) Regional Screening Levels (RSLs) - Generic Tables (May 2016): Chemical Specific Parameters.

*values were taken from Table I of Appendix III (391-3-19)
Trichloroethylene

Equation 6

This is the concentration for which the upper bound excess cancer risk is less than or equal to 10^{-5} for Class A/B carcinogens and 10^{-4} for Class C carcinogens from soil ingestion and inhalation of volatiles and particulates using EQ 6 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

\[
C = 155 \text{ mg/kg} \quad \text{EQUATION 6}
\]

Equation 7

This is the concentration unlikely to cause non-cancer toxic effects from soil ingestion and inhalation of volatiles and particulates using EQ 7 of RAGS Part B and non-residential assumptions in Table 3 of Appendix III.

\[
C = 2,861 \text{ mg/kg} \quad \text{EQUATION 7}
\]

Lists 0.02 in RAGS. However, under "Common Mistakes", mentions the mishap of using 0.02 instead of 0.002. EPA uses 0.002.

Collect chemical-specific parameter values from EPA’s Chemical Specific Parameters Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>BW</td>
<td>70 kg</td>
</tr>
<tr>
<td>ED</td>
<td>25 years</td>
</tr>
<tr>
<td>AT</td>
<td>70 years</td>
</tr>
<tr>
<td>EF</td>
<td>277E-12 m/kg</td>
</tr>
<tr>
<td>ED</td>
<td>250 days/year</td>
</tr>
<tr>
<td>HS</td>
<td>50 mg/day</td>
</tr>
<tr>
<td>IA</td>
<td>20 m³/day</td>
</tr>
<tr>
<td>RfDo</td>
<td>5.06E-05 mg/kg-day</td>
</tr>
<tr>
<td>RfDi</td>
<td>0.046 mg/kg-day</td>
</tr>
<tr>
<td>PEF</td>
<td>4.63E+09 m³/kg</td>
</tr>
<tr>
<td>k</td>
<td>0.5 L/m²</td>
</tr>
</tbody>
</table>

values were taken from Table I of Appendix III (391-3-19)

Values were taken from Table I of Appendix III (391-3-19)
Vinyl Chloride

Equation 6

\[
C \text{ (mg/kg)} = \frac{(TR)(BW)(AT)(365 \text{ days/year})}{(EF)(ED)[(SFo)(10^{-6} \text{ kg/mg})](IRs) + (SFi)(IRa){(1/VF) + (1/PEF)}}
\]

For volatile chemicals:

\[
C = 29 \text{ mg/kg}
\]

For non-volatile chemicals:

\[
C = 79 \text{ mg/kg}
\]

Equation 7

\[
C \text{ (mg/kg)} = \frac{(THI)(BW)(AT)(365 \text{ days/year})}{(EF)(ED)[(1/RfDo)(10^{-6} \text{ kg/mg})](IRs) + (1/RfDi)(IRa){(1/VF) + (1/PEF)}}
\]

For volatile chemicals:

\[
C = 1,825 \text{ mg/kg}
\]

For non-volatile chemicals:

\[
C = 17,169 \text{ mg/kg}
\]

CALCULATED CHEMICAL SPECIFIC TABLE

<table>
<thead>
<tr>
<th>THI</th>
<th>Target Hazard Index</th>
<th>10^{-5} for Class A/B carcinogens; 10^{-4} for Class C carcinogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>Target Excess Risk</td>
<td>25 for non-residential; 30 for residential AT=ED, if non-cancer risk</td>
</tr>
<tr>
<td>BW</td>
<td>Body Weight (kg)</td>
<td>∞</td>
</tr>
<tr>
<td>ED</td>
<td>Exposure Duration (years)</td>
<td>∞</td>
</tr>
<tr>
<td>AT</td>
<td>Averaging Time (years)</td>
<td>∞</td>
</tr>
<tr>
<td>VF</td>
<td>Soil to Air Volatilization Factor (m3/kg)</td>
<td>∞</td>
</tr>
<tr>
<td>EF</td>
<td>Exposure Frequency (days/year)</td>
<td>∞</td>
</tr>
<tr>
<td>IRs</td>
<td>Ingestion rate of soil (mg/day)</td>
<td>∞</td>
</tr>
<tr>
<td>IRa</td>
<td>Ingestion rate of air (m3/day)</td>
<td>∞</td>
</tr>
<tr>
<td>RfDi</td>
<td>Inhalation reference dose (mg/kg-day)</td>
<td>∞</td>
</tr>
<tr>
<td>RfDo</td>
<td>Oral reference dose (mg/kg-day)</td>
<td>∞</td>
</tr>
<tr>
<td>SFi</td>
<td>Inhalation cancer slope factor (mg/kg-day)^{-1}</td>
<td>∞</td>
</tr>
<tr>
<td>SFo</td>
<td>Oral cancer slope factor (mg/kg-day)^{-1}</td>
<td>∞</td>
</tr>
<tr>
<td>PEF</td>
<td>Particulate Emission Factor (m3/kg)</td>
<td>∞</td>
</tr>
</tbody>
</table>

Collect chemical-specific parameter values from EPA's Chemical Specific Parameters Table:

values were taken from Table I of Appendix III (391-3-19)

NOTE: US EPA Region 4 has approved the use of the Regional Screening Level Tables.
GROUNDWATER SAMPLING LOG

SITE NAME: TMA Valdosta
SITE LOCATION: 2000 West Samudar Ave Valdosta GA
WELL NO: mw-8
SAMPLE ID: FA 37166-4
DATE: 10-17-16

PURGING DATA

WELL DIAMETER (inches): 1
TUBING DIAMETER (inches):
WELL SCREEN INTERVAL DEPTH: 20 feet to 26 feet
STATIC DEPTH TO WATER (feet): 7.65
PURGE PUMP TYPE OR BAILER: PP

WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY

(only fill out if applicable)

= 20 feet - 7.65 feet x 0.04 gallons/foot = 0.49 gallons

EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME

(only fill out if applicable)

= gallons + () gallons/foot X feet + gallons = gallons

INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 15
FINAL PUMP OR TUBING DEPTH IN WELL (feet): 15
PURGING INITIATED AT: 0830
PURGING ENDED AT: 0836
TOTAL VOLUME PURGED (gallons): 0.79

TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGED (gallons) PURGE RATE (gpm) DEPTH TO WATER (feet) pH (standard units) TEMP. (°C) COND. (circle units) µhos/cm or ppm DISSOLVE O2 (circle units) % at saturation TURBIDITY (NTUs) COLOR (describe) ODOR (describe) ORP (MV)

0830 0.49 0.49 0.04 9.04 7.20 25.26 504 8.41 4.50 none
0833 0.15 0.64 0.04 9.04 7.20 25.22 504 0.35 3.35 i
0836 0.15 0.79 0.04 9.04 7.20 25.23 504 0.35 3.97 u

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88
TUBING INSIDE DIA. CAPACITY (Gal./Fl): 1/8" = 0.0005; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)

SAMPLED BY (PRINT) / AFFILIATION:

SAMPLE(S) SIGNATURE(S):

SAMPLING INITIATED AT: 0837
SAMPLING ENDED AT: 0842

PUMP OR TUBING DEPTH IN WELL (feet): 15
TUBING MATERIAL CODE:
FIELD FILTERED: Y
FILTER SIZE:
FIELD DECONTAMINATION: PUMP Y
TUBING Y
DUPLICATE: Y

SAMPLE CONTAINER SPECIFICATION

SAMPLE ID CODE # CONTAINERS MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL pH INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE

4-Y 3 CG 40 mL HCl < 2 8260 App 400

REMARKS:

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES: 1. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS
pH: ± 0.1 units Temperature: ± 10% °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

SITE NAME: TAURUS FIELD SITE
SITE LOCATION: 2000 West Sunground Rd, Vidor, TX 77662

WELL NO: M4 - 1R
SAMPLE ID: FA37966-1
DATE: 10-17-16

PURGING DATA

<table>
<thead>
<tr>
<th>WELL DIAMETER (inches):</th>
<th>2</th>
<th>TUBING DIAMETER (inches):</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL SCREEN INTERVAL DEPTH:</td>
<td>20 feet to 20 feet</td>
<td>STATIC DEPTH TO WATER (feet):</td>
<td>9.69</td>
</tr>
<tr>
<td>WELL VOLUME PURGE:</td>
<td>1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) x WELL CAPACITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT VOLUME PURGE:</td>
<td>1 EQUIPMENT VOLUME = PUMP VOLUME + (TUBING CAPACITY x TUBING LENGTH) + FLOW CELL VOLUME</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial Pump or Tubing Depth in Well (feet): **15**
Final Pump or Tubing Depth in Well (feet): **15**
Purging Initiated At: **1510**
Purging Ended At: **1536**
Total Volume Purged (gallons): **2.15**

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMULATIVE VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP (°C)</th>
<th>COND. (micromhos/cm or µS)</th>
<th>DISSOLVED OXYGEN (parts/liter or % saturation)</th>
<th>TURBIDITY (NTUs)</th>
<th>COLOR (describe)</th>
<th>(ODOR describe)</th>
<th>ORP (mv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1530</td>
<td>1.65</td>
<td>1.65</td>
<td>0.082</td>
<td>9.95</td>
<td>4.54</td>
<td>21.17</td>
<td>20.55</td>
<td>0.31</td>
<td>8.17</td>
<td>clear</td>
<td>chemical</td>
<td>53.0</td>
</tr>
<tr>
<td>1536</td>
<td>0.25</td>
<td>1.90</td>
<td>9.95</td>
<td>4.55</td>
<td>21.12</td>
<td>22.9</td>
<td>0.31</td>
<td>8.17</td>
<td>11</td>
<td>8.17</td>
<td>11</td>
<td>52.7</td>
</tr>
<tr>
<td>1536</td>
<td>0.25</td>
<td>2.15</td>
<td>9.95</td>
<td>4.55</td>
<td>26.01</td>
<td>22.8</td>
<td>0.31</td>
<td>8.17</td>
<td>11</td>
<td>8.17</td>
<td>11</td>
<td>52.7</td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot): 0.76 in 0.02; 1 in = 0.04; 1.25 in = 0.06; 2 in = 0.16; 3 in = 0.37; 4 in = 0.65; 5 in = 1.02; 6 in = 1.47; 12 in = 5.88

TUBING INSIDE DIAMETER CAPACITY (Gal./Fl): 1/8 in = 0.0005; 3/16 in = 0.0014; 1/4 in = 0.0026; 5/16 in = 0.004; 3/8 in = 0.006; 1/2 in = 0.010; 5/8 in = 0.016

PURGING EQUIPMENT CODES:
B = Bailer
BP = Bladder Pump
ESP = Electric Submersible Pump
PP = Peristaltic Pump
O = Other (Specify)

SAMPLING DATA

SAMPLED BY (PRINT)/AFFILIATION:
SAMPLER(S) SIGNATURE(S):
SAMPLE INITIATED AT: **1547**
SAMPLE ENDED AT: **1542**

PUMP OR TUBING DEPTH IN WELL (feet): **15**
TUBING MATERIAL CODE: HDPE
FIELD-FILTERED: **Y**
FILTER SIZE: **μm**

FIELD DECONTAMINATION:
PUMP **Y**
TUBING **Y** (replaced)
DUPPLICATE **Y**

SAMPLE CONTAINER SPECIFICATION

<table>
<thead>
<tr>
<th>SAMPLE ID CODE</th>
<th># CONTAINERS</th>
<th>MATERIAL CODE</th>
<th>VOLUME</th>
<th>PRESERVATIVE USED</th>
<th>TOTAL VOL ADDED IN FIELD (mL)</th>
<th>FINAL pH</th>
<th>INTENDED ANALYSIS AND/OR METHOD</th>
<th>SAMPLE PUMP FLOW RATE (mL per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4W1</td>
<td>3</td>
<td>CG</td>
<td>25mL</td>
<td>HCL</td>
<td>-</td>
<td>2.2</td>
<td>B260</td>
<td>1650</td>
</tr>
<tr>
<td>4W2</td>
<td>1</td>
<td>PE</td>
<td>25mL</td>
<td>HNO3</td>
<td>-</td>
<td>2.2</td>
<td>ARS neglective</td>
<td>1650</td>
</tr>
</tbody>
</table>

REMARKS:

MATERIAL CODES:
AG = Amber Glass
CG = Clear Glass
PE = Polyethylene
PP = Polypropylene
S = Silicone
T = Teflon
O = Other (Specify)

SAMPLING EQUIPMENT CODES:
APP = After Peristaltic Pump
B = Bailer
BP = Bladder Pump
ESP = Electric Submersible Pump
RFP = Reverse Flow Peristaltic Pump
SM = Straw Method (Tubing Gravity Drain)
O = Other (Specify)

NOTES:
1. Stabilization criteria for range of variation of last three consecutive readings

 pH: ± 0.1 units
 Temperature: ± 10 °C
 Specific Conductance: ± 5%
 Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater)
 Turbidity: all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

WELL DATA
- **WELL NAME:** Mw - 1DD
- **SITE LOCATION:** 2000 W St S, Milwaukee, WI 53203
- **SAMPLE ID:** FA37976-2
- **DATE:** 10-17-16

PURGING DATA
- **WELL DIAMETER:** 2 inches
- **TUBING DIAMETER:** 4 inches
- **WELL SCREEN INTERVAL:** 24 feet to 75 feet
- **STATIC DEPTH TO WATER:** 36 feet
- **WELL VOLUME PURGE:** 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) x WELL CAPACITY
- **PURGE PUMP TYPE OR BAILER:** ESP

EQUIPMENT VOLUME PURGE:
- **TOTAL VOLUME PURGED:** 6.9 gallons

PURGING CODES:
- **B** = Bailer
- **BP** = Bladder Pump
- **ESP** = Electric Submersible Pump
- **PP** = Peristaltic Pump
- **O** = Other (Specify)

SAMPLING DATA
- **SAMPLED BY:** [Signature]
- **SAMPLED INITIATED AT:** 1550
- **SAMPLED ENDED AT:** 1600
- **TUBING MATERIAL CODE:** HDPE
- **FILTER SIZE:** ___

SAMPLE CONTAINER SPECIFICATION
- **SAMPLE CONTAINER:** PUMP: 3 CONTAINERS
- **MATERIAL CODE:** PE
- **VOLUME:** 50 mL

SAMPLE PRESERVATION
- **PRESEVERATIVE USED:** HCL
- **TOTAL VOL ADDED IN FIELD (mL):** 0
- **FINAL pH:** 4.26

NOTES:
- **Stabilization Criteria for Range of Variation of Last Three Consecutive Readings**
 - pH: ± 0.1 units
 - Temperature: ± 10% °C
 - Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ≤ 10% (whichever is greater)
 - Turbidity: all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

SITE NAME: Turk Vailestoe
SAMPLE ID: FA 3796-3
DATE: 10-17-16

PURGING DATA

- **WELL DIAMETER (inches):** 2
- **TUBING DIAMETER (inches):** 4
- **WELL SCREEN INTERVAL DEPTH (feet):** 35
- **STATIC DEPTH TO WATER (feet):** 9.60
- **WELL VOLUME PURGE:** 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) x WELLPURGE CAPACITY
- **PURGE PUMP TYPE OR BAILER:** ESP

EQUIPMENT VOLUME PURGE

- **EQUIPMENT VOLUME PURGE:** 1 EQUIPMENT VOL = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME

INITIAL PURGE

- **INITIAL PUMP OR TUBING DEPTH IN WELL (feet):** 37.5
- **FINAL PUMP OR TUBING DEPTH IN WELL (feet):** 37.5
- **PURGING INITIATED AT:** 1605
- **PURGING ENDED AT:** 1701
- **TOTAL VOLUME PURGED (gallons):** 57.4

SAMPLING DATA

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMUL. VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP. (°C)</th>
<th>COND. (μS/cm or mg/L)</th>
<th>DISSOLVED OXYGEN (mg/L)</th>
<th>COLOR (NTUs)</th>
<th>ODOR (describe)</th>
<th>ORP (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1655</td>
<td>4.80</td>
<td>4.80</td>
<td>0.012</td>
<td>10.75</td>
<td>3.80</td>
<td>2455</td>
<td>57</td>
<td>7.38</td>
<td>Clear</td>
<td>None</td>
<td>230.0</td>
</tr>
<tr>
<td>1658</td>
<td>0.29</td>
<td>5.15</td>
<td>10.75</td>
<td>3.81</td>
<td>2458</td>
<td>9.6</td>
<td>7.27</td>
<td>1.79</td>
<td>N</td>
<td>11</td>
<td>28.4</td>
</tr>
<tr>
<td>1701</td>
<td>0.29</td>
<td>5.44</td>
<td>10.75</td>
<td>3.82</td>
<td>2449</td>
<td>97</td>
<td>7.22</td>
<td>1.81</td>
<td>N</td>
<td>11</td>
<td>25.3</td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88
TUBING INSIDE DIA. CAPACITY (Gal./Flt.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016

PURGING EQUIPMENT CODES:
- **B** = Bailer
- **BP** = Bladder Pump
- **ESP** = Electric Submersible Pump
- **PP** = Peristaltic Pump
- **O** = Other (Specify)

MATERIAL CODES

- **AG** = Amber Glass
- **CG** = Clear Glass
- **PE** = Polyethylene
- **PP** = Polypropylene
- **S** = Silicone
- **T** = Teflon
- **O** = Other (Specify)

SAMPLING EQUIPMENT CODES:
- **APP** = After Peristaltic Pump
- **B** = Bailer
- **BP** = Bladder Pump
- **ESP** = Electric Submersible Pump
- **RFP** = Reverse Flow Peristaltic Pump
- **SM** = Straw Method (Tubing Gravity Drain)
- **O** = Other (Specify)

NOTES:

1. **STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS**
 - pH: ± 0.1 units
 - Temperature: ± 10% °C
 - Specific Conductance: ± 5%
 - Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater)
 - Turbidity: all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

SITE NAME:
SITE LOCATION: WADDLE, WAUWAUKEE, WISCONSIN

WELL NO: MW-21
SAMPLE ID: PA 3746-5
DATE: 01-13-16

PURGING DATA

<table>
<thead>
<tr>
<th>WELL (inches)</th>
<th>TUBING (inches)</th>
<th>WELL SCREEN INTERVAL (feet)</th>
<th>STATIC DEPT TO WATER (feet)</th>
<th>PURGE PUMP TYPE OR BAILER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>10 to 20</td>
<td>9.47</td>
<td>PP</td>
</tr>
</tbody>
</table>

WELL VOLUME PURGE:
Total Well Volume = (Total Well Depth - Static Depth to Water) x Well Capacity

Equipment Volume Purge:
Pump Volume = (Tubing Capacity x Tubing Length) + Flow Cell Volume

PURGING DATA

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMUL. VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP (°C)</th>
<th>COND (circles units)</th>
<th>D Dissolved O2 (circles units)</th>
<th>% Saturation</th>
<th>TURBIDITY (NTUs)</th>
<th>COLOR (desc)</th>
<th>ODOR (desc)</th>
<th>ORP (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.053</td>
<td>1.48</td>
<td>1.48</td>
<td>0.050</td>
<td>9.56</td>
<td>3.95</td>
<td>24.83</td>
<td>513</td>
<td>0.71</td>
<td>7.95</td>
<td>Clear</td>
<td>None</td>
<td>None</td>
<td>1455</td>
</tr>
<tr>
<td>0.054</td>
<td>1.45</td>
<td>1.52</td>
<td>0.15</td>
<td>9.56</td>
<td>3.94</td>
<td>24.84</td>
<td>513</td>
<td>0.20</td>
<td>7.32</td>
<td>Clear</td>
<td>None</td>
<td>None</td>
<td>1479</td>
</tr>
<tr>
<td>0.054</td>
<td>1.48</td>
<td>1.52</td>
<td>0.15</td>
<td>9.56</td>
<td>3.93</td>
<td>24.84</td>
<td>510</td>
<td>0.20</td>
<td>6.99</td>
<td>Clear</td>
<td>None</td>
<td>None</td>
<td>1469</td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot):
1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88

TUBING INSIDE DIAM. CAPACITY (Gal./Ft.):
1/8" = 0.0005; 3/16" = 0.0014; 1/4" = 0.0026; 5/32" = 0.004; 3/8" = 0.005; 1/2" = 0.010; 5/8" = 0.016

PURGING EQUIPMENT CODES:
B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)

SAMPLING DATA

SAMPLED BY: Mike Lohmeyer (GF)
SAMPLER(S) SIGNATURE(S):
SAMPLING INITIATED AT: 0908
SAMPLING ENDED AT: 0908

PUMP OR TUBING DEPTH IN WELL: 15 feet
TUBING MATERIAL CODE: HDPE

FIELD FILTERED: Y
FILTER SIZE: 1.0 μm

FIELD DECONTAMINATION: PUMP Y
**TUBING Y (replaced)

DUPLICATE: Y

<table>
<thead>
<tr>
<th>SAMPLE CONTAINER SPECIFICATION</th>
<th>SAMPLE PRESERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID Code</td>
<td>Containers</td>
<td>Material Code</td>
<td>Volume</td>
<td>Preservative Used</td>
<td>Total Vol Added In Field (mL)</td>
<td>Final pH</td>
<td>INTENDED ANALYSIS AND/OR METHOD</td>
</tr>
<tr>
<td>1825</td>
<td>3</td>
<td>CG</td>
<td>40 mL</td>
<td>HCL</td>
<td>-</td>
<td>-2</td>
<td>52.60</td>
</tr>
<tr>
<td>1750</td>
<td>1</td>
<td>EC</td>
<td>250 mL</td>
<td>HNO3</td>
<td>-</td>
<td>-2</td>
<td>Arsenic</td>
</tr>
</tbody>
</table>

REMARKS:

MATERIAL CODES:
AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES:
APP = Air Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; RFP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES:
1. Stabilization Criteria for Range of Variation of Last Three Consecutive Readings
 - pH: ± 0.1 units
 - Temperature: ± 10% °C
 - Specific Conductance: ± 5%
 - Dissolved Oxygen: all readings ± 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater)
 - Turbidity: all readings ± 10 NTU
GROUNDWATER SAMPLING LOG

SITE NAME: TMK Valdosta
SITE LOCATION: 2000 West Savannah Ave Valdosta GA
WELL NO: MW-15
SAMPLE ID: FA37961-L
DATE: 10-18-16

PURGING DATA

WELL DIAMETER (inches): 2
TUBING DIAMETER (inches): 3
WELL SCREEN INTERVAL (feet): 10 feet to 20 feet
STATIC DEPTH TO WATER (feet): 1.45
PURGE PUMP TYPE: OR BAILER

WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) x WELL CAPACITY

= (20 feet - 9.45 feet) x 0.16 gallons/foot = 1.69 gallons

EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME x (TUBING CAPACITY x TUBING LENGTH) + FLOW CELL VOLUME

= gallons x (gallons/foot x feet) = gallons

INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 15
FINAL PUMP OR TUBING DEPTH IN WELL (feet): 15
PURGING INITIATED AT: 0825
PURGING ENDED AT: 0806
TOTAL VOLUME PURGED (gallons): 1.97

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMUL VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP. (°C)</th>
<th>COND. (microsiemens/cm or mS/cm)</th>
<th>DISOLVE OXID (mil or ppm)</th>
<th>TURBIDITY (NTUs)</th>
<th>COLOR (describe)</th>
<th>ODOR (describe)</th>
<th>ORP (mv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900</td>
<td>1.69</td>
<td>1.69</td>
<td>0.0462</td>
<td>9.59</td>
<td>5.12</td>
<td>24.85</td>
<td>8.4</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>1770</td>
<td></td>
</tr>
<tr>
<td>0903</td>
<td>0.14</td>
<td>1.83</td>
<td>0.0407</td>
<td>9.60</td>
<td>5.10</td>
<td>24.37</td>
<td>8.4</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>178.7</td>
<td></td>
</tr>
<tr>
<td>0906</td>
<td>0.14</td>
<td>1.97</td>
<td>0.0407</td>
<td>9.60</td>
<td>5.10</td>
<td>24.36</td>
<td>8.4</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>178.5</td>
<td></td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88

TUBING INSIDE DIAM. CAPACITY (Gal./ft.): 1/8" = 0.0006, 3/16" = 0.0014, 1/4" = 0.0026, 5/16" = 0.004, 3/8" = 0.006, 1/2" = 0.010, 5/8" = 0.016

PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify)

SAMPLING DATA

SAMPLED BY (PRINT)/AFFILIATION:

SAMPLED BY (PRINT)/AFFILIATION:

SIGNATURE(S):

SAMPLE INITIATED AT: 0907
SAMPLE ENDED AT: 0906

PUMP OR TUBING DEPTH IN WELL (feet): 15
TUBING MATERIAL CODE: HOPE
FIELD FILTERED: Y
FILTER SIZE:

FIELD DECONTAMINATION: PUMP Y
**TUBING Y N (replaced)
DUPLICATE: Y N

SAMPLE CONTAINER SPECIFICATION

SAMPLE ID CODE: C
CONTAINERS

SAMPLE PREERVATION

VOLUME

TOTAL VOL.

FINAL pH:

INTENDED ANALYSIS AND/OR METHOD:

SAMPLE PUMP FLOW RATE (ml per minute):

REMARKS:

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)

SAMPLING EQUIPMENT CODES: APP = After Peristatic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFP = Reverse Flow Peristatic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

NOTES:

1. **STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS**

 pH: ± 0.1 units
 Temperature: ± 10° C
 Specific Conductance: ± 5%
 Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (which ever is greater)
 Turbidity: all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

SITE
- **Name:** TMR Ventures
- **Site Location:** 2000 W. Summer Ave. Valdosta, GA

WELL NO.
- **ID:** MW-3

DATE
- **Date:** 10-18-16

PURGING DATA

<table>
<thead>
<tr>
<th>WELL DIAMETER (inches):</th>
<th>TUBING DIAMETER (inches):</th>
<th>WELL SCREEN INTERVAL DEPTH:</th>
<th>STATIC DEPTH TO WATER (feet):</th>
<th>PURGE PUMP TYPE OR BAILER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>10 feet to 20 feet</td>
<td>9.95</td>
<td>10</td>
</tr>
</tbody>
</table>

WELL VOLUME PURGE:

\[
\text{WELL VOLUME} = (\text{TOTAL WELL DEPTH} - \text{STATIC DEPTH TO WATER}) \times \text{WELL CAPACITY (gallons/foot)} = 0.04 \text{ gallons/foot} \times 9.95 \text{ feet} = 0.40 \text{ gallons}
\]

EQUIPMENT VOLUME PURGE:

\[
\text{EQUIPMENT VOLUME PURGE} = \text{PUMP VOLUME} + (\text{TUBING CAPACITY (gallons/foot)} \times \text{TUBING LENGTH (feet)}) \times \text{FLOW CELL VOLUME (gallons)} = 0.74 \text{ gallons}
\]

PURGING INITIATED AT: 09:56

PURGING ENDED AT: 09:49

TOTAL VOLUME PURGED (gallons): 0.74

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMUL. VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP. (°C)</th>
<th>COND. (circle units μmhos/cm)</th>
<th>DISSOLVED OXYGEN (circle units %)</th>
<th>TURBIDITY (NTUs)</th>
<th>COLOR (describe)</th>
<th>ODOR (describe)</th>
<th>ORP (Mv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:56</td>
<td>0.40</td>
<td>0.40</td>
<td>0.85</td>
<td>26.25</td>
<td>6.01</td>
<td>26.53</td>
<td>73</td>
<td>1.30</td>
<td>9.87</td>
<td>Clear</td>
<td>None</td>
<td>106.7</td>
</tr>
<tr>
<td>09:49</td>
<td>0.17</td>
<td>0.57</td>
<td>16.43</td>
<td>6.02</td>
<td>16.55</td>
<td>72</td>
<td>1.29</td>
<td>9.79</td>
<td>11</td>
<td>4</td>
<td>10.28</td>
<td></td>
</tr>
<tr>
<td>09:46</td>
<td>0.17</td>
<td>0.74</td>
<td>16.62</td>
<td>6.07</td>
<td>24.58</td>
<td>70</td>
<td>1.25</td>
<td>9.83</td>
<td>11</td>
<td>9</td>
<td>96.6</td>
<td></td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot):

- 0.75" = 0.02
- 1" = 0.04
- 1.25" = 0.06
- 2" = 0.16
- 3" = 0.37
- 4" = 0.65
- 5" = 1.02
- 6" = 1.47
- 12" = 5.66

TUBING INSIDE DIAMETER (Gallons/ft):

- 1/8" = 0.0006
- 3/16" = 0.0014
- 1/4" = 0.0026
- 5/32" = 0.006
- 3/8" = 0.038
- 1/2" = 0.010
- 5/8" = 0.016

PURGING EQUIPMENT CODES:

- B = Bailor
- BP = Bladder Pump
- ESP = Electric Submersible Pump
- PP = Peristaltic Pump
- O = Other (Specify)

SAMPLING DATA

<table>
<thead>
<tr>
<th>SAMPLED BY (PRINT) / AFFILIATION:</th>
<th>SAMPLER(S) SIGNATURE(S):</th>
<th>SAMPLING INITIATED AT:</th>
<th>SAMPLING ENDED AT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dan Davis / GF</td>
<td></td>
<td>09:50</td>
<td>09:57</td>
</tr>
</tbody>
</table>

PUMP OR TUBING DEPTH IN WELL (feet): 17

<table>
<thead>
<tr>
<th>TUBING MATERIAL CODE:</th>
<th>FIELD-FILTERED:</th>
<th>FILTER SIZE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>Y</td>
<td>(replace)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIELD DECONTAMINATION:</th>
<th>TUBING Y N (replace)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMP</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE CONTAINER SPECIFICATION:

- **Material Code:** E
- **Volume:** 1000 mL

SAMPLE PRESERVATION:

- **Preservative Used:** HCl
- **Total Vol Added in Field (mL):** 0
- **Final pH:** 5.20
- **Intended Analysis And/or Method:** AP
- **Duplicate:** Y

<table>
<thead>
<tr>
<th>SAMPLE PUMP FLOW RATE (mL per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 480</td>
</tr>
<tr>
<td><100</td>
</tr>
</tbody>
</table>

REMARKS:

MATERIAL CODES:

- AG = Amber Glass
- CG = Clear Glass
- PE = Polyethylene
- PP = Polypropylene
- S = Silicones
- T = Teflon
- O = Other (Specify)

SAMPLING EQUIPMENT CODES:

- APP = After Peristaltic Pump
- B = Bailor
- BP = Bladder Pump
- ESP = Electric Submersible Pump
- RFP = Reverse Flow Peristaltic Pump
- SM = Straw Method (Tubing Gravity Drain)
- O = Other (Specify)

NOTES:

1. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS
 - pH: ± 0.1 units
 - Temperature: ± 10°C
 - Specific Conductance: ± 5% Disolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater)
 - Turbidity: all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

WELL DATA
- **Diameter (inches):** 2
- **Tubing Diameter (inches):** 3/4
- **Well Screen Interval Depth:** 10 feet to 20 feet
- **Static Depth to Water (feet):** 10.56
- **Purging Pump Type or Bailer:** OR BAILER

Purging Data
- **Well Volume Purge:** 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) x WELL CAPACITY
- **Equipment Volume Purge:** 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY x TUBING LENGTH) + FLOW CELL VOLUME

<table>
<thead>
<tr>
<th>Initial Pump or Tubing Depth in Well (feet):</th>
<th>Final Pump or Tubing Depth in Well (feet):</th>
<th>Purging Initiated At:</th>
<th>Purging Ended At:</th>
<th>Total Volume Purged (gallons):</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>0940</td>
<td>1006</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Sampling Data
- **Sampled by (Print) / Affiliation:**
- **Sampler(s) Signature(s):**
- **Sampling Initiated At:** 1007
- **Sampling Ended At:** 1007
- **Pump or Tubing Depth in Well (feet):** 15
- **Tubing Material Code:** HDPE
- **Field Filtered:** Y
- **Filter Size:**μm
- **Field Decontamination:** PUMP Y TUBING Y
- **Duplicate:** Y

Sample Container Specification
- **Sample Code:** 3
- **Material Code:** CG
- **Volume:** 250ml
- **Preservative Used:** HCL
- **Total Vol Added in Field (mL):**
- **Final pH:**
- **Intended Analysis and/or Method:**
- **Sampling Equipment Code:**
- **Sample Pump Flow Rate (mL per minute):**

Remarks:
- **Material Codes:** AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)
- **Sampling Equipment Codes:** APP = After Peristaltic Pump; B = Bailer; BP = Bailer Pump; ESP = Electric Submersible Pump; RFP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

Notes:
1. **Stabilization Criteria for Range of Variation of last Three Consecutive Readings:**
 - pH: ±0.1 units
 - Temperature: ±10°C
 - Specific Conductance: ±5%
 - Dissolved Oxygen: all readings ≤20% saturation; optionally, ±0.2 mg/L or ±10% (whichever is greater)
 - Turbidity: all readings ≤10 NTU
GROUNDWATER SAMPLING LOG

SITE NAME: TMA Valdosta
WELL NO.:
SAMPLE ID: FA-3466-9
DATE: 10-18-16

PURGING DATA

- **WELL DIAMETER (inches):** 2
- **TUBING DIAMETER (inches):**
- **WELL SCREEN INTERVAL DEPTH:** 10 feet to 20 feet
- **STATIC DEPTH TO WATER (feet):** 8.22
- **PURGE PUMP TYPE:** AP
- **WELL VOLUME PURGE:** \(\frac{20}{10} \text{ feet} \times \frac{8.22}{10} \text{ feet} \times 0.16 \text{ gallons/foot} \times 1.88 \text{ gallons} \)
- **EQUIPMENT VOLUME PURGE:** \(\frac{15}{15} \text{ gallons} + \frac{15}{15} \text{ gallons} \)

INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 15

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMUL. VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP. (°C)</th>
<th>COND. (circle units)</th>
<th>OXYGEN (circle units)</th>
<th>TURBIDITY (NTUs)</th>
<th>COLOR (describe)</th>
<th>ODOR (describe)</th>
<th>ORP (Mv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20</td>
<td>1.39</td>
<td>1.49</td>
<td>0.0420</td>
<td>8.49</td>
<td>4.56</td>
<td>25.46</td>
<td>3.57</td>
<td>0.15</td>
<td>2.90</td>
<td>None</td>
<td>None</td>
<td>16.8</td>
</tr>
<tr>
<td>10:23</td>
<td>0.19</td>
<td>2.67</td>
<td>0.3811</td>
<td>8.49</td>
<td>4.54</td>
<td>25.13</td>
<td>4.02</td>
<td>0.13</td>
<td>2.85</td>
<td>None</td>
<td>None</td>
<td>16.2</td>
</tr>
<tr>
<td>10:26</td>
<td>0.19</td>
<td>2.26</td>
<td>0.0662</td>
<td>8.49</td>
<td>4.54</td>
<td>25.43</td>
<td>4.01</td>
<td>0.13</td>
<td>2.73</td>
<td>None</td>
<td>None</td>
<td>16.7</td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88
TUBING INSIDE DIA. CAPACITY (Gal./Fl.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016

SAMPLING DATA

- **SAMPLED BY:**
- **SIGNATURE(S):**
- **SAMPLE(S) SIGNATURE(S):**
- **SAMPLE INITIATED AT:** 10:27
- **SUBMITTED AT:** 10:33

FIELD DECONTAMINATION

- **FILTRATION EQUIPMENT TYP:**
- **FILTER SIZE:** __μm

SAMPLE CONTAINER SPECIFICATION

- **SAMPLE CONTAINER SPECIFICATION:** PUMP Y
- **TUBING Y N (replaced)**

SAMPLE PRESERVATION

- **SAMPLE ID CODE:**
- **CONTAINERS:**
- **MATERIAL CODE:**
- **VOLUME:**
- **PRESERVATIVE USED:**
- **TOTAL VOL ADDED IN FIELD (ml):**
- **FINAL pH:**
- **INTENDED ANALYSIS AND/OR METHOD:**
- **SAMPLE PUMP FLOW RATE (ml per minute):**

MATERIAL CODES:

- **AG:** Amber Glass
- **CG:** Clear Glass
- **PE:** Polyethylene
- **PP:** Polypropylene
- **S:** Silicone
- **T:** Teflon
- **O:** Other (Specify)

SAMPLING EQUIPMENT CODES:

- **APP:** After Peristaltic Pump
- **B:** Baller
- **BP:** Bladder Pump
- **ESP:** Electric Submersible Pump
- **RFP:** Reverse Flow Peristaltic Pump
- **SM:** Straw Method (Tubing Gravity Drain)
- **O:** Other (Specify)

NOTES:

1. **STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS**

- **pH:** ± 0.1 units
- **Temperature:** ± 10% °C
- **Specific Conductance:** ± 5%
- **Dissolved Oxygen:** all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater)
- **Turbidity:** all readings ≤ 10 NTU
GROUNDWATER SAMPLING LOG

SITE NAME: Turb Valdosta
SITE LOCATION: 2600 West Savannah Ave Valdosta GA
WELL NO: mw - 11
SAMPLE ID: FA 37964 - 10
DATE: 10-16-16

PURGING DATA

<table>
<thead>
<tr>
<th>WELL VOLUME PURGE:</th>
<th>1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) x WELL CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= (20 feet - 0 feet) x 0.04 gallons/foot = 80 gallons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIPMENT VOLUME PURGE:</th>
<th>1 EQUIPMENT VOL = PUMP VOLUME + (TUBING CAPACITY x TUBING LENGTH) + FLOW CELL VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= gallons + (gallons/foot x feet) + gallons = gallons</td>
</tr>
</tbody>
</table>

INITIAL PUMP OR TUBING DEPTH IN WELL (feet):	15
FINAL PUMP OR TUBING DEPTH IN WELL (feet):	15
PURGING INITIATED AT:	12:00
PURGING ENDED AT:	12:20
TOTAL VOLUME PURGED (gallons):	1:28

<table>
<thead>
<tr>
<th>TIME</th>
<th>VOLUME PURGED (gallons)</th>
<th>CUMUL VOLUME PURGED (gallons)</th>
<th>PURGE RATE (gpm)</th>
<th>DEPTH TO WATER (feet)</th>
<th>pH (standard units)</th>
<th>TEMP. (°C)</th>
<th>COND. (circles units) µmos/cm or mg/L</th>
<th>OXYGEN (circles units) % saturation</th>
<th>TURBIDITY (NTUs)</th>
<th>COLOR (describe)</th>
<th>(ODOR describe)</th>
<th>ORP (mv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:22</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00536</td>
<td>57</td>
<td>4.07</td>
<td>24.03</td>
<td>5.7</td>
<td>2.38</td>
<td>7.83</td>
<td>Clear</td>
<td>None</td>
<td>422.4</td>
</tr>
<tr>
<td>12:25</td>
<td>1.14</td>
<td>2.14</td>
<td>0.00536</td>
<td>57</td>
<td>4.07</td>
<td>23.89</td>
<td>5.7</td>
<td>2.38</td>
<td>3.41</td>
<td>Brown</td>
<td>None</td>
<td>422.2</td>
</tr>
<tr>
<td>12:28</td>
<td>1.23</td>
<td>3.37</td>
<td>0.00536</td>
<td>57</td>
<td>4.07</td>
<td>23.04</td>
<td>5.7</td>
<td>3.29</td>
<td>3.07</td>
<td>Clear</td>
<td>None</td>
<td>422.0</td>
</tr>
</tbody>
</table>

WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88

TUBING INSIDE DIAM. CAPACITY (Gal./ft): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0025; 1/2" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016

PURGING EQUIPMENT CODES:
- B = Bailer
- BP = Bladder Pump
- ESP = Electric Submersible Pump
- PP = Peristaltic Pump
- O = Other (Specify)

SAMPLING DATA

<table>
<thead>
<tr>
<th>SAMPLED BY (PRINT) / AFFILIATION:</th>
<th>R.G. Farrow</th>
<th>LTP</th>
<th>Sampler(S) Signature:</th>
<th>R.G. Farrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMP OR TUBING DEPTH IN WELL (feet):</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUBING MATERIAL CODE:</td>
<td>RDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD-FILTERED:</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILTER SIZE:</td>
<td>___µm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD DECONTAMINATION:</td>
<td>PUMP Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUBING Y (Repeat 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUPLICATE:</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE CONTAINER SPECIFICATION</th>
<th>SAMPLE PREERVATION</th>
<th>INTENDED ANALYSIS AND/OR METHOD</th>
<th>SAMPLING EQUIPMENT CODE</th>
<th>SAMPLE PUMP FLOW RATE (mL per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID Code</td>
<td>Containers</td>
<td>Material Code</td>
<td>Volume</td>
<td>Preservative Used</td>
</tr>
</tbody>
</table>

| Remarks: | Cannot sample due to casing bent |

Material Codes:
- AG = Amber Glass
- CG = Clear Glass
- PE = Polyethylene
- PP = Polypropylene
- S = Silicone
- T = Teflon
- O = Other (Specify)

Sampling Equipment Codes:
- APP = After Peristaltic Pump
- B = Bailer
- BP = Bladder Pump
- ESP = Electric Submersible Pump
- RFPP = Reverse Flow Peristaltic Pump
- SM = Straw Method (Tubing Gravity Drain)
- O = Other (Specify)

Notes:
1. STABILIZATION CRITERIA: FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS
 - pH: ± 0.1 units
 - Temperature: ± 10% °C
 - Specific Conductance: ± 5%
 - Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater)
 - Turbidity: all readings ≤ 10 NTU
<table>
<thead>
<tr>
<th>DATE (yy/mm/dd)</th>
<th>TIME (hr:min)</th>
<th>STD (A, B, C)</th>
<th>STD VALUE</th>
<th>INSTRUMENT RESPONSE</th>
<th>% DEV</th>
<th>CALIBRATED (YES, NO)</th>
<th>TYPE (INIT, CONT)</th>
<th>SAMPLER INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/11/18</td>
<td>07:30</td>
<td>00</td>
<td>TP</td>
<td>100.3/100</td>
<td>Y</td>
<td>Cont</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>10</td>
<td>10.1/10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>7</td>
<td>7.04/7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>4</td>
<td>4.01/4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductivity</td>
<td>10.3</td>
<td>10.1/10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turbidity</td>
<td>0.2</td>
<td>0.07/0.02</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/10/18</td>
<td>12:45</td>
<td>00</td>
<td>TP</td>
<td>100.2/100.0</td>
<td>Y</td>
<td>Cont/End</td>
<td>A/P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>10</td>
<td>10.05/10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>7</td>
<td>7.03/7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>4</td>
<td>4.01/4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductivity</td>
<td>10.2</td>
<td>10.1/10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turbidity</td>
<td>0.2</td>
<td>0.07/0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Field Instrument Calibration Records Instrument

Maker/Model: YSI ProPlus

Instrument #: 10E10034Y

Parameter: Check only one
- [] Temperature
- [] Conductivity
- [] Salinity
- [] pH
- [] ORP
- [x] Turbidity
- [] Residual Cl
- [] DO
- [] Other

Standards: Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased.

- **Standard A**: 10/10/18 50°C 500 ppm 7.1 4 100 100.00 100 0
 - pH 10 10.00 10.00
 - pH 7 7.00 7.00
 - pH 4 4.05 4.00
 - Cond 100 100.00 100.00
 - Turb 10 100 100.00

- **Standard B**: 10/10/18 50°C 500 ppm 7.1 4 100 100.00 100 0
 - pH 10 10.00 10.00
 - pH 7 7.00 7.00
 - pH 4 4.05 4.00
 - Cond 100 100.00 100.00
 - Turb 10 100 100.00

- **Standard C**: Date and Time Provided by US Environmental Trane FL

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (hr:min)</th>
<th>Std Value</th>
<th>Instrument Response</th>
<th>% Dev</th>
<th>Calibrated (Yes, No)</th>
<th>Type (Init. Cont.)</th>
<th>Sampler Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/10/18 50°C</td>
<td>pH 10 10.00</td>
<td>100.00</td>
<td>Yes</td>
<td>Cont</td>
<td>DRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 7 7.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 4 4.05</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cond 100</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turb 10</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (hr:min)</th>
<th>Std Value</th>
<th>Instrument Response</th>
<th>% Dev</th>
<th>Calibrated (Yes, No)</th>
<th>Type (Init. Cont.)</th>
<th>Sampler Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/10/18 50°C</td>
<td>pH 10 10.00</td>
<td>100.00</td>
<td>Yes</td>
<td>Cont</td>
<td>DRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 7 7.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH 4 4.05</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cond 100</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turb 10</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE (yy/mm/dd)</td>
<td>TIME (hr:min)</td>
<td>STD (A, B, C)</td>
<td>STD VALUE</td>
<td>INSTRUMENT RESPONSE</td>
<td>% DEV</td>
<td>CALIBRATED (YES, NO)</td>
<td>TYPE (INIT, CONT)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>10/10/17</td>
<td>07:00</td>
<td>DO</td>
<td>109.5/100.6</td>
<td>Yes</td>
<td>Init</td>
<td>YTF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>9.91/10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>7.83/7.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>4.76/4.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cld</td>
<td>10.03/10.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>turb</td>
<td>0.02/0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/10/17</td>
<td>15:15</td>
<td>DO</td>
<td>100.4/100.0</td>
<td>Yes</td>
<td>Cont</td>
<td>YTF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>9.97/10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>7.83/7.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>4.76/4.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cld</td>
<td>10.02/10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>turb</td>
<td>0.02/0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT

PARAMETER:
- [] TEMPERATURE
- [x] CONDUCTIVITY
- [] SALINITY
- [] pH
- [] ORP
- [] TURBIDITY
- [] RESIDUAL CI
- [] DO
- [] OTHER

STANDARDS:
[Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

- **Standard A**: pH 10 lot 56549 exp. 06/17, pH 7 lot 56543 exp. 06/17, pH 4 lot 56544 exp. 06/17
- **Standard B**: cond 1000, C02 10 lot 56558 exp. 05/16
- **Standard C**: No value

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME (hr:min)</th>
<th>STD (A, B, C)</th>
<th>STD VALUE</th>
<th>INSTRUMENT RESPONSE</th>
<th>% DEV</th>
<th>CALIBRATED (YES, NO)</th>
<th>TYPE (INIT, CONT)</th>
<th>SAMPLER INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/10/17</td>
<td>0700</td>
<td>DD</td>
<td>10.00</td>
<td>100.00</td>
<td></td>
<td>Yes</td>
<td>Init</td>
<td>DRD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH 10</td>
<td>10.00/10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH 7</td>
<td>7.00/7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH 4</td>
<td>4.00/4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cond</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>turb</td>
<td>0.00/0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/10/17</td>
<td>1915</td>
<td>DD</td>
<td>10.00</td>
<td>100.00</td>
<td></td>
<td>Yes</td>
<td>Cont</td>
<td>DRD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH 10</td>
<td>10.00/10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH 7</td>
<td>7.00/7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH 4</td>
<td>4.00/4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cond</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>turb</td>
<td>0.00/0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1:
Monitoring Well and Groundwater Elevation Data
Trademark Metals Recycling, 2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-1R</th>
<th>MW-2R</th>
<th>MW-3</th>
<th>MW-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFIER</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>2.0</td>
<td>2.0</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>20</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTSC)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>199.77</td>
<td>196.31</td>
<td>198.79</td>
<td>200.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>MW-1R</th>
<th>MW-2R</th>
<th>MW-3</th>
<th>MW-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEV</td>
<td>DTW</td>
<td>FP</td>
<td>ELEV</td>
<td>DTW</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>07/21/14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08/11/14</td>
<td>189.62</td>
<td>10.15</td>
<td>0.00</td>
<td>189.56</td>
</tr>
<tr>
<td>11/11/14</td>
<td>188.39</td>
<td>11.36</td>
<td>0.00</td>
<td>188.31</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.52</td>
<td>5.25</td>
<td>0.00</td>
<td>194.44</td>
</tr>
<tr>
<td>10/19/15</td>
<td>194.10</td>
<td>5.67</td>
<td>0.00</td>
<td>193.89</td>
</tr>
<tr>
<td>04/05/16</td>
<td>190.76</td>
<td>3.01</td>
<td>0.00</td>
<td>190.74</td>
</tr>
<tr>
<td>07/27/16</td>
<td>192.21</td>
<td>7.56</td>
<td>0.00</td>
<td>192.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-5</th>
<th>MW-5D</th>
<th>MW-6</th>
<th>MW-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFIER</td>
<td>Upper Surficial</td>
<td>Intermediate Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTSC)</td>
<td>10</td>
<td>5.0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>197.10</td>
<td>197.22</td>
<td>196.79</td>
<td>198.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>MW-5</th>
<th>MW-5D</th>
<th>MW-6</th>
<th>MW-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEV</td>
<td>DTW</td>
<td>FP</td>
<td>ELEV</td>
<td>DTW</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>07/21/14</td>
<td>191.92</td>
<td>5.18</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>08/11/14</td>
<td>190.62</td>
<td>6.48</td>
<td>0.00</td>
<td>188.39</td>
</tr>
<tr>
<td>11/11/14</td>
<td>189.75</td>
<td>7.35</td>
<td>0.00</td>
<td>187.23</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.73</td>
<td>2.37</td>
<td>0.00</td>
<td>192.45</td>
</tr>
<tr>
<td>10/19/15</td>
<td>194.62</td>
<td>2.48</td>
<td>0.00</td>
<td>191.71</td>
</tr>
<tr>
<td>04/05/16</td>
<td>196.38</td>
<td>0.72</td>
<td>0.00</td>
<td>194.87</td>
</tr>
<tr>
<td>07/27/16</td>
<td>193.01</td>
<td>4.09</td>
<td>0.00</td>
<td>190.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-10</th>
<th>MW-11</th>
<th>MW-12</th>
<th>MW-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFIER</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTSC)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>200.16</td>
<td>197.00</td>
<td>197.67</td>
<td>197.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>MW-10</th>
<th>MW-11</th>
<th>MW-12</th>
<th>MW-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEV</td>
<td>DTW</td>
<td>FP</td>
<td>ELEV</td>
<td>DTW</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>07/21/14</td>
<td>189.85</td>
<td>8.51</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>08/11/14</td>
<td>189.95</td>
<td>10.21</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>11/11/14</td>
<td>188.78</td>
<td>11.38</td>
<td>0.00</td>
<td>188.91</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.96</td>
<td>5.20</td>
<td>0.00</td>
<td>194.52</td>
</tr>
<tr>
<td>10/19/15</td>
<td>192.90</td>
<td>7.26</td>
<td>0.00</td>
<td>193.89</td>
</tr>
<tr>
<td>04/05/16</td>
<td>196.92</td>
<td>3.24</td>
<td>0.00</td>
<td>196.22</td>
</tr>
<tr>
<td>07/27/16</td>
<td>192.73</td>
<td>7.43</td>
<td>0.00</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

![DTW measurements collected on 10-17-16 started at 0705 ended at 0745](image)
Table 1: Monitoring Well and Groundwater Elevation Data

Trademark Metals Recycling, 2000 West Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-14</th>
<th>MW-15</th>
<th>MW-1D</th>
<th>MW-1DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
<td>Upper Surficial</td>
<td>Intermediate Surficial</td>
<td>Lower Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>SCREEN (feet BTGC)</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>200.51</td>
<td>199.19</td>
<td>199.94</td>
<td>199.85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08/11/14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11/11/14</td>
<td>188.37</td>
<td>12.16</td>
<td>0.00</td>
<td>188.16</td>
<td>11.03</td>
<td>0.00</td>
<td>187.80</td>
<td>12.14</td>
<td>0.00</td>
</tr>
<tr>
<td>04/14/15</td>
<td>194.44</td>
<td>6.07</td>
<td>0.00</td>
<td>194.52</td>
<td>4.67</td>
<td>0.00</td>
<td>193.51</td>
<td>6.43</td>
<td>0.00</td>
</tr>
<tr>
<td>10/19/15</td>
<td>193.93</td>
<td>6.58</td>
<td>0.00</td>
<td>194.32</td>
<td>4.87</td>
<td>0.00</td>
<td>192.68</td>
<td>7.26</td>
<td>0.00</td>
</tr>
<tr>
<td>04/05/16</td>
<td>195.72</td>
<td>3.79</td>
<td>0.00</td>
<td>196.81</td>
<td>2.38</td>
<td>0.00</td>
<td>195.83</td>
<td>4.11</td>
<td>0.00</td>
</tr>
<tr>
<td>07/27/16</td>
<td>192.31</td>
<td>8.20</td>
<td>0.00</td>
<td>191.91</td>
<td>7.28</td>
<td>0.00</td>
<td>191.08</td>
<td>8.86</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MW-16

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MW-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUIFER</td>
<td>Upper Surficial</td>
</tr>
<tr>
<td>DIAMETER (inches)</td>
<td>2.0</td>
</tr>
<tr>
<td>WELL DEPTH (feet BLS)</td>
<td>20</td>
</tr>
<tr>
<td>SCREEN (feet BTGC)</td>
<td>10</td>
</tr>
<tr>
<td>TOC ELEVATION (feet MSL)</td>
<td>198.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>ELEV</th>
<th>DTW</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/21/14</td>
<td>No! Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/11/14</td>
<td>No! Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/11/14</td>
<td>No! Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/14/15</td>
<td>No! Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/19/15</td>
<td>No! Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/05/16</td>
<td>No! Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/27/16</td>
<td>191.57</td>
<td>6.65</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes:
- BLS = below land surface
- DTW = Depth to Water
- ELEV = Elevation
- FP = Free Product
- MSL = Mean Sea Level
APPENDIX E
Technical Report for

Gannett Fleming

Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA 57524

SGS Accutest Job Number: FA37966

Sampling Dates: 10/17/16 - 10/18/16

Report to:

Gannett Fleming
West Lake Corporate Center 9119 Corporate Lake Dr, Suite 150
Tampa, FL 33634-6323
agetchell@gfnet.com; tfalkner@gfnet.com

ATTN: Aaron Getchell

Total number of pages in report: 84

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL 002), SC (96038001)
DoD ELAP (L-A-B 2229), CA (2937), TX (T104704404), PA (68-03573), VA (460177),
AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest.
Test results relate only to samples analyzed.
Table of Contents

Section 1: Sample Summary
Section 2: Summary of Hits
Section 3: Sample Results
 3.1: FA37966-1: MW-1R
 3.2: FA37966-2: MW-1DD
 3.3: FA37966-3: MW-1D
 3.4: FA37966-4: MW-8
 3.5: FA37966-5: MW-2R
 3.6: FA37966-6: MW-15
 3.7: FA37966-7: MW-3
 3.8: FA37966-8: MW-14
 3.9: FA37966-9: MW-16
 3.10: FA37966-10: MW-11
Section 4: Misc. Forms
 4.1: Chain of Custody
Section 5: GC/MS Volatiles - QC Data Summaries
 5.1: Method Blank Summary
 5.2: Blank Spike Summary
 5.3: Matrix Spike/Matrix Spike Duplicate Summary
Section 6: Metals Analysis - QC Data Summaries
 6.1: Prep QC MP31025: As
Sample Summary

Gannett Fleming

Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

Project No: 57524

Job No: FA37966

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Collected Date</th>
<th>Time</th>
<th>By</th>
<th>Received Date</th>
<th>Code</th>
<th>Type</th>
<th>Matrix</th>
<th>Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37966-1</td>
<td>10/17/16</td>
<td>15:37</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-1R</td>
<td></td>
</tr>
<tr>
<td>FA37966-2</td>
<td>10/17/16</td>
<td>15:52</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-1DD</td>
<td></td>
</tr>
<tr>
<td>FA37966-3</td>
<td>10/17/16</td>
<td>17:02</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-1D</td>
<td></td>
</tr>
<tr>
<td>FA37966-4</td>
<td>10/17/16</td>
<td>08:37</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-8</td>
<td></td>
</tr>
<tr>
<td>FA37966-5</td>
<td>10/18/16</td>
<td>09:00</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-2R</td>
<td></td>
</tr>
<tr>
<td>FA37966-6</td>
<td>10/18/16</td>
<td>09:07</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-15</td>
<td></td>
</tr>
<tr>
<td>FA37966-7</td>
<td>10/18/16</td>
<td>09:50</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-3</td>
<td></td>
</tr>
<tr>
<td>FA37966-8</td>
<td>10/18/16</td>
<td>10:07</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-14</td>
<td></td>
</tr>
<tr>
<td>FA37966-9</td>
<td>10/18/16</td>
<td>11:27</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-16</td>
<td></td>
</tr>
<tr>
<td>FA37966-10</td>
<td>10/18/16</td>
<td>12:29</td>
<td>RFDD</td>
<td>10/21/16</td>
<td>AQ</td>
<td>Ground Water</td>
<td>MW-11</td>
<td></td>
</tr>
<tr>
<td>Lab Sample ID</td>
<td>Client Sample ID</td>
<td>Analyte</td>
<td>Result/Qual</td>
<td>RL</td>
<td>MDL</td>
<td>Units</td>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>FA37966-1</td>
<td>MW-1R</td>
<td>cis-1,2-Dichloroethylene</td>
<td>544</td>
<td>20</td>
<td>6.2</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td>6.8 J</td>
<td>20</td>
<td>5.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrachloroethylene</td>
<td>428</td>
<td>20</td>
<td>6.1</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichloroethylene</td>
<td>1830</td>
<td>25</td>
<td>6.8</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m,p-Xylene</td>
<td>6.3 J</td>
<td>40</td>
<td>6.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o-Xylene</td>
<td>8.7 J</td>
<td>20</td>
<td>5.3</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic</td>
<td>317</td>
<td>10</td>
<td>1.0</td>
<td>ug/l</td>
<td>SW846 6010C</td>
<td></td>
</tr>
<tr>
<td>FA37966-2</td>
<td>MW-1DD</td>
<td>1,1-Dichloroethane</td>
<td>5.1</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1-Dichloroethylene</td>
<td>0.72 J</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrachloroethylene</td>
<td>7.1</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>4.3</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichloroethylene</td>
<td>0.55 J</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td>FA37966-3</td>
<td>MW-1D</td>
<td>No hits reported in this sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA37966-4</td>
<td>MW-8</td>
<td>Benzene</td>
<td>384</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td>84.5</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Propylbenzene</td>
<td>2.2 J</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toluene</td>
<td>11.6</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>16.1</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>3.4 J</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m,p-Xylene</td>
<td>81.3</td>
<td>10</td>
<td>1.5</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o-Xylene</td>
<td>73.1</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td>FA37966-5</td>
<td>MW-2R</td>
<td>cis-1,2-Dichloroethylene</td>
<td>1.1</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrachloroethylene</td>
<td>1.3</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td>SW846 8260B</td>
<td></td>
</tr>
<tr>
<td>FA37966-6</td>
<td>MW-15</td>
<td>No hits reported in this sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA37966-7</td>
<td>MW-3</td>
<td>No hits reported in this sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Hits

Job Number: FA37966
Account: Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA
Collected: 10/17/16 thru 10/18/16

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Result/Qual</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37966-8</td>
<td>MW-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No hits reported in this sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA37966-9</td>
<td>MW-16</td>
<td>Tetrachloroethylene</td>
<td>3.0</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW846 8260B</td>
</tr>
<tr>
<td>FA37966-10</td>
<td>MW-11</td>
<td>1,1-Dichloroethane</td>
<td>0.77</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW846 8260B</td>
</tr>
</tbody>
</table>
Sample Results

Report of Analysis
Client Sample ID: MW-1R
Lab Sample ID: FA37966-1
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Run #</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>M90802.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>Run #2</td>
<td>M90823.D</td>
<td>25</td>
<td>10/24/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3873</td>
</tr>
</tbody>
</table>

Purge Volume
Run #1 5.0 ml
Run #2 5.0 ml

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>500</td>
<td>200</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>20</td>
<td>4.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>20</td>
<td>8.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>20</td>
<td>8.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>20</td>
<td>4.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>20</td>
<td>9.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>100</td>
<td>51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>20</td>
<td>8.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>20</td>
<td>5.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>20</td>
<td>8.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>40</td>
<td>4.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>20</td>
<td>6.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>40</td>
<td>13</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>20</td>
<td>6.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>20</td>
<td>4.9</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>20</td>
<td>7.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>20</td>
<td>5.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>100</td>
<td>16</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromomethane</td>
<td>ND</td>
<td>40</td>
<td>6.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>40</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>5.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>4.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>20</td>
<td>7.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>20</td>
<td>5.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>20</td>
<td>5.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>20</td>
<td>4.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>544</td>
<td>20</td>
<td>6.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>20</td>
<td>6.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>20</td>
<td>6.9</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>20</td>
<td>6.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>20</td>
<td>5.5</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit
RL = Reporting Limit
J = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Report of Analysis

Client Sample ID: MW-1R
Lab Sample ID: FA37966-1
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>20</td>
<td>5.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>20</td>
<td>5.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>20</td>
<td>4.9</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>6.8</td>
<td>20</td>
<td>5.0</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>40</td>
<td>11</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>200</td>
<td>40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>20</td>
<td>6.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>20</td>
<td>5.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>40</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>40</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>40</td>
<td>7.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>100</td>
<td>40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>100</td>
<td>28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>100</td>
<td>20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>20</td>
<td>4.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>20</td>
<td>5.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>20</td>
<td>6.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>428</td>
<td>20</td>
<td>6.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>40</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>40</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>20</td>
<td>7.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>1830a</td>
<td>25</td>
<td>6.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>40</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropene</td>
<td>ND</td>
<td>40</td>
<td>13</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>20</td>
<td>4.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>200</td>
<td>40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>20</td>
<td>6.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m,p-Xylene</td>
<td>6.3</td>
<td>40</td>
<td>6.0</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>8.7</td>
<td>20</td>
<td>5.3</td>
<td>ug/l</td>
<td>J</td>
</tr>
</tbody>
</table>

Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>105%</td>
<td>107%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>100%</td>
<td>104%</td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>94%</td>
<td>89%</td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
J = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>87%</td>
<td>90%</td>
<td>83-118%</td>
</tr>
</tbody>
</table>

(a) Result is from Run# 2
Report of Analysis

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>317</td>
<td>10</td>
<td>µg/l</td>
<td>1</td>
<td>10/21/16</td>
<td>10/24/16</td>
<td>SW846 6010C 1</td>
<td>SW846 3010A 2</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

\(RL = \) Reporting Limit
Report of Analysis

Client Sample ID: MW-1DD
Lab Sample ID: FA37966-2
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Run #1</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>J0980445.D</td>
<td>1</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJS470</td>
</tr>
</tbody>
</table>

| Run #2 | Purge Volume | 5.0 ml |

<table>
<thead>
<tr>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>5.1</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>0.72</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
Q = Indicates an estimated value
J = Indicates analyte found in associated method blank
B = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Report of Analysis

Client Sample ID: MW-1DD
Lab Sample ID: FA37966-2
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>7.1</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>4.3</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>0.55</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>100%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>103%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>104%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
Report of Analysis

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>101%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

VOA 8260 List

<table>
<thead>
<tr>
<th>ND = Not detected</th>
<th>MDL = Method Detection Limit</th>
<th>J = Indicates an estimated value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL = Reporting Limit</td>
<td>B = Indicates analyte found in associated method blank</td>
<td>N = Indicates presumptive evidence of a compound</td>
</tr>
</tbody>
</table>
Client Sample ID: MW-1DD
Lab Sample ID: FA37966-2
Date Sampled: 10/17/16
Date Received: 10/21/16
Matrix: AQ - Ground Water
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><10</td>
<td>10</td>
<td>ug/l</td>
<td>1</td>
<td>10/21/16</td>
<td>10/24/16</td>
<td>LM</td>
<td>SW846 6010C</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

RL = Reporting Limit
Client Sample ID: MW-1D
Lab Sample ID: FA37966-3
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>M90804.D</td>
<td>1</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Run #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purge Volume
Run #1 5.0 ml
Run #2

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
J = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyloctane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>96%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>96%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>88%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report of Analysis

Client Sample ID: MW-1D **Lab Sample ID:** FA37966-3 **Date Sampled:** 10/17/16 **Date Received:** 10/21/16 **Matrix:** AQ - Ground Water **Method:** SW846 8260B **Percent Solids:** n/a **Project:** Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloroethylene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>96%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>96%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>88%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

Abbreviations:

- **ND** = Not detected
- **MDL** = Method Detection Limit
- **RL** = Reporting Limit
- **J** = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- **E** = Indicates value exceeds calibration range
- **N** = Indicates presumptive evidence of a compound
Client Sample ID: MW-1D
Lab Sample ID: FA37966-3
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>101%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

Abbreviations

- **ND** = Not detected
- **MDL** = Method Detection Limit
- **RL** = Reporting Limit
- **E** = Indicates value exceeds calibration range
- **J** = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- **N** = Indicates presumptive evidence of a compound
Client Sample ID: MW-1D
Lab Sample ID: FA37966-3
Matrix: AQ - Ground Water
Date Sampled: 10/17/16
Date Received: 10/21/16
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><10</td>
<td>10</td>
<td>ug/l</td>
<td>1</td>
<td>10/21/16 10/24/16</td>
<td>LM</td>
<td>SW846 6010C</td>
<td>SW846 3010A</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

RL = Reporting Limit
SGS Accutest

Report of Analysis

Page 1 of 3

Client Sample ID: MW-8
Lab Sample ID: FA37966-4
Date Sampled: 10/17/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Run #1</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0980446.D</td>
<td>5</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJS470</td>
<td></td>
</tr>
</tbody>
</table>

Purge Volume
Run #1 5.0 ml
Run #2

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>130</td>
<td>50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>384</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>2.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>2.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>5.0</td>
<td>2.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>25</td>
<td>13</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>2.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>10</td>
<td>1.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>5.0</td>
<td>1.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>10</td>
<td>3.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>5.0</td>
<td>1.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>1.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>5.0</td>
<td>1.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>25</td>
<td>4.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>10</td>
<td>1.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>10</td>
<td>2.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>1.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>1.1</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>1.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>1.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1.7</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>1.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>84.5</td>
<td>5.0</td>
<td>1.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>10</td>
<td>2.9</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>50</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>5.0</td>
<td>1.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>10</td>
<td>2.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>10</td>
<td>2.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>10</td>
<td>1.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>25</td>
<td>7.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>25</td>
<td>5.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>2.2</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>5.0</td>
<td>1.2</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>1.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>11.6</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>10</td>
<td>2.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>5.0</td>
<td>1.8</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>10</td>
<td>2.5</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>10</td>
<td>3.3</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>16.1</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>3.4</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>50</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>1.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>81.3</td>
<td>10</td>
<td>1.5</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>97%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>103%</td>
<td>79-125%</td>
<td></td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>103%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

Abbreviations:
- **ND** = Not detected
- **MDL** = Method Detection Limit
- **RL** = Reporting Limit
- **B** = Indicates analyte found in associated method blank
- **E** = Indicates value exceeds calibration range
- **N** = Indicates presumptive evidence of a compound
- **J** = Indicates an estimated value
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>101%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

VOA 8260 List

- **ND** = Not detected
- **MDL** = Method Detection Limit
- **J** = Indicates an estimated value
- **RL** = Reporting Limit
- **B** = Indicates analyte found in associated method blank
- **E** = Indicates value exceeds calibration range
- **N** = Indicates presumptive evidence of a compound
Client Sample ID: MW-2R
Lab Sample ID: FA37966-5
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Run #1</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #2</td>
<td>M90806.D</td>
<td>1</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
</tbody>
</table>

Purge Volume
- Run #1: 5.0 ml
- Run #2

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>1.1</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
Q = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Report of Analysis

Client Sample ID: MW-2R
Lab Sample ID: FA37966-5
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>1.3</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>111%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>100%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>93%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>92% J</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

*ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound*
Client Sample ID: MW-2R
Lab Sample ID: FA37966-5
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

Total Metals Analysis

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><10</td>
<td>10</td>
<td>ug/l</td>
<td>1</td>
<td>10/21/16</td>
<td>10/24/16 LM</td>
<td>SW846 6010C</td>
<td>SW846 3010A</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

RL = Reporting Limit
Client Sample ID: MW-15
Lab Sample ID: FA37966-6
Date Sampled: 10/18/16
Date Received: 10/21/16
Matrix: AQ - Ground Water
Method: SW846 8260B
Percent Solids: n/a

Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Run #</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>B117436.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>Run #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purge Volume
Run #1: 5.0 ml
Run #2

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
Report of Analysis

Client Sample ID: MW-15

Lab Sample ID: FA37966-6

Date Sampled: 10/18/16

Matrix: AQ - Ground Water

Date Received: 10/21/16

Method: SW846 8260B

Percent Solids: n/a

Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>100%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>98%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>97%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
Client Sample ID: MW-15
Lab Sample ID: FA37966-6
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>98%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
J = Indicates estimated value
RL = Reporting Limit
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Client Sample ID: MW-15
Lab Sample ID: FA37966-6
Matrix: AQ - Ground Water
Date Sampled: 10/18/16
Date Received: 10/21/16
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

Total Metals Analysis

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><10</td>
<td>10</td>
<td>ug/l</td>
<td>1</td>
<td>10/21/16</td>
<td>10/24/16</td>
<td>SW846 6010C</td>
<td>SW846 3010A</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

RL = Reporting Limit
SGS Accutest

Report of Analysis

Client Sample ID: MW-3
Lab Sample ID: FA37966-7
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>File ID</th>
<th>DF</th>
<th>Analyzed By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>B117437.D</td>
<td>10/24/16 WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>Run #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purge Volume
Run #1 5.0 ml
Run #2

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit
RL = Reporting Limit J = Indicates an estimated value
E = Indicates value exceeds calibration range
B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound
Client Sample ID: MW-3
Lab Sample ID: FA37966-7
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>102%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>98%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAS No.
Surrogate Recoveries
Run# 1
Run# 2
Limits

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>100%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>102%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>98%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
J = Indicates an estimated value
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>100%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><10</td>
<td>10</td>
<td>ug/l</td>
<td>1</td>
<td>10/21/16</td>
<td>10/24/16 LM</td>
<td>SW846 6010C ¹</td>
<td>SW846 3010A ²</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

RL = Reporting Limit
Report of Analysis

Client Sample ID: MW-14
Lab Sample ID: FA37966-8
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

File ID, DF, Analyzed, By, Prep Date, Prep Batch, Analytical Batch

<table>
<thead>
<tr>
<th>Run #</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>B117438.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
</tbody>
</table>

Purge Volume

<table>
<thead>
<tr>
<th>Run #</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>5.0 ml</td>
</tr>
<tr>
<td>Run #2</td>
<td></td>
</tr>
</tbody>
</table>

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
J = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>4-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>102%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>105%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>99%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

Legend:
- **ND** = Not detected
- **MDL** = Method Detection Limit
- **RL** = Reporting Limit
- **J** = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- **E** = Indicates value exceeds calibration range
- **N** = Indicates presumptive evidence of a compound
Client Sample ID: MW-14
Lab Sample ID: FA37966-8
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>98%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
J = Indicates an estimated value
RL = Reporting Limit
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Report of Analysis

Client Sample ID: MW-14
Lab Sample ID: FA37966-8
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>RL</th>
<th>Units</th>
<th>DF</th>
<th>Prep</th>
<th>Analyzed By</th>
<th>Method</th>
<th>Prep Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>< 10</td>
<td>10</td>
<td>ug/l</td>
<td>1</td>
<td>10/21/16</td>
<td>10/24/16 LM</td>
<td>SW846 6010C</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW846 3010A</td>
<td>2</td>
</tr>
</tbody>
</table>

(1) Instrument QC Batch: MA13507
(2) Prep QC Batch: MP31025

RL = Reporting Limit
Report of Analysis

Client Sample ID: MW-16
Lab Sample ID: FA37966-9
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Method: SW846 8260B
Date Received: 10/21/16
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Run #1</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1</td>
<td>B117439.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>Run #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purge Volume

- Run #1: 5.0 ml
- Run #2:

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
Q = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Report of Analysis

Client Sample ID: MW-16
Lab Sample ID: FA37966-9
Matrix: AQ - Ground Water
Method: SW846 8260B

Date Sampled: 10/18/16
Date Received: 10/21/16
Percent Solids: n/a

Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>3.0</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td></td>
<td>ND</td>
<td>2.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>103%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>107%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>98%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
Client Sample ID: MW-16
Lab Sample ID: FA37966-9
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>99%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value
RL = Reporting Limit B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound
SGS Accutest

Report of Analysis

<table>
<thead>
<tr>
<th>Client Sample ID: MW-11</th>
<th>Date Sampled: 10/18/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample ID: FA37966-10</td>
<td>Date Received: 10/21/16</td>
</tr>
<tr>
<td>Matrix: AQ - Ground Water</td>
<td>Method: SW846 8260B</td>
</tr>
<tr>
<td>Percent Solids: n/a</td>
<td>Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA</td>
</tr>
</tbody>
</table>

File ID Analysed By Prep Date Prep Batch Analytical Batch

| Run #1 | B117440.D | 10/24/16 | WV | n/a | VB4728 |
| Run #2 | | | | | |

Run #1

<table>
<thead>
<tr>
<th>Purge Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #1 5.0 ml</td>
</tr>
<tr>
<td>Run #2</td>
</tr>
</tbody>
</table>

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>0.77</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

- **ND** = Not detected
- **MDL** = Method Detection Limit
- **J** = Indicates an estimated value
- **B** = Indicates analyte found in associated method blank
- **RL** = Reporting Limit
- **E** = Indicates value exceeds calibration range
- **N** = Indicates presumptive evidence of a compound
Client Sample ID: MW-11
Lab Sample ID: FA37966-10
Date Sampled: 10/18/16
Matrix: AQ - Ground Water
Date Received: 10/21/16
Method: SW846 8260B
Percent Solids: n/a
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>103%</td>
<td></td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>110%</td>
<td></td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>98%</td>
<td></td>
<td>85-112%</td>
</tr>
</tbody>
</table>

ND = Not detected
MDL = Method Detection Limit
RL = Reporting Limit
J = Indicates an estimated value
B = Indicates analyte found in associated method blank
E = Indicates value exceeds calibration range
N = Indicates presumptive evidence of a compound
Report of Analysis

- **Client Sample ID:** MW-11
- **Lab Sample ID:** FA37966-10
- **Date Sampled:** 10/18/16
- **Matrix:** AQ - Ground Water
- **Date Received:** 10/21/16
- **Method:** SW846 8260B
- **Percent Solids:** n/a
- **Project:** Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

VOA 8260 List

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Run# 1</th>
<th>Run# 2</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>98%</td>
<td></td>
<td>83-118%</td>
</tr>
</tbody>
</table>

Definitions:
- **ND** = Not detected
- **MDL** = Method Detection Limit
- **J** = Indicates an estimated value
- **RL** = Reporting Limit
- **B** = Indicates analyte found in associated method blank
- **E** = Indicates value exceeds calibration range
- **N** = Indicates presumptive evidence of a compound
Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
SGS Accutest Southeast
Chain of Custody

Client / Reporting Information
- **Company Name:** Garnett Fleming
- **Address:** 4149 Corporate Dr. Suite 150
- **City:** Tallahassee
- **Street:** West Seventh Ave
- **Zip:** 32306
- **State:** FL
- **Phone:** 850 832 4366
- **Fax:** 850 832 4366
- **Email:** accutest@garnettfleming.com
- **Project Contact:** Aaron Yetter
- **Project #:** 57524.829
- **Project #:** 57524.829

Sample(s) Taken / Collected
- **Sampler 1:** Dave Denby
- **Sampler 2:** Dave Denby

Matrix Code:
- DW: Drilling Water
- SW: Surface Water
- WW: Waste Water

Analytical Information
- **Sample #:** MW-1R
- **Sample #:** MW-1D
- **Sample #:** MW-1D
- **Sample #:** MW-2R
- **Sample #:** MW-15
- **Sample #:** MW-3
- **Sample #:** MW-11
- **Sample #:** MW-11

Turnaround Time (Business Days)
- **10 Day (Business)**
- **7 Day**
- **5 Day**
- **3 Day Rush**
- **2 Day Rush**
- **1 Day Rush**
- **Other**

Sample Custody:
- Sample must be documented below each time sample change possession, including courier delivery.

Lab Use Only:
- Cooler Temperature (°C) Catches:
- 3.5

FA37966: Chain of Custody

Page 1 of 2
SGS ACCUTEST - ORLANDO SAMPLE RECEIPT CONFIRMATION

SGS ACCUTEST'S JOB NUMBER: FA37966 CLIENT: Coates Fleming PROJECT: STEM Valdosta

DATE/TIME RECEIVED: 10-21-16 8:00 (MM/DD/YY 24:00) NUMBER OF COOLERS RECEIVED: 1

METHOD OF DELIVERY: FEDEX UPS ACCUTEST COURIER DELIVERY OTHER:

AIRBILL NUMBERS:

COOLER INFORMATION

☐ CUSTODY SEAL NOT PRESENT OR NOT INTACT
☐ CHAIN OF CUSTODY NOT RECEIVED (COC)
☐ ANALYSIS REQUESTED IS UNECLAR OR MISSING
☐ SAMPLE DATES OR TIMES UNECLAR OR MISSING
☐ TEMPERATURE CRITERIA NOT MET

TEMPERATURE INFORMATION

☐ THERM ID 1 CORR. FACTOR 0.4
☐ OBSERVED TEMPS: 3.5
☐ CORRECTED TEMPS: 3.5 (USED FOR LIMS)

SAMPLE INFORMATION

☐ INCORRECT NUMBER OF CONTAINERS USED
☐ SAMPLE RECEIVED IMPROPERLY PRESERVED
☐ INSUFFICIENT VOLUME FOR ANALYSIS
☐ DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
☐ IDS ON COC DO NOT MATCH LABEL
☐ VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
☐ BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
☐ NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
☐ UNCLEAR FILTERING OR COMPOSTING INSTRUCTIONS
☐ SAMPLE CONTAINER(S) RECEIVED BROKEN
☐ 5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
☐ BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
☐ % SOLIDS JAR NOT RECEIVED
☐ RESIDUAL CHLORINE PRESENT
☐ LOTW

[APPLICABLE TO EPA 400 SERIES OR NORTH CAROLINA ORGANICS]

MISC INFORMATION

NUMBER OF ENCOES? 25-GRAM 5-GRAM

NUMBER OF 5035 FIELD KITS?

NUMBER OF LAB FILTERED METALS?

TEST STRIP LOT#s PH 6-3 236316

SUMMARY OF COMMENTS: pH 10-12 219813A

OTHER (specify)

TECHNICIAN SIGNATURE/DATE 10-21-16

REVIEWER SIGNATURE/DATE 10-21-16

receipt confirmation 021016.xls

FA37966: Chain of Custody
Page 2 of 2
GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoothane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis,1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans,1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans,1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample File ID</th>
<th>DF</th>
<th>Analyzed By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM3872-MB</td>
<td>M90788.D</td>
<td>1</td>
<td>10/22/16</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:
Method: SW846 8260B

FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>1.4</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>7.0</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>1.5</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td>J</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td></td>
<td>ND</td>
<td>2.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>105% 83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>95% 79-125%</td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM3872-MB</td>
<td>M90788.D</td>
<td>1</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>92% 85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>96% 83-118%</td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM3873-MB</td>
<td>M90817.D</td>
<td>1</td>
<td>10/24/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3873</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-1

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ugl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>106% 83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>95% 79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>90% 85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>92% 83-118%</td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

The QC reported here applies to the following samples:
Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropene</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromopropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB4728-MB</td>
<td>B117420.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:
Method: SW846 8260B

FA37966-6, FA37966-7, FA37966-8, FA37966-9, FA37966-10

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2.0</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5.0</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5.0</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5.0</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2.0</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>ND</td>
<td>2.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>96%</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>96%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>92%</td>
<td>79-125%</td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB4728-MB</td>
<td>B117420.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

FA37966-6, FA37966-7, FA37966-8, FA37966-9, FA37966-10

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>100%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>100%</td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VJ5470-MB</td>
<td>J0980437.D</td>
<td>1</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:
Method: SW846 8260B

FA37966-2, FA37966-4

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>25</td>
<td>10</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.42</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>1.0</td>
<td>0.46</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>2.6</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.43</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.40</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>2.0</td>
<td>0.23</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.63</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>1.0</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>5.0</td>
<td>0.81</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromothene</td>
<td>ND</td>
<td>2.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>2.0</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.39</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>1.0</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.22</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>1.0</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.34</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>1.0</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>1.0</td>
<td>0.25</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>
The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-2, FA37966-4

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Result</th>
<th>RL</th>
<th>MDL</th>
<th>Units</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>2</td>
<td>0.57</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>1</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>ND</td>
<td>1</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>2</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>2</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>2</td>
<td>0.36</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>5</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>ND</td>
<td>5</td>
<td>1.4</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>1</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>5</td>
<td>1.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>1</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>1</td>
<td>0.24</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>0.28</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>1</td>
<td>0.33</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>1</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>1</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>2</td>
<td>0.51</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>2</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>1</td>
<td>0.37</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>ND</td>
<td>1</td>
<td>0.27</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>2</td>
<td>0.50</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>2</td>
<td>0.66</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>1</td>
<td>0.20</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>10</td>
<td>2.0</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>1</td>
<td>0.31</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>m,p-Xylene</td>
<td>ND</td>
<td>2</td>
<td>0.30</td>
<td>ug/l</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>1</td>
<td>0.26</td>
<td>ug/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>98%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>101%</td>
</tr>
</tbody>
</table>

Method Blank Summary
Page 2 of 3
Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VJ5470-MB</td>
<td>J0980437.D</td>
<td>1</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
</tbody>
</table>
Method Blank Summary

Job Number: FA37966
Account: GFLEMFLTGannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VJ5470-MB</td>
<td>J0980437.D</td>
<td>1</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-2, FA37966-4

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>108% 85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>104% 83-118%</td>
</tr>
</tbody>
</table>
The QC reported here applies to the following samples: Method: SW846 8260B

FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike</th>
<th>BSP</th>
<th>BSP (%)</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>125</td>
<td>157</td>
<td>126</td>
<td>50-147</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>25</td>
<td>26.4</td>
<td>106</td>
<td>81-122</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>25</td>
<td>26.0</td>
<td>104</td>
<td>80-121</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>25</td>
<td>28.2</td>
<td>113</td>
<td>76-123</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>25</td>
<td>26.7</td>
<td>107</td>
<td>79-123</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>25</td>
<td>21.8</td>
<td>87</td>
<td>66-123</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>125</td>
<td>117</td>
<td>94</td>
<td>56-143</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>25</td>
<td>25.7</td>
<td>103</td>
<td>79-126</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>25</td>
<td>27.7</td>
<td>111</td>
<td>83-133</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>25</td>
<td>26.0</td>
<td>104</td>
<td>80-133</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>25</td>
<td>27.9</td>
<td>112</td>
<td>66-148</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>25</td>
<td>29.2</td>
<td>117</td>
<td>76-136</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>82-124</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>25</td>
<td>23.7</td>
<td>95</td>
<td>62-144</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>25</td>
<td>24.9</td>
<td>100</td>
<td>80-124</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>25</td>
<td>25.0</td>
<td>100</td>
<td>81-127</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>25</td>
<td>26.9</td>
<td>108</td>
<td>83-130</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>25</td>
<td>24.5</td>
<td>98</td>
<td>78-122</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>25</td>
<td>22.3</td>
<td>89</td>
<td>64-123</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>25</td>
<td>26.3</td>
<td>105</td>
<td>75-120</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>25</td>
<td>37.6</td>
<td>150</td>
<td>42-167</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>25</td>
<td>28.2</td>
<td>113</td>
<td>82-124</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>25</td>
<td>26.8</td>
<td>107</td>
<td>84-125</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>25</td>
<td>24.7</td>
<td>99</td>
<td>78-120</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>25</td>
<td>25.5</td>
<td>102</td>
<td>81-122</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>25</td>
<td>25.0</td>
<td>100</td>
<td>75-125</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>25</td>
<td>27.4</td>
<td>110</td>
<td>78-137</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>25</td>
<td>24.5</td>
<td>98</td>
<td>78-120</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>25</td>
<td>29.1</td>
<td>116</td>
<td>76-127</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>25</td>
<td>23.3</td>
<td>93</td>
<td>76-124</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>25</td>
<td>23.4</td>
<td>94</td>
<td>80-118</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>25</td>
<td>26.7</td>
<td>107</td>
<td>74-139</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>25</td>
<td>24.3</td>
<td>97</td>
<td>79-131</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>25</td>
<td>25.7</td>
<td>103</td>
<td>75-118</td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>25</td>
<td>24.6</td>
<td>98</td>
<td>80-120</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>25</td>
<td>25.2</td>
<td>101</td>
<td>81-121</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
The QC reported here applies to the following samples: FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike ug/l</th>
<th>BSP ug/l</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>25</td>
<td>31.9</td>
<td>128</td>
<td>75-142</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>125</td>
<td>107</td>
<td>86</td>
<td>61-129</td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>83-132</td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>25</td>
<td>26.6</td>
<td>106</td>
<td>79-130</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>25</td>
<td>22.4</td>
<td>90</td>
<td>59-143</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>25</td>
<td>32.5</td>
<td>130</td>
<td>50-159</td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>25</td>
<td>26.3</td>
<td>105</td>
<td>78-119</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>69-135</td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>125</td>
<td>104</td>
<td>83</td>
<td>66-122</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>25</td>
<td>25.8</td>
<td>103</td>
<td>72-117</td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>25</td>
<td>29.2</td>
<td>117</td>
<td>63-132</td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>25</td>
<td>25.8</td>
<td>103</td>
<td>82-133</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>25</td>
<td>26.8</td>
<td>107</td>
<td>78-119</td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>25</td>
<td>28.2</td>
<td>113</td>
<td>77-122</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>25</td>
<td>23.4</td>
<td>94</td>
<td>72-120</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>25</td>
<td>30.1</td>
<td>120</td>
<td>76-135</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>25</td>
<td>25.3</td>
<td>101</td>
<td>80-120</td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>25</td>
<td>30.8</td>
<td>123</td>
<td>68-131</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>25</td>
<td>31.5</td>
<td>126</td>
<td>73-129</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>25</td>
<td>27.6</td>
<td>110</td>
<td>75-130</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>25</td>
<td>25.4</td>
<td>102</td>
<td>76-119</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>25</td>
<td>27.7</td>
<td>111</td>
<td>81-126</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>25</td>
<td>29.0</td>
<td>116</td>
<td>71-156</td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>25</td>
<td>24.2</td>
<td>97</td>
<td>77-120</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trichlorobenzene</td>
<td>25</td>
<td>25.3</td>
<td>101</td>
<td>79-120</td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>25</td>
<td>24.5</td>
<td>98</td>
<td>79-120</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>125</td>
<td>118</td>
<td>94</td>
<td>43-154</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>25</td>
<td>30.5</td>
<td>122</td>
<td>69-159</td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>80-127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>101%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>95%</td>
<td>79-125%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Blank Spike Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM3872-BS</td>
<td>M90787.D</td>
<td>1</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:
FA37966-1, FA37966-3, FA37966-5

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>97%</td>
<td>85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>92%</td>
<td>83-118%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Blank Spike Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM3873-BS</td>
<td>M90816.D</td>
<td>1</td>
<td>10/24/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3873</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-1

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike ug/l</th>
<th>BSP ug/l</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>25</td>
<td>26.0</td>
<td>104</td>
<td>81-126</td>
</tr>
</tbody>
</table>

Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>98%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>97%</td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>99%</td>
<td>85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>99%</td>
<td>83-118%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike ug/l</th>
<th>BSP ug/l</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>125</td>
<td>97.3</td>
<td>78</td>
<td>50-147</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>81-122</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>25</td>
<td>22.7</td>
<td>91</td>
<td>80-121</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>25</td>
<td>21.9</td>
<td>88</td>
<td>76-123</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>25</td>
<td>22.8</td>
<td>91</td>
<td>79-123</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>25</td>
<td>22.6</td>
<td>90</td>
<td>66-123</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>125</td>
<td>106</td>
<td>85</td>
<td>56-143</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>25</td>
<td>24.5</td>
<td>98</td>
<td>79-126</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>25</td>
<td>25.4</td>
<td>102</td>
<td>83-133</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>80-133</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>25</td>
<td>22.9</td>
<td>92</td>
<td>66-148</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>25</td>
<td>22.6</td>
<td>90</td>
<td>76-136</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>25</td>
<td>23.6</td>
<td>94</td>
<td>82-124</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>25</td>
<td>28.7</td>
<td>115</td>
<td>62-144</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>25</td>
<td>22.5</td>
<td>90</td>
<td>80-124</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>25</td>
<td>24.3</td>
<td>97</td>
<td>81-127</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>25</td>
<td>24.0</td>
<td>96</td>
<td>83-130</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>25</td>
<td>23.0</td>
<td>92</td>
<td>78-122</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>25</td>
<td>21.5</td>
<td>86</td>
<td>64-123</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>25</td>
<td>23.3</td>
<td>93</td>
<td>75-120</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>25</td>
<td>26.9</td>
<td>108</td>
<td>42-167</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>25</td>
<td>23.2</td>
<td>93</td>
<td>82-124</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>84-125</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>25</td>
<td>23.6</td>
<td>94</td>
<td>78-120</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>25</td>
<td>24.6</td>
<td>98</td>
<td>81-122</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>25</td>
<td>22.5</td>
<td>90</td>
<td>75-125</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>25</td>
<td>21.7</td>
<td>87</td>
<td>78-137</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>25</td>
<td>23.0</td>
<td>92</td>
<td>78-120</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>25</td>
<td>26.4</td>
<td>106</td>
<td>76-127</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>25</td>
<td>23.0</td>
<td>92</td>
<td>76-124</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>25</td>
<td>22.6</td>
<td>90</td>
<td>80-118</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>25</td>
<td>23.7</td>
<td>95</td>
<td>74-139</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>25</td>
<td>22.7</td>
<td>91</td>
<td>79-131</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>75-118</td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>25</td>
<td>24.6</td>
<td>98</td>
<td>80-120</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>25</td>
<td>24.1</td>
<td>96</td>
<td>81-121</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

The QC reported here applies to the following samples:
Method: SW846 8260B
FA37966-6, FA37966-7, FA37966-8, FA37966-9, FA37966-10

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike ug/l</th>
<th>BSP ug/l</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>25</td>
<td>24.4</td>
<td>98</td>
<td>75-142</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>125</td>
<td>111</td>
<td>89</td>
<td>61-129</td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>25</td>
<td>24.9</td>
<td>100</td>
<td>83-132</td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>25</td>
<td>25.0</td>
<td>100</td>
<td>79-130</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>25</td>
<td>27.1</td>
<td>108</td>
<td>59-143</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>25</td>
<td>25.4</td>
<td>102</td>
<td>50-159</td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>25</td>
<td>22.1</td>
<td>88</td>
<td>78-119</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>25</td>
<td>24.2</td>
<td>97</td>
<td>69-135</td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>125</td>
<td>110</td>
<td>88</td>
<td>66-122</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>25</td>
<td>20.5</td>
<td>82</td>
<td>72-117</td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>25</td>
<td>25.0</td>
<td>100</td>
<td>63-132</td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>25</td>
<td>25.2</td>
<td>101</td>
<td>82-133</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>25</td>
<td>26.0</td>
<td>104</td>
<td>78-119</td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>25</td>
<td>24.8</td>
<td>99</td>
<td>77-122</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>25</td>
<td>22.4</td>
<td>90</td>
<td>72-120</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>25</td>
<td>22.3</td>
<td>89</td>
<td>76-135</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>25</td>
<td>24.3</td>
<td>97</td>
<td>80-120</td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>25</td>
<td>23.8</td>
<td>95</td>
<td>68-131</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>73-129</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>25</td>
<td>21.3</td>
<td>85</td>
<td>75-130</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>25</td>
<td>23.4</td>
<td>94</td>
<td>76-119</td>
</tr>
<tr>
<td>79-01-5</td>
<td>Trichloroethylene</td>
<td>25</td>
<td>23.7</td>
<td>95</td>
<td>81-126</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>25</td>
<td>24.6</td>
<td>98</td>
<td>71-156</td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropene</td>
<td>25</td>
<td>22.0</td>
<td>88</td>
<td>77-120</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>79-120</td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>25</td>
<td>24.2</td>
<td>97</td>
<td>79-120</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>125</td>
<td>116</td>
<td>93</td>
<td>43-154</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>25</td>
<td>27.7</td>
<td>111</td>
<td>69-159</td>
</tr>
<tr>
<td>95-47-6</td>
<td>m,p-Xylene</td>
<td>50</td>
<td>48.9</td>
<td>98</td>
<td>79-126</td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>25</td>
<td>24.2</td>
<td>97</td>
<td>80-127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>95%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>92%</td>
<td>79-125%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
The QC reported here applies to the following samples:

FA37966-6, FA37966-7, FA37966-8, FA37966-9, FA37966-10

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>102%</td>
<td>85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>101%</td>
<td>83-118%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Blank Spike Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>VJ5470-BS</td>
<td>J0980438.D</td>
<td>1</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-2, FA37966-4

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike ug/l</th>
<th>BSP ug/l</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>125</td>
<td>110</td>
<td>88</td>
<td>50-147</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>25</td>
<td>26.8</td>
<td>107</td>
<td>81-122</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>25</td>
<td>24.8</td>
<td>99</td>
<td>80-121</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>25</td>
<td>21.3</td>
<td>85</td>
<td>76-123</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>25</td>
<td>22.8</td>
<td>91</td>
<td>79-123</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>25</td>
<td>23.6</td>
<td>94</td>
<td>66-123</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>125</td>
<td>118</td>
<td>94</td>
<td>56-143</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>25</td>
<td>27.9</td>
<td>112</td>
<td>79-126</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>25</td>
<td>29.1</td>
<td>116</td>
<td>83-133</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>80-133</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>25</td>
<td>25.4</td>
<td>102</td>
<td>66-148</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>25</td>
<td>25.5</td>
<td>102</td>
<td>76-136</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>25</td>
<td>25.7</td>
<td>103</td>
<td>82-124</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>25</td>
<td>25.5</td>
<td>102</td>
<td>62-144</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>25</td>
<td>23.3</td>
<td>93</td>
<td>80-124</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>25</td>
<td>27.1</td>
<td>108</td>
<td>81-127</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>25</td>
<td>26.0</td>
<td>104</td>
<td>83-130</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>25</td>
<td>21.7</td>
<td>87</td>
<td>78-122</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>25</td>
<td>23.7</td>
<td>95</td>
<td>64-123</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>25</td>
<td>23.2</td>
<td>93</td>
<td>75-120</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>25</td>
<td>39.7</td>
<td>159</td>
<td>42-167</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>25</td>
<td>25.0</td>
<td>100</td>
<td>82-124</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>25</td>
<td>26.1</td>
<td>104</td>
<td>84-125</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>25</td>
<td>25.1</td>
<td>100</td>
<td>78-120</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>25</td>
<td>27.1</td>
<td>108</td>
<td>81-122</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>25</td>
<td>24.3</td>
<td>97</td>
<td>75-125</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>25</td>
<td>28.3</td>
<td>113</td>
<td>78-137</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>25</td>
<td>23.1</td>
<td>92</td>
<td>78-120</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>25</td>
<td>29.2</td>
<td>117</td>
<td>76-127</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>76-124</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>25</td>
<td>22.3</td>
<td>89</td>
<td>80-118</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>25</td>
<td>25.8</td>
<td>103</td>
<td>74-139</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>25</td>
<td>25.7</td>
<td>103</td>
<td>79-131</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>75-118</td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>25</td>
<td>25.0</td>
<td>100</td>
<td>80-120</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>25</td>
<td>26.2</td>
<td>105</td>
<td>81-121</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-2, FA37966-4

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Spike ug/l</th>
<th>BSP ug/l</th>
<th>BSP %</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>25</td>
<td>27.2</td>
<td>109</td>
<td>75-142</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>125</td>
<td>111</td>
<td>89</td>
<td>61-129</td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>25</td>
<td>25.5</td>
<td>102</td>
<td>83-132</td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>25</td>
<td>27.7</td>
<td>111</td>
<td>79-130</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>25</td>
<td>27.1</td>
<td>108</td>
<td>59-143</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>25</td>
<td>30.2</td>
<td>121</td>
<td>50-159</td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>78-119</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>25</td>
<td>29.5</td>
<td>118</td>
<td>69-135</td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>125</td>
<td>114</td>
<td>91</td>
<td>66-122</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>25</td>
<td>20.6</td>
<td>82</td>
<td>72-117</td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>25</td>
<td>26.8</td>
<td>107</td>
<td>63-132</td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>25</td>
<td>28.6</td>
<td>114</td>
<td>82-133</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>78-119</td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>25</td>
<td>22.7</td>
<td>91</td>
<td>77-122</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>25</td>
<td>25.8</td>
<td>103</td>
<td>72-120</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>25</td>
<td>26.9</td>
<td>108</td>
<td>76-135</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>25</td>
<td>26.7</td>
<td>107</td>
<td>80-120</td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>25</td>
<td>24.7</td>
<td>99</td>
<td>68-131</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>25</td>
<td>23.6</td>
<td>94</td>
<td>73-129</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>25</td>
<td>24.4</td>
<td>98</td>
<td>75-130</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>25</td>
<td>24.2</td>
<td>97</td>
<td>76-119</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>25</td>
<td>25.1</td>
<td>100</td>
<td>81-126</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>25</td>
<td>27.8</td>
<td>111</td>
<td>71-156</td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>25</td>
<td>22.7</td>
<td>91</td>
<td>77-120</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>25</td>
<td>26.4</td>
<td>106</td>
<td>79-120</td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>25</td>
<td>25.9</td>
<td>104</td>
<td>79-120</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>125</td>
<td>114</td>
<td>91</td>
<td>43-154</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>25</td>
<td>30.6</td>
<td>122</td>
<td>69-159</td>
</tr>
<tr>
<td>108-67-8</td>
<td>m,p-Xylene</td>
<td>50</td>
<td>54.3</td>
<td>109</td>
<td>79-126</td>
</tr>
<tr>
<td>79-47-6</td>
<td>o-Xylene</td>
<td>25</td>
<td>25.5</td>
<td>102</td>
<td>80-127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>97%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>97%</td>
<td>79-125%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
The QC reported here applies to the following samples:

FA37966-2, FA37966-4

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>BSP</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>98%</td>
<td>85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>100%</td>
<td>83-118%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37966-1MS</td>
<td>M90809.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>FA37966-1MSD</td>
<td>M90810.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>FA37966-1</td>
<td>M90802.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>FA37966-1</th>
<th>Spike</th>
<th>MS</th>
<th>Spike</th>
<th>MSD</th>
<th>MSP</th>
<th>RPD</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>2500</td>
<td>2120</td>
<td>85</td>
<td>2500</td>
<td>2100</td>
<td>84</td>
<td>1 50-147/21</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>500</td>
<td>498</td>
<td>100</td>
<td>500</td>
<td>485</td>
<td>97</td>
<td>3 81-122/14</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>500</td>
<td>511</td>
<td>102</td>
<td>500</td>
<td>506</td>
<td>101</td>
<td>1 80-121/14</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>500</td>
<td>564</td>
<td>113</td>
<td>500</td>
<td>535</td>
<td>107</td>
<td>5 76-123/14</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>500</td>
<td>545</td>
<td>109</td>
<td>500</td>
<td>500</td>
<td>100</td>
<td>9 79-123/19</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>500</td>
<td>420</td>
<td>84</td>
<td>500</td>
<td>419</td>
<td>84</td>
<td>0 66-123/21</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>2500</td>
<td>2040</td>
<td>82</td>
<td>2500</td>
<td>2100</td>
<td>84</td>
<td>3 56-143/18</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>500</td>
<td>446</td>
<td>89</td>
<td>500</td>
<td>446</td>
<td>89</td>
<td>0 79-126/16</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>500</td>
<td>500</td>
<td>100</td>
<td>500</td>
<td>479</td>
<td>96</td>
<td>4 83-133/16</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>500</td>
<td>507</td>
<td>101</td>
<td>500</td>
<td>501</td>
<td>100</td>
<td>1 80-133/16</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>500</td>
<td>487</td>
<td>97</td>
<td>500</td>
<td>486</td>
<td>97</td>
<td>0 66-148/23</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>500</td>
<td>523</td>
<td>105</td>
<td>500</td>
<td>539</td>
<td>108</td>
<td>3 76-136/23</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>500</td>
<td>531</td>
<td>106</td>
<td>500</td>
<td>550</td>
<td>110</td>
<td>4 82-124/14</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>500</td>
<td>480</td>
<td>96</td>
<td>500</td>
<td>373</td>
<td>75</td>
<td>25* 62-144/20</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>500</td>
<td>522</td>
<td>104</td>
<td>500</td>
<td>477</td>
<td>95</td>
<td>9 80-124/15</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chloroform</td>
<td>ND</td>
<td>500</td>
<td>456</td>
<td>91</td>
<td>500</td>
<td>487</td>
<td>97</td>
<td>7 81-127/15</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chloroform</td>
<td>ND</td>
<td>500</td>
<td>514</td>
<td>103</td>
<td>500</td>
<td>513</td>
<td>103</td>
<td>0 83-130/15</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>500</td>
<td>462</td>
<td>92</td>
<td>500</td>
<td>461</td>
<td>92</td>
<td>0 78-122/19</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>500</td>
<td>385</td>
<td>77</td>
<td>500</td>
<td>481</td>
<td>96</td>
<td>22* 64-123/18</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>500</td>
<td>536</td>
<td>107</td>
<td>500</td>
<td>561</td>
<td>112</td>
<td>5 75-120/13</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>500</td>
<td>746</td>
<td>149</td>
<td>500</td>
<td>627</td>
<td>125</td>
<td>17 42-167/19</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>500</td>
<td>554</td>
<td>111</td>
<td>500</td>
<td>592</td>
<td>118</td>
<td>7 82-124/14</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>500</td>
<td>558</td>
<td>112</td>
<td>500</td>
<td>513</td>
<td>103</td>
<td>8 84-125/14</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>500</td>
<td>479</td>
<td>96</td>
<td>500</td>
<td>517</td>
<td>103</td>
<td>8 78-120/15</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>500</td>
<td>547</td>
<td>109</td>
<td>500</td>
<td>494</td>
<td>99</td>
<td>10 81-122/15</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>500</td>
<td>524</td>
<td>105</td>
<td>500</td>
<td>462</td>
<td>92</td>
<td>13 75-125/14</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>500</td>
<td>511</td>
<td>102</td>
<td>500</td>
<td>505</td>
<td>101</td>
<td>1 78-137/18</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>544</td>
<td>500</td>
<td>1040</td>
<td>99</td>
<td>500</td>
<td>979</td>
<td>87</td>
<td>6 78-120/15</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>500</td>
<td>590</td>
<td>118</td>
<td>500</td>
<td>517</td>
<td>103</td>
<td>13 76-127/17</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>500</td>
<td>525</td>
<td>105</td>
<td>500</td>
<td>470</td>
<td>94</td>
<td>11 76-124/14</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>500</td>
<td>424</td>
<td>85</td>
<td>500</td>
<td>472</td>
<td>94</td>
<td>11 80-118/13</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>500</td>
<td>443</td>
<td>89</td>
<td>500</td>
<td>429</td>
<td>86</td>
<td>3 74-139/17</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>500</td>
<td>513</td>
<td>103</td>
<td>500</td>
<td>503</td>
<td>101</td>
<td>2 79-131/16</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>500</td>
<td>525</td>
<td>105</td>
<td>500</td>
<td>497</td>
<td>99</td>
<td>5 75-118/23</td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>500</td>
<td>445</td>
<td>89</td>
<td>500</td>
<td>451</td>
<td>90</td>
<td>1 80-120/22</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>6.8</td>
<td>J</td>
<td>500</td>
<td>465</td>
<td>92</td>
<td>500</td>
<td>513</td>
<td>101</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37966-1MS</td>
<td>M90809.D</td>
<td>20</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>FA37966-1MSD</td>
<td>M90810.D</td>
<td>20</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>FA37966-1</td>
<td>M90802.D</td>
<td>20</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

FA37966-1, FA37966-3, FA37966-5

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>FA37966-1 Spike ug/l</th>
<th>Q</th>
<th>MS ug/l</th>
<th>%</th>
<th>FA37966-1 Spike ug/l</th>
<th>MS ug/l</th>
<th>%</th>
<th>FA37966-1 Spike ug/l</th>
<th>MS ug/l</th>
<th>%</th>
<th>Limits</th>
<th>RPD</th>
<th>Rec/RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>500</td>
<td>513</td>
<td>103</td>
<td>500</td>
<td>542</td>
<td>108</td>
<td>5</td>
<td>75-142/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>2500</td>
<td>1770</td>
<td>71</td>
<td>2500</td>
<td>1980</td>
<td>79</td>
<td>11</td>
<td>61-129/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>ND</td>
<td>500</td>
<td>523</td>
<td>105</td>
<td>500</td>
<td>532</td>
<td>106</td>
<td>2</td>
<td>83-132/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropytoluene</td>
<td>ND</td>
<td>500</td>
<td>507</td>
<td>101</td>
<td>500</td>
<td>489</td>
<td>98</td>
<td>4</td>
<td>79-130/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>ND</td>
<td>500</td>
<td>441</td>
<td>88</td>
<td>500</td>
<td>391</td>
<td>78</td>
<td>12</td>
<td>59-143/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>ND</td>
<td>500</td>
<td>617</td>
<td>123</td>
<td>500</td>
<td>528</td>
<td>106</td>
<td>16</td>
<td>50-159/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>ND</td>
<td>500</td>
<td>565</td>
<td>113</td>
<td>500</td>
<td>528</td>
<td>106</td>
<td>7</td>
<td>78-119/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>500</td>
<td>508</td>
<td>102</td>
<td>500</td>
<td>447</td>
<td>89</td>
<td>13</td>
<td>69-135/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MBK)</td>
<td>ND</td>
<td>2500</td>
<td>2060</td>
<td>82</td>
<td>2500</td>
<td>2100</td>
<td>84</td>
<td>2</td>
<td>66-122/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>ND</td>
<td>500</td>
<td>497</td>
<td>99</td>
<td>500</td>
<td>473</td>
<td>95</td>
<td>5</td>
<td>72-117/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>500</td>
<td>541</td>
<td>108</td>
<td>500</td>
<td>530</td>
<td>106</td>
<td>2</td>
<td>63-132/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>ND</td>
<td>500</td>
<td>537</td>
<td>107</td>
<td>500</td>
<td>541</td>
<td>108</td>
<td>1</td>
<td>82-133/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>500</td>
<td>445</td>
<td>89</td>
<td>500</td>
<td>528</td>
<td>106</td>
<td>17</td>
<td>78-119/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>ND</td>
<td>500</td>
<td>554</td>
<td>111</td>
<td>500</td>
<td>559</td>
<td>112</td>
<td>1</td>
<td>77-122/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>500</td>
<td>421</td>
<td>84</td>
<td>500</td>
<td>463</td>
<td>93</td>
<td>10</td>
<td>72-120/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>428</td>
<td>500</td>
<td>1010</td>
<td>116</td>
<td>500</td>
<td>929</td>
<td>100</td>
<td>8</td>
<td>76-135/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>500</td>
<td>505</td>
<td>101</td>
<td>500</td>
<td>528</td>
<td>106</td>
<td>4</td>
<td>80-120/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>ND</td>
<td>500</td>
<td>535</td>
<td>107</td>
<td>500</td>
<td>547</td>
<td>109</td>
<td>2</td>
<td>68-131/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>500</td>
<td>597</td>
<td>119</td>
<td>500</td>
<td>552</td>
<td>110</td>
<td>8</td>
<td>73-129/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>500</td>
<td>565</td>
<td>113</td>
<td>500</td>
<td>495</td>
<td>99</td>
<td>13</td>
<td>75-130/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>500</td>
<td>528</td>
<td>106</td>
<td>500</td>
<td>482</td>
<td>96</td>
<td>9</td>
<td>76-119/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>2050</td>
<td>E</td>
<td>500</td>
<td>2480</td>
<td>86</td>
<td>500</td>
<td>2250</td>
<td>40* a</td>
<td>81-126/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>ND</td>
<td>500</td>
<td>569</td>
<td>114</td>
<td>500</td>
<td>483</td>
<td>97</td>
<td>16</td>
<td>71-156/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td>ND</td>
<td>500</td>
<td>475</td>
<td>95</td>
<td>500</td>
<td>512</td>
<td>102</td>
<td>7</td>
<td>77-120/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>500</td>
<td>487</td>
<td>97</td>
<td>500</td>
<td>490</td>
<td>98</td>
<td>1</td>
<td>79-120/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>500</td>
<td>481</td>
<td>96</td>
<td>500</td>
<td>478</td>
<td>96</td>
<td>1</td>
<td>79-120/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>2500</td>
<td>2590</td>
<td>104</td>
<td>2500</td>
<td>2450</td>
<td>98</td>
<td>6</td>
<td>43-154/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>500</td>
<td>558</td>
<td>112</td>
<td>500</td>
<td>509</td>
<td>102</td>
<td>9</td>
<td>69-159/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td></td>
<td>6.3</td>
<td>J</td>
<td>1000</td>
<td>1040</td>
<td>103</td>
<td>1000</td>
<td>1030</td>
<td>102</td>
<td>79-126/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>8.7</td>
<td>J</td>
<td>500</td>
<td>517</td>
<td>102</td>
<td>500</td>
<td>545</td>
<td>107</td>
<td>80-127/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>MS</th>
<th>MSD</th>
<th>FA37966-1 Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>107%</td>
<td>98%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>103%</td>
<td>92%</td>
<td>79-125%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37966-1MS</td>
<td>M90809.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>FA37966-1MSD</td>
<td>M90810.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
<tr>
<td>FA37966-1</td>
<td>M90802.D</td>
<td>20</td>
<td>10/22/16</td>
<td>KM</td>
<td>n/a</td>
<td>n/a</td>
<td>VM3872</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples: FA37966-1, FA37966-3, FA37966-5

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>MS</th>
<th>MSD</th>
<th>FA37966-1 Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>94%</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>78%* b</td>
<td>93%</td>
<td>87%</td>
</tr>
</tbody>
</table>

(a) Outside control limits due to high level in sample relative to spike amount.
(b) Outside control limits.

* = Outside of Control Limits.
The QC reported here applies to the following samples:

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>FA38015-4</th>
<th>Spike</th>
<th>MS</th>
<th>Spike</th>
<th>MSD</th>
<th>MSD</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>0.74</td>
<td>J</td>
<td>25</td>
<td>26.8</td>
<td>104</td>
<td>25</td>
<td>27.5 107 3 81-126/15</td>
</tr>
</tbody>
</table>

Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>MS</th>
<th>MSD</th>
<th>FA38015-4</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>103%</td>
<td>103%</td>
<td>96%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>96%</td>
<td>90%</td>
<td>85%</td>
<td>79-125%</td>
</tr>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>96%</td>
<td>100%</td>
<td>97%</td>
<td>85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>93%</td>
<td>94%</td>
<td>95%</td>
<td>83-118%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37790-14MS</td>
<td>B117432.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>FA37790-14MSD</td>
<td>B117433.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>FA37790-14</td>
<td>B117425.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:
Method: SW846 8260B

FA37966-6, FA37966-7, FA37966-8, FA37966-9, FA37966-10

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>FA37790-14</th>
<th>Spike</th>
<th>MS</th>
<th>Spike</th>
<th>MS</th>
<th>Spike</th>
<th>RPD</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>25 U</td>
<td>125</td>
<td>103</td>
<td>82</td>
<td>125</td>
<td>100</td>
<td>19</td>
<td>50-147/21</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.2</td>
<td>97</td>
<td>25</td>
<td>28.8</td>
<td>115</td>
<td>17*</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>22.8</td>
<td>91</td>
<td>25</td>
<td>28.9</td>
<td>116</td>
<td>24*</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>1.0 U</td>
<td>25</td>
<td>23.4</td>
<td>94</td>
<td>25</td>
<td>29.7</td>
<td>119</td>
<td>24*</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>1.0 U</td>
<td>25</td>
<td>25.4</td>
<td>102</td>
<td>25</td>
<td>27.7</td>
<td>111</td>
<td>9</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>1.0 U</td>
<td>25</td>
<td>20.9</td>
<td>84</td>
<td>25</td>
<td>24.9</td>
<td>100</td>
<td>17</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>5.0 U</td>
<td>125</td>
<td>104</td>
<td>83</td>
<td>125</td>
<td>131</td>
<td>105</td>
<td>23*</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.0</td>
<td>96</td>
<td>25</td>
<td>29.9</td>
<td>120</td>
<td>22*</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.7</td>
<td>99</td>
<td>25</td>
<td>31.3</td>
<td>125</td>
<td>24*</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>25</td>
<td>30.1</td>
<td>120</td>
<td>23*</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>2.0 U</td>
<td>25</td>
<td>18.4</td>
<td>74</td>
<td>25</td>
<td>20.3</td>
<td>81</td>
<td>10</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>1.0 U</td>
<td>25</td>
<td>26.0</td>
<td>104</td>
<td>25</td>
<td>29.7</td>
<td>119</td>
<td>13</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chloroform</td>
<td>1.0 U</td>
<td>25</td>
<td>23.3</td>
<td>93</td>
<td>25</td>
<td>29.7</td>
<td>119</td>
<td>24*</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>2.0 U</td>
<td>25</td>
<td>29.7</td>
<td>119</td>
<td>25</td>
<td>34.5</td>
<td>138</td>
<td>15</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>1.0 U</td>
<td>25</td>
<td>25.6</td>
<td>102</td>
<td>25</td>
<td>30.8</td>
<td>123</td>
<td>18*</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>25</td>
<td>30.1</td>
<td>120</td>
<td>25*</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.1</td>
<td>92</td>
<td>25</td>
<td>29.3</td>
<td>117</td>
<td>24*</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>1.0 U</td>
<td>25</td>
<td>23.6</td>
<td>94</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>15</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>5.0 U</td>
<td>25</td>
<td>22.0</td>
<td>88</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>22*</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>2.0 U</td>
<td>25</td>
<td>23.8</td>
<td>95</td>
<td>25</td>
<td>30.1</td>
<td>120</td>
<td>23*</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>2.0 U</td>
<td>25</td>
<td>31.3</td>
<td>125</td>
<td>25</td>
<td>37.2</td>
<td>149</td>
<td>17</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.1</td>
<td>92</td>
<td>25</td>
<td>29.6</td>
<td>118</td>
<td>25*</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.5</td>
<td>94</td>
<td>25</td>
<td>29.6</td>
<td>118</td>
<td>23*</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>22.8</td>
<td>91</td>
<td>25</td>
<td>29.1</td>
<td>116</td>
<td>24*</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>1.0 U</td>
<td>25</td>
<td>25.5</td>
<td>102</td>
<td>25</td>
<td>31.2</td>
<td>125*</td>
<td>20*</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>1.0 U</td>
<td>25</td>
<td>27.3</td>
<td>109</td>
<td>25</td>
<td>32.7</td>
<td>131</td>
<td>18*</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>1.0 U</td>
<td>25</td>
<td>26.4</td>
<td>106</td>
<td>25</td>
<td>31.4</td>
<td>126</td>
<td>17</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.0</td>
<td>92</td>
<td>25</td>
<td>28.7</td>
<td>115</td>
<td>22*</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>1.0 U</td>
<td>25</td>
<td>27.6</td>
<td>110</td>
<td>25</td>
<td>33.8</td>
<td>135</td>
<td>20*</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>1.0 U</td>
<td>25</td>
<td>23.0</td>
<td>92</td>
<td>25</td>
<td>28.3</td>
<td>113</td>
<td>21*</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>1.0 U</td>
<td>25</td>
<td>21.9</td>
<td>88</td>
<td>25</td>
<td>28.3</td>
<td>113</td>
<td>25*</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>1.0 U</td>
<td>25</td>
<td>26.9</td>
<td>108</td>
<td>25</td>
<td>32.2</td>
<td>129</td>
<td>18*</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.6</td>
<td>98</td>
<td>25</td>
<td>30.1</td>
<td>120</td>
<td>20*</td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.9</td>
<td>96</td>
<td>25</td>
<td>26.6</td>
<td>106</td>
<td>11</td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>1.0 U</td>
<td>25</td>
<td>25.3</td>
<td>101</td>
<td>25</td>
<td>28.5</td>
<td>114</td>
<td>12</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.3</td>
<td>97</td>
<td>25</td>
<td>31.9</td>
<td>128</td>
<td>27*</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37790-14MS</td>
<td>B117432.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>FA37790-14MSD</td>
<td>B117433.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>FA37790-14</td>
<td>B117425.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>FA37790-14</th>
<th>Spike MS</th>
<th>Surrogate Recoveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>2.0 U</td>
<td>25</td>
<td>23.8</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>10 U</td>
<td>125</td>
<td>102</td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.8</td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.3</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td>2.0 U</td>
<td>25</td>
<td>30.6</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td>2.0 U</td>
<td>25</td>
<td>25.1</td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td>2.0 U</td>
<td>25</td>
<td>24.1</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>5.0 U</td>
<td>25</td>
<td>24.9</td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>5.0 U</td>
<td>125</td>
<td>110</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td>1.0 U</td>
<td>25</td>
<td>21.7</td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>5.0 U</td>
<td>25</td>
<td>24.1</td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.5</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.2</td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>1.0 U</td>
<td>25</td>
<td>25.8</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>1.0 U</td>
<td>25</td>
<td>21.4</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>1.0 U</td>
<td>25</td>
<td>21.8</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.8</td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td>2.0 U</td>
<td>25</td>
<td>22.6</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>2.0 U</td>
<td>25</td>
<td>23.0</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>1.0 U</td>
<td>25</td>
<td>25.1</td>
</tr>
<tr>
<td>79-09-5</td>
<td>1,1,2-Trichloroethane</td>
<td>1.0 U</td>
<td>25</td>
<td>22.9</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
<td>1.0 U</td>
<td>25</td>
<td>25.8</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td>2.0 U</td>
<td>25</td>
<td>31.3</td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropene</td>
<td>2.0 U</td>
<td>25</td>
<td>22.2</td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.9</td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>1.0 U</td>
<td>25</td>
<td>23.4</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>10 U</td>
<td>125</td>
<td>112</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>1.0 U</td>
<td>25</td>
<td>28.3</td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>1.0 U</td>
<td>25</td>
<td>24.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethene-D4</td>
<td>79-125%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GFLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37790-14MS</td>
<td>B117432.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>FA37790-14MSD</td>
<td>B117433.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
<tr>
<td>FA37790-14</td>
<td>B117425.D</td>
<td>1</td>
<td>10/24/16</td>
<td>WV</td>
<td>n/a</td>
<td>n/a</td>
<td>VB4728</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

FA37966-6, FA37966-7, FA37966-8, FA37966-9, FA37966-10

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>MS</th>
<th>MSD</th>
<th>FA37790-14 Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>100%</td>
<td>101%</td>
<td>99%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>98%</td>
<td>98%</td>
<td>99%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA37966
Account: GLEMFLT Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37995-1MS</td>
<td>J0980459.D</td>
<td>250</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJS470</td>
</tr>
<tr>
<td>FA37995-1MSD</td>
<td>J0980460.D</td>
<td>250</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJS470</td>
</tr>
<tr>
<td>FA37995-1</td>
<td>J0980447.D</td>
<td>250</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJS470</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples:

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>FA37995-1</th>
<th>Spike</th>
<th>MS</th>
<th>Spike</th>
<th>MSD</th>
<th>MSD</th>
<th>RPD</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>31300</td>
<td>88</td>
<td>31300</td>
<td>92</td>
<td>5</td>
<td>50</td>
<td>1-174/21</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>6250</td>
<td>109</td>
<td>6250</td>
<td>107</td>
<td>2</td>
<td>81</td>
<td>1-122/14</td>
</tr>
<tr>
<td>108-86-1</td>
<td>Bromobenzene</td>
<td>ND</td>
<td>6250</td>
<td>102</td>
<td>6250</td>
<td>101</td>
<td>1</td>
<td>80</td>
<td>1-121/14</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
<td>ND</td>
<td>6250</td>
<td>84</td>
<td>6250</td>
<td>83</td>
<td>0</td>
<td>76</td>
<td>1-123/14</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>6250</td>
<td>97</td>
<td>6250</td>
<td>91</td>
<td>6</td>
<td>79</td>
<td>1-123/19</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>6250</td>
<td>93</td>
<td>6250</td>
<td>91</td>
<td>2</td>
<td>66</td>
<td>1-123/21</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>31300</td>
<td>94</td>
<td>31300</td>
<td>98</td>
<td>4</td>
<td>56</td>
<td>1-143/18</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
<td>ND</td>
<td>6250</td>
<td>110</td>
<td>6250</td>
<td>107</td>
<td>3</td>
<td>79</td>
<td>1-126/16</td>
</tr>
<tr>
<td>135-98-8</td>
<td>sec-Butylbenzene</td>
<td>ND</td>
<td>6250</td>
<td>117</td>
<td>6250</td>
<td>115</td>
<td>2</td>
<td>83</td>
<td>1-133/16</td>
</tr>
<tr>
<td>98-06-6</td>
<td>tert-Butylbenzene</td>
<td>ND</td>
<td>6250</td>
<td>112</td>
<td>6250</td>
<td>111</td>
<td>1</td>
<td>80</td>
<td>1-133/16</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6250</td>
<td>104</td>
<td>6250</td>
<td>104</td>
<td>0</td>
<td>66</td>
<td>1-148/23</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>6250</td>
<td>103</td>
<td>6250</td>
<td>104</td>
<td>1</td>
<td>76</td>
<td>1-136/23</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>6250</td>
<td>102</td>
<td>6250</td>
<td>99</td>
<td>3</td>
<td>82</td>
<td>1-124/14</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>6250</td>
<td>116</td>
<td>6250</td>
<td>113</td>
<td>2</td>
<td>62</td>
<td>1-144/20</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>6250</td>
<td>99</td>
<td>6250</td>
<td>97</td>
<td>2</td>
<td>80</td>
<td>1-124/15</td>
</tr>
<tr>
<td>95-49-8</td>
<td>o-Chlorotoluene</td>
<td>ND</td>
<td>6250</td>
<td>113</td>
<td>6250</td>
<td>109</td>
<td>4</td>
<td>81</td>
<td>1-127/15</td>
</tr>
<tr>
<td>106-43-4</td>
<td>p-Chlorotoluene</td>
<td>ND</td>
<td>6250</td>
<td>108</td>
<td>6250</td>
<td>105</td>
<td>3</td>
<td>83</td>
<td>1-130/15</td>
</tr>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>6250</td>
<td>90</td>
<td>6250</td>
<td>91</td>
<td>1</td>
<td>78</td>
<td>1-122/19</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>ND</td>
<td>6250</td>
<td>94</td>
<td>6250</td>
<td>93</td>
<td>1</td>
<td>64</td>
<td>1-123/18</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>6250</td>
<td>91</td>
<td>6250</td>
<td>92</td>
<td>1</td>
<td>75</td>
<td>1-120/13</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane</td>
<td>ND</td>
<td>6250</td>
<td>163</td>
<td>6250</td>
<td>166</td>
<td>2</td>
<td>42</td>
<td>1-167/19</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>6250</td>
<td>104</td>
<td>6250</td>
<td>102</td>
<td>2</td>
<td>82</td>
<td>1-124/14</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>6250</td>
<td>105</td>
<td>6250</td>
<td>106</td>
<td>1</td>
<td>84</td>
<td>1-125/14</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>6250</td>
<td>104</td>
<td>6250</td>
<td>102</td>
<td>2</td>
<td>78</td>
<td>1-120/15</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>6250</td>
<td>110</td>
<td>6250</td>
<td>108</td>
<td>2</td>
<td>81</td>
<td>1-122/15</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>6250</td>
<td>96</td>
<td>6250</td>
<td>97</td>
<td>1</td>
<td>75</td>
<td>1-125/14</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethylene</td>
<td>ND</td>
<td>6250</td>
<td>113</td>
<td>6250</td>
<td>116</td>
<td>3</td>
<td>78</td>
<td>1-137/18</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethylene</td>
<td>ND</td>
<td>6250</td>
<td>93</td>
<td>6250</td>
<td>95</td>
<td>2</td>
<td>78</td>
<td>1-120/15</td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethylene</td>
<td>ND</td>
<td>6250</td>
<td>123</td>
<td>6250</td>
<td>119</td>
<td>3</td>
<td>76</td>
<td>1-127/17</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>6250</td>
<td>98</td>
<td>6250</td>
<td>96</td>
<td>2</td>
<td>76</td>
<td>1-124/14</td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3-Dichloropropane</td>
<td>ND</td>
<td>6250</td>
<td>94</td>
<td>6250</td>
<td>91</td>
<td>3</td>
<td>80</td>
<td>1-118/13</td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2-Dichloropropane</td>
<td>ND</td>
<td>6250</td>
<td>92</td>
<td>6250</td>
<td>91</td>
<td>1</td>
<td>74</td>
<td>1-139/17</td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1-Dichloropropene</td>
<td>ND</td>
<td>6250</td>
<td>107</td>
<td>6250</td>
<td>105</td>
<td>2</td>
<td>79</td>
<td>1-131/16</td>
</tr>
<tr>
<td>10061-1-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>6250</td>
<td>97</td>
<td>6250</td>
<td>94</td>
<td>4</td>
<td>75</td>
<td>1-118/23</td>
</tr>
<tr>
<td>10061-2-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>6250</td>
<td>100</td>
<td>6250</td>
<td>101</td>
<td>1</td>
<td>80</td>
<td>1-120/22</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>6250</td>
<td>104</td>
<td>6250</td>
<td>101</td>
<td>3</td>
<td>81</td>
<td>1-121/14</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
The QC reported here applies to the following samples:

Limits

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Compound</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method: SW846 8260B</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Isopropylbenzene</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>p-Isopropyltoluene</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl Bromide</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl Chloride</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>Methylene Bromide</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl Tert Butyl Ether</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>n-Propylbenzene</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>79-115-8</td>
<td>1,1,1-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>79-115-9</td>
<td>1,2,3-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropane</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td></td>
</tr>
<tr>
<td>95-45-6</td>
<td>o-Xylene</td>
<td></td>
</tr>
</tbody>
</table>

CAS No. Surrogate Recoveries

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>MS</th>
<th>MSD</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868-53-7</td>
<td>Dibromofluoromethane</td>
<td>97%</td>
<td>97%</td>
<td>83-118%</td>
</tr>
<tr>
<td>17060-07-0</td>
<td>1,2-Dichloroethane-D4</td>
<td>100%</td>
<td>100%</td>
<td>79-125%</td>
</tr>
</tbody>
</table>

* = Outside of Control Limits.
Matrix Spike/Matrix Spike Duplicate Summary

<table>
<thead>
<tr>
<th>Sample</th>
<th>File ID</th>
<th>DF</th>
<th>Analyzed</th>
<th>By</th>
<th>Prep Date</th>
<th>Prep Batch</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA37995-1MS</td>
<td>J0980459.D</td>
<td>250</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
<tr>
<td>FA37995-1MSD</td>
<td>J0980460.D</td>
<td>250</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
<tr>
<td>FA37995-1</td>
<td>J0980447.D</td>
<td>250</td>
<td>10/26/16</td>
<td>DP</td>
<td>n/a</td>
<td>n/a</td>
<td>VJ5470</td>
</tr>
</tbody>
</table>

The QC reported here applies to the following samples: **FA37966-2, FA37966-4**

Method: SW846 8260B

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Surrogate Recoveries</th>
<th>MS</th>
<th>MSD</th>
<th>FA37995-1 Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2037-26-5</td>
<td>Toluene-D8</td>
<td>97%</td>
<td>98%</td>
<td>105% 85-112%</td>
</tr>
<tr>
<td>460-00-4</td>
<td>4-Bromofluorobenzene</td>
<td>97%</td>
<td>99%</td>
<td>103% 83-118%</td>
</tr>
</tbody>
</table>

(a) Outside control limits due to high level in sample relative to spike amount.

* = Outside of Control Limits.
Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
BLANK RESULTS SUMMARY

Part 2 - Method Blanks

Login Number: FA37966
Account: GFLEMFLT - Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

QC Batch ID: MP31025
Matrix Type: AQUEOUS
Methods: SW846 6010C
Units: ug/l

Prep Date: 10/21/16

<table>
<thead>
<tr>
<th>Metal</th>
<th>RL</th>
<th>IDL</th>
<th>MDL</th>
<th>raw</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>200</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>6.0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>10</td>
<td>1.3</td>
<td>1.3</td>
<td>2.0</td>
<td><10</td>
</tr>
<tr>
<td>Barium</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>4.0</td>
<td>.2</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.0</td>
<td>.2</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>1000</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>50</td>
<td>.2</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>300</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>5.0</td>
<td>1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>5000</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>15</td>
<td>.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>50</td>
<td>.3</td>
<td>.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>40</td>
<td>.4</td>
<td>.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>10000</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>10</td>
<td>2.4</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>10</td>
<td>.7</td>
<td>.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>10000</td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>10</td>
<td>.5</td>
<td>.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>10</td>
<td>1.1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>50</td>
<td>.9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>10</td>
<td>.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>50</td>
<td>.5</td>
<td>.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>20</td>
<td>3</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated samples MP31025: FA37966-1, FA37966-2, FA37966-3, FA37966-5, FA37966-6, FA37966-7, FA37966-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
(anr) Analyte not requested
MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA37966
Account: GFLEMFLT - Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

QC Batch ID: MP31025
Matrix Type: AQUEOUS
Methods: SW846 6010C
Units: ug/l

<table>
<thead>
<tr>
<th>Metal</th>
<th>Original</th>
<th>DUP</th>
<th>RPD</th>
<th>QC Limits</th>
<th>Original MS</th>
<th>Spikelet</th>
<th>QC Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.0</td>
<td>1.3</td>
<td>200.0(a)</td>
<td>0-20</td>
<td>0.0</td>
<td>1910</td>
<td>2000</td>
</tr>
<tr>
<td>Barium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated samples MP31025: FA37966-1, FA37966-2, FA37966-3, FA37966-5, FA37966-6, FA37966-7, FA37966-8

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested
(a) RPD acceptable due to low duplicate and sample concentrations.
MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA37966
Account: GFLEMFLT - Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

QC Batch ID: MP31025
Methods: SW846 6010C
Matrix Type: AQUEOUS
Units: ug/l
Prep Date: 10/21/16

<table>
<thead>
<tr>
<th>Metal</th>
<th>FA37921-1 Spikelot</th>
<th>MSD</th>
<th>MPFLICP2 % Rec</th>
<th>RPD</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.0</td>
<td>1910</td>
<td>2000</td>
<td>95.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Barium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>anr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated samples MP31025: FA37966-1, FA37966-2, FA37966-3, FA37966-5, FA37966-6, FA37966-7, FA37966-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested
SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA37966
Account: GFLEMFLT - Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA
QC Batch ID: MP31025
Matrix Type: AQUEOUS
Prep Date: 10/21/16
Methods: SW846 6010C
Units: ug/l

<table>
<thead>
<tr>
<th>Metal</th>
<th>Result</th>
<th>MPFLICP2 % Rec</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>1850</td>
<td>2000</td>
<td>92.5</td>
</tr>
<tr>
<td>Barium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated samples MP31025: FA37966-1, FA37966-2, FA37966-3, FA37966-5, FA37966-6, FA37966-7, FA37966-8

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested
SERIAL DILUTION RESULTS SUMMARY

Login Number: FA37966
Account: GFLEMFLT - Gannett Fleming
Project: Trademark Metals Recycling; 2000 W Savannah, Valdosta, GA

QC Batch ID: MP31025
Matrix Type: AQUEOUS
Methods: SW846 6010C
Units: ug/l

Prep Date: 10/21/16

<table>
<thead>
<tr>
<th>Metal</th>
<th>Original SDL 1:5</th>
<th>QC</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.00</td>
<td>0.00</td>
<td>NC</td>
</tr>
<tr>
<td>Barium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>anr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated samples MP31025: FA37966-1, FA37966-2, FA37966-3, FA37966-5, FA37966-6, FA37966-7, FA37966-8

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested
<table>
<thead>
<tr>
<th>Metal</th>
<th>Sample</th>
<th>Final</th>
<th>FA37921-1</th>
<th>PS</th>
<th>Spike</th>
<th>Spike</th>
<th>Spike</th>
<th>QC</th>
<th>% Rec</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>9.8</td>
<td>10</td>
<td>102.8</td>
<td>0.2</td>
<td>5</td>
<td>100</td>
<td>102.8</td>
<td>80-120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(**) Corr. sample result = Raw * (sample volume / final volume)
(anr) Analyte not requested

Associated samples MP31025: FA37966-1, FA37966-2, FA37966-3, FA37966-5, FA37966-6, FA37966-7, FA37966-8
APPENDIX F
Central M. Enviro

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WAF-16-01-10267</td>
<td></td>
<td></td>
<td>162147</td>
</tr>
</tbody>
</table>

Generator's Name and Mailing Address

Halemane Metals, Inc.
2000 W. Savannah Ave
Valdosta, GA 31601

Generator's Site Address (if different than mailing address)

Farmers Refineries

Transporter 1 Company Name

Evergreen Landfill

Transporter 2 Company Name

Designated Facility Name and Site Address

Facility's Phone

229.239.8157

Waste Shipping Name and Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>8571</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Handling Instructions and Additional Information

WAF#

GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above, and are classified, packaged, marked and labeled in accordance with all applicable international and national governmental regulations.

<table>
<thead>
<tr>
<th>Generator/Offeror's Printed/Typed Name</th>
<th>Signature</th>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen Blakeslee</td>
<td></td>
<td>1/16</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Transporter 1 Printed/Typed Name

<table>
<thead>
<tr>
<th>Signature</th>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/17/16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Transporter 2 Printed/Typed Name

<table>
<thead>
<tr>
<th>Signature</th>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/17/16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Discrepancy

17a. Discrepancy Indication Space

- Quantity
- Type
- Residue
- Partial Rejection
- Full Rejection

17b. Alternate Facility (or Generator)

Facility's Phone:

17c. Signature of Alternate Facility (or Generator)

<table>
<thead>
<tr>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in item 17a

Printed/Typed Name

<table>
<thead>
<tr>
<th>Signature</th>
<th>Month</th>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/14/16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

ORIGINAL

Pl. 1 - DISPOSAL OFFICE COPY
Pl. 2 - TRANSPORTER COPY
Pl. 3 - OTHER COPY

ADS Rev. 2-15
<table>
<thead>
<tr>
<th>SITE</th>
<th>OPERATOR</th>
<th>CONTAINER</th>
<th>LICENSE</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4</td>
<td>46801</td>
<td>203950</td>
<td></td>
<td>10/17/16 9:33 am</td>
<td>10/17/16 9:19 am</td>
</tr>
</tbody>
</table>

GROSS INBOUND

<table>
<thead>
<tr>
<th>QTY</th>
<th>UNIT</th>
<th>DESCRIPTION</th>
<th>ORIGIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.02</td>
<td>TN</td>
<td>Contaminated Soils/Debris</td>
<td>L6</td>
</tr>
<tr>
<td>37.02</td>
<td>YD</td>
<td>Transportation</td>
<td>L6</td>
</tr>
</tbody>
</table>

INVOICE

10/17/16 9:33 am

I hereby certify that this load does not contain any unauthorized hazardous waste.

SIGNATURE:

[Signature]
Waste Manifest Details

Generator's Name and Mailing Address: Trademark Metals, 2500 W. Savannah Ave., Valdosta, GA 31601

Transporter 1 Company Name: Farmers Dolicattle

Transporter 2 Company Name: Evergreen Landfill

Facility's Phone: 229-239-9157

Waste Shipping Name and Description:

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Quantity</th>
<th>Wt./Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C.</td>
<td>STEEL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Occ. Handling Instructions and Additional Information:

WAF # 16-01-00263

Generator’s/Emitter’s Certification:

This declares that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled as required, and are in all respects as proper condition for transport according to applicable international and national governmental regulations.

Transporter’s Printed/Typed Name:

Facility’s Printed/Typed Name:

Manifest Reference Number:

U.S. EPA ID Number:
EVERGREEN LANDFILL
3163 WETHERINGTON LANE
VALDOSTA, GA 31601
2292938157

010263
CENTRAL FLORIDA ENVIRONMENTAL SERVICES
11227 MCMULLEN ROAD
RIVERVIEW, FL 33569

INVOICE INBOUND

<table>
<thead>
<tr>
<th>CONTRACT: 16-01-10263 OTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOL: 162148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QTY</th>
<th>UNIT</th>
<th>DESCRIPTION</th>
<th>ORIGIN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.26</td>
<td>TN</td>
<td>Contaminated Soil/Debr</td>
<td>L6</td>
<td>100.00</td>
</tr>
<tr>
<td>37.26</td>
<td>TN</td>
<td>Transportation</td>
<td>L6</td>
<td>100.00</td>
</tr>
</tbody>
</table>

GROSS 104,080.00 LBS Manual In
TARE 29,560.00 LBS Scale Out
NET 74,520.00 LBS

I hereby certify that this load does not contain any unauthorized hazardous waste.

SIGNATURE:

[Signature]

Central FL Invo

1. Generator ID Number: WAF 16-01-10268
2. Page of: 2
3. Emergency Response Phone:
4. Waste Tracking Number: 162146

5. Generator’s Name and Mailing Address:
 Trademark Metals
 201 W Savannah Ave
 Valdosta
 31601

 Generator’s Site Address (if different than mailing address):

6. Generator’s Phone:

7. Transporter 1 Company Name:
 Farmers Delimite

8. Transporter 2 Company Name:

9. Designated Facility Name and Site Address:
 Evergreen Landfill

 Facility’s Phone: 229 293 8157

10. Containers
 No. | Type | Quantity | Wt./Vol.
 1. | Soil |
 2. |
 3. |
 4. |
 5. |
 6. |

11. Total
 No. | Type | Quantity | Wt./Vol.

12. Unit
 No. | Type | Quantity | Wt./Vol.

13. Special Handling Instructions and Additional Information:
 WAF #

14. GENERATOR’S/OFFEROR’S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/identified, and are in all respects in proper condition for transport according to applicable international and national governmental regulations.

 Generator’s/Offeror’s Printed/Typed Name:
 Signature:
 Month Day Year: 10 17 16

15. International Shipment
 Import to U.S. []
 Export from U.S. []
 Port of entry/exit:
 Date leaving U.S.:

16. Transporter Acknowledgement of Receipt of Materials
 Transporter 1 Printed/Typed Name:
 Signature:
 Month Day Year: 10 17 16

 Transporter 2 Printed/Typed Name:
 Signature:
 Month Day Year: 10 17 16

17. Discrepancy
 a. Discrepancy Indication Space
 Quantity []
 Type []
 Residue []
 Partial Rejection []
 Full Rejection []

 Manifest Reference Number:

18. Alternate Facility (or Generator)
 Facility’s Phone:
 Signature:
 Month Day Year:

19. Designated Facility Owner/Operator: Certification of receipt of materials covered by the manifest except as noted in item 7a.
 Printed/Typed Name:
 Signature:
 Month Day Year:

ADSS Rev 2.15
<table>
<thead>
<tr>
<th>SITE</th>
<th>CELL</th>
<th>OPERATOR</th>
<th>TRUCK</th>
<th>CONTAINER</th>
<th>FDL5</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA</td>
<td>46801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREATION</th>
<th>203938</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OUT</th>
<th>10/1/16</th>
<th>8:39 am</th>
</tr>
</thead>
</table>

INVOICE

<table>
<thead>
<tr>
<th>CONTRACT:</th>
<th>10/03-01-1223 OTO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>QTY</th>
<th>UNIT</th>
<th>DESCRIPTION</th>
<th>CONTAMINATED SOL/DEBR</th>
<th>ORIGIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.81</td>
<td>TN</td>
<td>0.00%</td>
<td>0.00%</td>
<td>100.00</td>
</tr>
<tr>
<td>32.81</td>
<td>TN</td>
<td>0.00%</td>
<td>0.00%</td>
<td>100.00</td>
</tr>
</tbody>
</table>

I hereby certify that this load does not contain any unauthorized hazardous waste.

SIGNATURE: [Signature]

I hereby certify that this load does not contain any unauthorized hazardous waste.
Underground Injection Control Program
Pilot Test Injection Well Notification Form

1.0 Address
1.1 Name: Former Rice, Iron & Metals
1.2 Street Address: 2600 W. Savannah Ave
1.3 City, State: Valdosta, GA
1.4 ZIP Code: 31601
1.5 Telephone: N/A - closed down
2.0 Location: Latitude: 30.818889 Longitude: 83.305

3.0 What is the contaminant in the Ground Water? Benzene, Toluene, Xylene
4.0 Georgia Licensed Water Well Contractor or Bonded Driller: N/A
5.0 Professional Engineer or Geologist: Aaron Garrett, PG. 813-285-0121

6.0 Well Data Table

<table>
<thead>
<tr>
<th>Injection Wells</th>
<th>Monitoring Wells A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil excavation - ORC advanced applied to the excavation (12 ft below land surface)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Wells</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Depth(s)</td>
<td>n100 pounds or ORC Advanced</td>
</tr>
<tr>
<td>Well Diameter</td>
<td>n32</td>
</tr>
<tr>
<td>Volume in/out</td>
<td>n32</td>
</tr>
<tr>
<td>Sampling freq.</td>
<td>MS-8, MS-11, MS-10 - Sammel Bandly</td>
</tr>
</tbody>
</table>

7.0 Responsible EPD Associate for site: Ms. Carolyn L. Daniels, PG
8.0 Date injection started: 10/13/16
8.1 Date* injection stopped: 10/13/16
8.2 Reason Injection Stopped? ORC Advanced applied to excavation - ORC Time
8.3 Date these injection wells were logged in to the UIC Class V Well inventory and file:

9.0 UIC Class V Well Inventory Number:
10.0 UST/HWMB CAP tracking number: VP134501340/H/914410923
11.0 Pending UIC Class V Permit Number:

*Note: This pilot test well form is valid only for 90 days from the start of injection.

**Submit this form to:
Georgia Environmental Protection Division,
Regulatory Support Program
UIC Unit
Suite 1062 East Tower
2 M.L. King, Jr. Dr.
Atlanta, Georgia, 30334

Revised July 2010