Voluntary Remediation Program Application

Toyoko Inn Atlanta, LLC 90-94 Forsyth Street and 85 Luckie Street Atlanta, Georgia 30303 HSI #10899

> Prepared for Toyoko Inn Atlanta, LLC May 21, 2015

NewFields

CERTFICATION STATEMENTS

I certify that I am a qualified environmental scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering, and have sufficient training and experience in environmental engineering, hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding soil contamination and contaminant fate and transport. I further certify that this report was prepared by myself or by persons working under my direction.

Michael R. Wild, P.E. NewFields Atlanta, LLC Senior Engineer/Partner

Table of Contents

1	Iı	ntrodu	action and Background
	1.1	A	pplication and Qualifications
	1.2	Si	te Description and History
2	Р	revio	us Investigations
3	R	lisk R	eduction and Site Delineation Standards
4	C	once	ptual Site Model 11
	4.1	Li	thology
	4.2	Se	bil Analytical Concentrations
	4.3	Sı	spected Sources
	4	.3.1	Black Mortar
	4	.3.2	Boilers14
	4	.3.3	Asphalt
	4.4	R	isk Reduction and Site Delineation Standards16
	4.5	E	xposure Pathways and Potential Receptors
	4	.5.1	Surface Soil Exposure
	4	.5.2	Deep Soil Exposure
	4	.5.3	Vapor Intrusion Exposure
	4	.5.4	Exposure to Groundwater
5	Р	lanne	ed Corrective Actions
6	S	ched	ıle

Appendices

- Appendix A Voluntary Remediation Program Application Form and Application Fee
- Appendix B Warranty Deed, Land Title Survey Map and Legal Description
- Appendix C Phase II Environmental Site Assessment (Including Boring Logs and Lab Results)
- Appendix D Telephone Memoranda Regarding Underground Utilities and Neighboring Basements

1 Introduction and Background

NewFields has prepared this Voluntary Remediation Plan (VRP) application on behalf of Toyoko Inn Atlanta, LLC, (Toyoko) for property located at 90-94 Forsyth Street and 85 Luckie Street in Atlanta, Fulton County, Georgia (the subject property). This VRP describes proposed corrective actions consistent with provisions of the Georgia Voluntary Remediation Program Act (the Act).

A Phase I environmental site assessment (ESA) was performed on the property in January 2008. The only concern noted in this Phase I ESA was the proximity of dry cleaners or former dry cleaning facilities to the subject property. It was for this reason that a Phase II ESA was conducted. No chemicals associated with dry cleaning were detected during the Phase II ESA. However, some polycyclic aromatic hydrocarbons (PAHs) were detected above Georgia soil notification standards at depths of eight to twelve feet below ground surface (ft bgs). No groundwater was encountered beneath the subject property, which was investigated to a depth of 23.5 ft bgs.

1.1 Application and Qualifications

The VRP Application Form (Appendix A) and the \$5,000 Application Fee are provided with this document. The warranty deed, legal description and survey plat are provided in Attachment B. The subject property is located within tax parcel number 14 007800120574.

The subject property is considered a qualifying property under O.C.G.A. § 12-8-105 due to being listed on the Hazardous Site Inventory (HSI). The subject property has been listed on the HSI as 90 - 94 Forsyth Street and 85 Luckie Street and assigned HSI Number 10899.

To qualify under O.C.G.A. § 12-8-105, the property must not meet any of the following criteria:

- 1. It shall not be listed on the federal National Priorities List.
- 2. It shall not be currently undergoing response activities required by an Order of the Regional Administration of the U.S. Environmental Protection Agency (EPA).
- 3. It shall not be a facility that is required to have a permit under the Georgia Hazardous Waste Management Act.
- 4. It shall not violate the terms and conditions under which the Georgia Environmental Protection Division (EPD) operates and administers remedial programs by delegation or similar authorization from the U.S. EPA.
- 5. It shall not have any lien filed under the Hazardous Waste Management Act or the Georgia Underground Storage Tank Management Act.

None of the criteria listed in items 1 through 5 above apply. Therefore, the subject property is a qualifying property under the VRP.

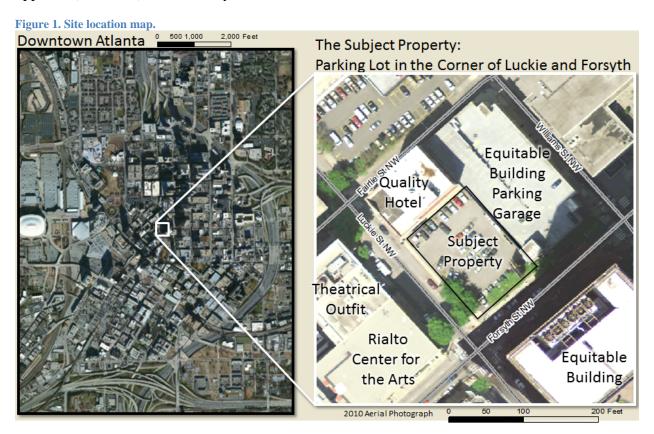
According to O.C.G.A. § 12-8-106, the following criteria must be met in order for the participant to meet the qualifications of the VRP:

- 1. The Applicant must be the owner of the property or have express permission to enter another's property to perform corrective action, including, to the extent applicable, implementing controls for the site pursuant to written lease, license, order, or indenture.
- 2. The Applicant must not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the Director.
- 3. The Applicant must meet other such criteria as may be established by the Georgia Department of Natural Resources (DNR) Board.

Toyoko meets all of the criteria stated above, and is therefore qualified under the VRP.

The contact for the Applicant is as follows:

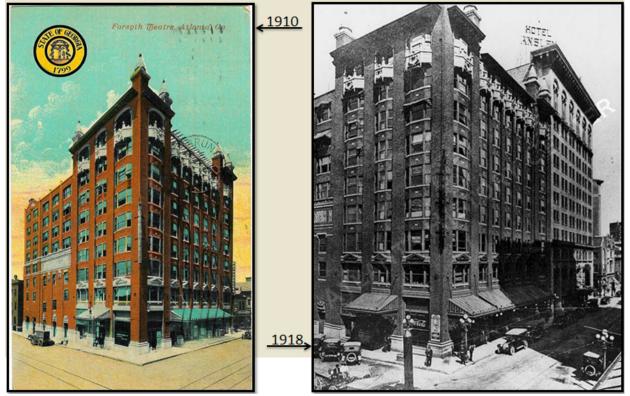
Bruce White, Barnes & Thornburg, LLP One North Wacker Drive, Suite 4400 Chicago, IL 60606-2833


The owner of the subject property is as follows:

Toyoko Inn Atlanta, LLC c/o Bruce White, Barnes & Thornburg, LLP One North Wacker Drive, Suite 4400 Chicago, IL 60606-2833

1.2 Site Description and History

The subject property is located at 90-94 Forsyth Street and 85 Luckie Street in Atlanta, Fulton County, Georgia (see Figure 1). The subject property is a rectangular parking lot, 100 feet by 130 feet (approximately 0.3 acres), bounded to the northwest by Quality Hotel, to the northeast by the Equitable Building Parking Garage, to the southwest by Luckie St NW, and to the southeast by Forsyth St NW. The Rialto Center for the Arts and the Theatrical Outfit are located on the opposite (southwest) side of Luckie St NW. The Equitable Building is located on the opposite (southeast) side of Forsyth St NW.



In 1910, the Forsyth Theatre Building (shown in Figure 2) was built on the subject property and operated as a theater until 1929. The details of the building's construction were published in *The American Architect* periodical in August 1909.¹ The building had the same footprint as the subject property.

¹ Brown, Ten Eyck. "The Forsyth Theater and Office Building, Atlanta, Ga." *The American Architect*, 18 August 1909: 63-66.

Figure 2. Pictures of the historic Forsyth Theatre Building in 1910 and 1918.

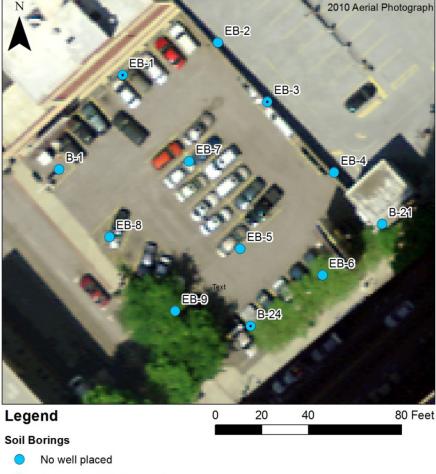
In 1929, the building ceased to be used as a theater and was converted into a parking garage. Figure 3 is an aerial view of the building in 1949, when it was used as a parking garage. The building was demolished in 1978.



Figure 3. Aerial photograph of subject property in 1949.

The property is currently occupied by AAA Parking and owned by Toyoko Inn Atlanta, LLC. The property configuration is an asphalt-paved parking lot with 40 parking spaces, an attendant booth, and two billboard signs. A six-inch thick asphalt cap, which serves as the parking lot surface, covers 100% of the subject property. The subject property is bordered on two sides by the city right-of-way which includes a six-foot sidewalk zone and a four-foot zone for tree planting and street furniture (e.g., trash cans and benches), with some utilities beneath the right-of-way.^{2,3} The trees within the city right-of-way are visible on the 2010 aerial photograph in Figure 4 below.

2 Previous Investigations


A Phase I Environmental Site Assessment (ESA) was conducted on the property in January 2008. The ESA identified the potential for subsurface impacts due to the presence of multiple historical dry cleaners located on adjacent properties. Subsequently, a Phase II ESA was performed to determine if soil or groundwater impacts had occurred due to those former dry cleaning operations. As many as 25 geotechnical soil borings were completed on the subject property in January 2008, and soil samples were collected from three of those borings nearest to historical dry cleaning or laundry facilities (borings B-1, B-21 and B-24 on Figure 5). In March 2008, additional borings were advanced to further evaluate the extent of impacted soil identified in January 2008; samples were collected from borings EB-1 through EB-9 during the March 2008 investigation (Figure 5). Copies of the boring logs are provided as part of Appendix C.

² ALTA/ACSM Land Title Survey map done by Moreland Altobelli Associates, Inc. on 9/24/2007

³ April 7, 2015, telephone memorandum from Marjorie Snook, titled "Utility depth, 90 Forsyth Street, Atlanta," provided in Appendix D.

Figure 5. Soil boring locations.

• Temporary well placed (dry)

As shown on Figure 5, temporary wells were placed in three soil boring locations (EB-1, EB-3 and B-24). No groundwater was encountered down to the top of bedrock (boring B-24 extended to bedrock, boring EB-3 extended to 18 ft bgs, and boring EB-1 terminated at 13 ft bgs due to repeated refusal from the presence of impenetrable metal).

The investigations did not detect chemicals associated with dry cleaning operations in the subsurface soil, which was the impetus for conducting the Phase II ESA. However, PAHs were detected above the Georgia notification concentrations between 8 and 12 ft bgs. These detections corresponded with a layer of building rubble which was identified in several borings at a depth of between 5.5 and 14 ft bgs.

The contaminants of concern (COCs) are those contaminants detected in the soil borings above their respective Georgia notification standards. These COCs and their soil notification standards are listed in Table 1 and are presented in units of milligrams per kilogram (mg/kg). Copies of the laboratory analytical reports are provided as part of Appendix C.

Analyte	GA Notification Standard (mg/kg)
2,6-Dinitrotoluene	0.76
Benzo(a)anthracene	5.00
Benzo(a)pyrene	1.64
Benzo(b)fluoranthene	5.00
Benzo(k)fluoranthene	5.00
Carbon disulfide	Laboratory detection limit
Chrysene	5.00
Indeno(1,2,3-cd)pyrene	5.00

Table 1. Analytes exceeding Georgia notification standards on the subject property.

3 Risk Reduction and Site Delineation Standards

The COCs detected in the soil at the subject property and the applicable Risk Reduction Standards (RRSs)—Type 3 industrial and Type 4 site-specific risk-based worker standards—are listed in Table 2.

Chemical	Type 3 RRS (mg/kg)	Type 4 RRS (mg/kg)
2,6-Dinitrotoluene	0.76	4.68
Benzo(a)anthracene	5.00	42.70
Benzo(a)pyrene	1.64	4.30
Benzo(b)fluoranthene	5.00	43.00
Benzo(k)fluoranthene	5.00	426.00
Carbon disulfide	400.00	1850.00
Chrysene	5.00	4140.00
Indeno(1,2,3-cd)pyrene	5.00	43.00

Table 2. Type 3 industrial and Type 4 site-specific RRS.

The Type 4 site-specific commercial/industrial standards were calculated utilizing the exposure parameters provided in Table 3.

Exposure Parameter	Abbreviation Value		Reference
Exposure Frequency	EF	250 days/year	EPA 2014 ⁴
Exposure Duration	ED	25 years	EPA 2014
Ingestion Rate - Soil	IR _{soil}	50 mg/day	Professional Judgement
Skin Surface Area	SA	3470 cm ²	EPA 2014
Body Weight	BW	80 kg	EPA 2014

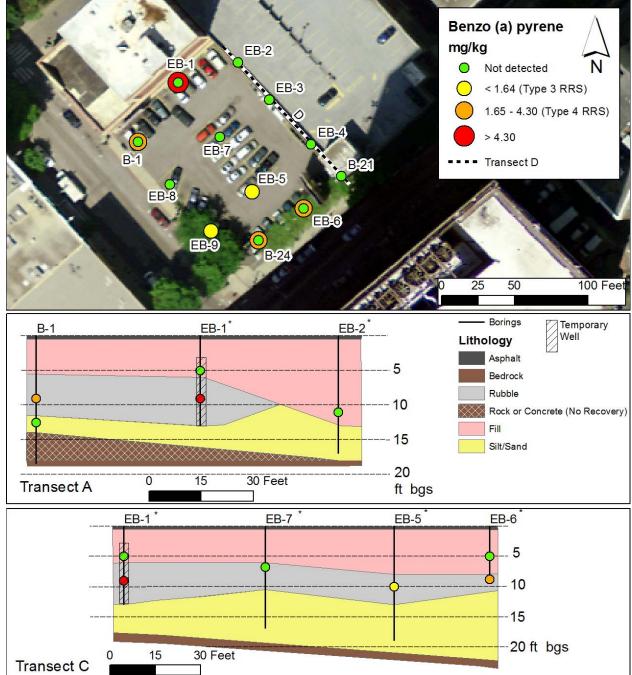
Table 3. Exposure parameters for site-specific Type 4 RRS calculations	Table 3. Expo	osure parameters	for site-specific '	Type 4 RRS	calculations
--	---------------	------------------	---------------------	------------	--------------

The exposure parameter values are the standard default values established by EPA with the exception of the soil ingestion rate. The ingestion rate of 50 mg/day (the standard default indoor

⁴ EPA, Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

worker value) was used to calculate the site-specific Type 4 standard because the subject property is 100% paved and there is no potential for exposure to impacted soil. However, in order to provide a conservative (i.e., health protective) estimate of potential risk, minimal exposure to impacted soil is assumed to occur.

4 Conceptual Site Model


4.1 Lithology

The subject property is flat in elevation, with a six-inch layer of asphalt at the surface. The soil beneath the asphalt consists mainly of silty sand and sandy silt fill with some gravel. A layer of building materials, including concrete, was encountered between 5.5 and 14 ft bgs. The advancement of several borings was hampered by repeated refusal as subsurface rubble was encountered (including metal); numerous borings were attempted at offset locations in order to advance borings to the bedrock. Boring EB-1 could not be completed to the bedrock due to the presence of metal obstructions. Gneiss bedrock was encountered 18.5 to 23.5 feet beneath the surface of the subject property. No groundwater was encountered in any of the soil borings. Three of the borings were converted to temporary wells to further assess the potential for groundwater impacts (B-24, EB-1 and EB-3). No groundwater was detected in these wells over varying time periods from 5 to 48 hours.

4.2 Soil Analytical Concentrations

The only analyte to exceed a Type 4 RRS anywhere on the subject property was benzo(a)pyrene. This exceedance was found in EB-1, in the concrete debris layer. In the same soil sample, all of the COCs except carbon disulfide exceeded the Type 3 RRS. There were only three other sample locations where any of the Type 3 standards were exceeded for any other COCs, and benzo(a)pyrene exceeded the Type 3 RRS in all three: B-1, B-24 and EB-6. Therefore, benzo(a)pyrene is the COC displayed in the following figures because it is the indicator compound. Appendix C presents all boring logs and analytical results from the Phase II ESA.

Figure 6 shows the plan view of benzo(a)pyrene results on the subject property, and presents two cross-sectional views of the data. Transect A runs along the northwest side of the property directly adjacent to the Quality Hotel, from Luckie Street to the Equitable Parking building. Transect C runs from northwest to southeast directly down the center of the subject property, from the Quality Hotel to Forsyth Street.

Figure 6. Benzo(a)pyrene on the subject property and in transect views.

*Bedrock estimated based on presence of weathered gneiss in the bottom of the borehole and/or bedrock depth in nearby borings.

Figure 7 is a three-dimensional model of the subject property and displays the cross-sectional views along the edges of the property bordering Luckie and Forsyth Streets.

Figure 7. Three-dimensional model of subject property with benzo(a)pyrene results along streets in transect view.

4.3 Suspected Sources

There were no known activities at the subject property that would have resulted in releases of COCs to soil. The Phase II ESA was conducted to determine if soil or groundwater had been impacted by historical dry cleaning operations on adjacent properties; no dry cleaning contaminants or daughter products were detected on the subject property.

The COCs are confined within a layer of rubble or debris associated with the former Forsyth Theatre Building. The suspected sources of the PAHs detected in the building debris are black mortar, boilers and asphalt.

4.3.1 Black Mortar

One potential source of the PAHs is the black mortar used for the theater's brick facade.^{5,6} A 1906 publication on making and using various plaster, cement, and mortar materials defined black mortar as "mortar made by mixing finely-powdered anthracite (hard coal) with the lime,

⁵ Brown, Ten Eyck. "The Forsyth Theater and Office Building, Atlanta, Ga." The American Architect, 18 August 1909: 63-66.

⁶ Hodgson, Fred T. Plaster and Plastering. Mortars and Cements, how to make, and how to use. New York: The Industrial Publication Company, 1906.

instead of sand."⁷ The predominant PAHs detected on the subject property are higher molecular weight PAHs typical of an anthracite coal source.⁸

Figure 8 below shows the Forsyth Theatre Building transposed onto the lithology and data in a three-dimensional view.

Figure 8. Three-dimensional model of the lithology and data with the old Forsyth Theatre building location shown.

4.3.2 Boilers

Another potential source of PAHs is ash, fuel, or residue from the theater's boilers, which were located in the rear of the basement below the stage at the approximate location of boring EB-1.⁹

Figure 9 shows one of the original architectural drawings of the theater. The left side of the drawing is the northwest side of the building, which would have been adjacent to the Quality Hotel. The stage ran along this side of the building and beneath the stage was the basement where the boilers were located.^{10,11}

⁷ Hodgson, Fred T. *Plaster and Plastering. Mortars and Cements, how to make, and how to use*. New York: The Industrial Publication Company, 1906.

⁸ Achten, C. and T. Hofmann. "Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination." *Science of the Total Environment* 407 (2009): 2461-2473.

⁹ Brown, Ten Eyck. "The Forsyth Theater and Office Building, Atlanta, Ga." The American Architect, 18 August 1909: 63-66.

¹⁰ The Tyler Company. "Converting old theater space into a parking garage: Forsyth Building, Atlanta." *Buildings and Building Management*. 24 March 1930: 33-36.

¹¹ Brown, Ten Eyck. "The Forsyth Theater and Office Building, Atlanta, Ga." *The American Architect*, 18 August 1909: 63-66

Figure 9. A longitudinal section of the Forsyth Theatre from the August 18, 1909 edition of The American Architect.¹² THE AMERICAN ARCHITECT

VOL. XCVL, NO. 1756 Copyright, 1909, by the Swetland Publishing Co. LONGITUDINAL SECTION MR. A. TEN EYCK BROWN FORSYTH THEATER AND OFFICE BUILDING ARCHITECT ATLANTA, GA.

4.3.3 Asphalt

It is possible that asphalt was used as pavement inside of the building when it was converted into a parking garage, but this is not specifically mentioned in the document describing the building's conversion into a garage.¹³ However, asphalt would be a potential source of PAHs, and was found in the boring in which the Type 4 RRS exceedance was located (boring EB-1, from 8 to 10

¹² Brown, Ten Eyck. "The Forsyth Theater and Office Building, Atlanta, Ga." *The American Architect*, 18 August 1909: 63-66.

¹³ The Tyler Company. "Converting old theater space into a parking garage: Forsyth Building, Atlanta." *Buildings and Building Management*. 24 March 1930: 33-36.

ft bgs). In addition, the current parking lot surface could also have contributed to the PAHs detected in the soil samples due to the potential for residual PAHs to be present as a result of drilling through the asphalt cap present on the subject property. Similar to the anthracite coal, studies to determine the types of PAHs present in asphalt have found a predominance of higher molecular weight PAHs, such as those detected in the building debris beneath the subject property.^{14,15}

4.4 Delineation

The COCs in the soil are limited to a layer of rubble consisting of concrete, brick, asphalt, wood, and metal debris. This layer of debris is found between 5.5 and 14 ft bgs. All COC detections were between 8 and 12 ft bgs.

The concentration of benzo(a)pyrene in one soil sample exceeded the calculated Type 4 RRS. Sample EB-1 was collected from 8 to 10 ft bgs and the soil was described as "rubble consisting of concrete, asphalt, brick and sandy silt." This material is representative of the demolition debris from the old Forsyth Theatre Building and is found in borings located within the footprint of the former building. Table 4 presents the maximum detected concentration of each COC and the Type 3 and Type 4 RRSs. All of the subject property maximums were detected in boring EB-1 from 8-10 ft bgs, with the exception of carbon disulfide, which does not exceed either RRS.

Chemical	Type 3 RRS ppm	Type 4 RRS ppm	Subject Property Maximum ppm
2,6-Dinitrotoluene	0.76	4.68	0.88
Benzo(a)anthracene	5.00	43.00	30.40
Benzo(a)pyrene	1.64	4.30	24.50
Benzo(b)fluoranthene	5.00	43.00	33.60
Benzo(k)fluoranthene	5.00	426.00	11.80
Carbon disulfide	400	1850.00	0.02
Chrysene	5.00	4140.00	26.60
Indeno(1,2,3-cd)pyrene	5.00	43.00	14.80

Table 4. Type 3 industrial and Type 4 site-specific RRS and subject property maximum concentrations

¹⁴ Ifenna, I. and L. Osuji. "Characterisation of polycyclic aromatic hydrocarbons (PAHs) in road paving ashpalt." *European Chemical Bulletin* Vol. 2 No. 4 (2013): 188-190.

¹⁵ Fernandes, P., *et al.* "Evaluation of polycyclic aromatic hydrocarbons in asphalt binder using matrix solid-phase dispersion and gas chromatography." *Journal of Chromatographic Science*, Vol. 7 (October 2009): 789-793.

The sample with a Type 4 RRS exceedance is bounded on each side by samples less than the Type 4 RRS with the exception of:

- *The northwest side of the subject property where the Quality Hotel is immediately adjacent to boring EB-1*. It is technically impracticable to advance a boring closer to the Quality Hotel building (see Figure 10, a photograph of the EB-1 borehole). The Quality Hotel building was constructed with a basement, so there is no soil present to sample to the northwest at the depth of the EB-1 detection.¹⁶
- *Beneath the soil sample of EB-1*. It was not possible to collect an additional soil sample at a depth greater than the sample obtained from 8 to 10 ft bgs due to the drill rig encountering an impenetrable metal barrier at 13 ft bgs. The boring was attempted at several slightly offset locations and each time was met with refusal at 13 ft bgs.

Figure 10. The EB-1 borehole, photographed on Dec. 16, 2014, adjacent to the exterior wall of the Quality Hotel.

The COCs are present in the rubble layer throughout the subject property. The COCs were not detected anywhere else on the subject property outside of the 5.5 to 14 ft bgs depth where building debris is found (in fact, COCs were only detected between 8 and 12 ft bgs). Based on this information, it is likely that if a boring could be advanced below 13 ft bgs in the vicinity of EB-1, it would encounter clean silty sand and/or bedrock beneath the rubble layer, as has been documented in other locations throughout the subject property. The temporary well screened in this boring from 3 to 13 ft bgs did not detect groundwater and therefore there is no potential for contaminants present at a depth of 8 to 10 ft bgs to leach/migrate and impact groundwater.

¹⁶ April 14, 2015, telephone memorandum from Marjorie Snook, titled "Basement," provided in Appendix D.

The regulated substances are not mobile based on the following:

- the contaminants are not classified as volatile chemicals,
- the absence of groundwater at the subject property, and
- the presence of an asphalt cap over 100% of the subject property.

All lines of evidence indicate that the source of the contamination is the demolition of the former Forsyth Theatre Building and that the regulated substances are limited to the layer of building debris and rubble. This rubble was covered with fill following demolition rather than removed. Figure 11 shows that no building debris was found along what may have been an alley along the northeast side of the subject property, and no COCs were found in samples taken from the depths where COCs would have been expected (between 8 and 12 ft bgs).

Further delineation of the regulated substances is not necessary for the following reasons:

- 1. The source of the regulated substances is known (building debris).
- 2. The source material is present in a confined layer (below an asphalt cap and 5.5 to 8 feet of clean fill; above the clean sandy silt and bedrock).
- 3. The concentrations of the regulated substances are below the relevant RRSs at the boundaries of the subject property.
- 4. Stepping out from the subject property for additional sample collection would disrupt traffic and block sidewalk access in the core of downtown Atlanta.
- 5. Stepping out from the subject property for additional sample collection would increase the potential for disrupting or damaging underground public utilities. There are vents below the sidewalk abutting the subject property and there are utilities present below grade in the center of both Forsyth and Luckie Streets.

Contamination present in the subsurface at the subject property has been delineated to risk reduction standards and, given the physical constraints of the property and surrounding area, delineation is complete to the extent practicable.

4.5 Exposure Pathways and Potential Receptors

An examination of potential exposure pathways and receptors was conducted for the subject property. Based on the data collected, the only potential exposure pathway is direct contact with regulated substances in deep soil. Benzo(a)pyrene was detected at a concentration greater than the Type 4 RRS at depths ranging from 8 to 10 ft bgs in one location on the subject property. The presence of the six-inch thick asphalt cap over 100% of the subject property (along with 5.5 to 8 feet of clean fill) prevents contact with any soils present on the property.

4.5.1 Surface Soil Exposure

The contaminants are present in soil at a depth which precludes a potential surface soil risk to the parking lot attendant, adults and children during parking related activities, and/or trespassers. The parking lot attendant does not come into contact with soils due to the presence of the 6-inch asphalt cap which precludes contact. Inhalation of particulates potentially impacted by PAHs is not an issue since the impacted soil is present at depth and the asphalt cap is intact.

4.5.2 Deep Soil Exposure

Potential exposure to utility workers was evaluated by contacting the public and private utilities to determine the locations and depths of any underground utilities on or adjacent to the subject property. This communication is documented in Appendix D. According to personnel at both public and private utilities contacted, there are below-grade utilities bordering the subject property in the center of the Luckie and Forsyth Streets at depths of less than 3 ft bgs. The only known utilities present on the subject property are 3-inch and 6-inch water lines which are less than 8 ft bgs, and therefore no exposure pathway exists for utility workers. An exposure pathway exists for workers who may excavate the soil on the subject property during major

construction activities. If and when construction or excavation work is proposed, the plan will include excavation of the elevated PAH soil/debris layer using all necessary precautions to protect the construction workers. Disposal of the contaminated soil and rubble will be conducted in accordance with applicable state and federal waste regulations.

4.5.3 Vapor Intrusion Exposure

The COCs are not volatile compounds and do not pose a vapor intrusion risk.

4.5.4 Exposure to Groundwater

The lack of groundwater beneath the subject property and the presence of an asphalt cap eliminate any potential pathway for the soil contaminants to impact groundwater. The absence of groundwater above the bedrock at the subject property precludes potential exposure to groundwater. Groundwater may be present within the bedrock at depths greater than those accessed during the site investigations. However, the leaching of soil contaminants to groundwater is not a concern at the subject property for the following reasons:

- 1. Water-bearing units underlying the City of Atlanta consist of horizontal stress-relief fractures in the bedrock. These fractures are not associated with faulting, therefore lateral movement is restricted.¹⁷
- 2. The water table of a water-bearing unit underlying the City of Atlanta, if it existed, would be expected to be present immediately above the bedrock. A water table is not present on the subject property.¹⁸
- 3. The asphalt cap prevents precipitation from infiltrating through the soil at the subject property. Therefore, leaching of soil contaminants to groundwater is not considered a potential migration pathway.
- 4. The PAHs are tightly bound to soil and therefore are unlikely to leach and impact groundwater.¹⁹

5 Planned Corrective Actions

It is Toyoko's intent to remove the subject property from the Hazardous Site Inventory (HSI) through implementation of a voluntary remediation plan that is protective of human health and the environment. Based on the delineation of constituents in soil to Type 3 and 4 RRSs and the absence of complete exposure pathways to contaminants in soil, Toyoko proposes the following voluntary remedial actions:

• Repair, maintenance, and annual inspection of the asphalt cap which precludes human exposure to the soil or rain infiltration into the soil. Toyoko proposes no further action related to soils on the subject property until such time the property is developed and/or

¹⁷ http://ga.water.usgs.gov/publications/ggs/ic-63/pdf/GGS-IC-63.pdf

¹⁸ http://ga.water.usgs.gov/publications/ggs/ic-63/pdf/GGS-IC-63.pdf

¹⁹ EPA. "Technical factsheet on: polycyclic aromatic hydrocarbons (PAHs)."

excavation activities to the depth of impacted soils (i.e., greater than 8 ft bgs) occur related to site usage.

• Implementation of an environmental covenant that conforms with O.C.G.A. §44-161-1, *et seq*, the Georgia Uniform Environmental Covenants Act, with a corresponding deed notice, restricting future uses of the subject property for the purpose of certifying compliance with site-specific Type 3 and 4 RRS.

6 Schedule

The work to be done at the subject property includes ensuring that all cores in the asphalt cap that were created by the advancement of borings during site investigation are sealed. Filling/sealing any other significant cracks noted in the asphalt cap will also be performed.²⁰ The asphalt cap will be inspected once per year and any necessary repairs made to ensure that the cap provides a sufficient barrier to direct human contact with soil and impedes infiltration of precipitation.

- An environmental covenant restricting future uses of the subject property will be implemented within one year of application acceptance.
- Initial inspection will occur within one month of application acceptance.
- Subsequent annual inspections for pavement breaches will be conducted at the beginning of spring each year (late March/early April) so that any cracks caused by the winter weather will be identified in a timely manner.
- Any necessary repairs will be made within two months of the initial and future site inspections.
- The Compliance Status Report (CSR) will be completed within one year of application acceptance.

²⁰ Significant cracks are considered to be any cracks in the asphalt greater than 1 inch in width or 3 feet in length.

Appendix A

Voluntary Remediation Program Application Form

Voluntary Investigation and Remediation Plan Application Form and Checklist

•

VRP APPLICANT INFORMATION						
COMPANY NAME	Toyoko Inn Atlanta, LLC					
CONTACT PERSON/TITLE	Bruce White					
ADDRESS	One North Wacker	Drive, Su	uite 4400, Chicago,	IL 60606-28	333	
PHONE	312-214-4584	FAX	312-759-5646	E-MAIL	bruce.wh	ite@btlaw.com
GEORGIA CE	RTIFIED PROFESSION	NAL GEO	LOGIST OR PRO	FESSIONAL	ENGINEEF	R OVERSEEING CLEANUP
NAME	Michael Wild			GA PE/PG	NUMBER	PE# 20443
COMPANY	NewFields					
ADDRESS	1349 West Peachtree	St NW, S	uite 2000, Atlanta,	GA 30309		_
PHONE	404-347-9050	FAX	404-347-9080	E-MAIL	mwild@n	ewfields.com
		APP	LICANT'S CERTIF	ICATION		
In order to be considered a qu	alifying property for the VRP:					
 (B) Currently undergoing (C) A facility required to I (3) Qualifying the property und similar authorization from the L (4) Any lien filed under subsec director pursuant to Code Sec In order to be considered a pa (1) The participant must 	 9601. (B) Currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or (C) A facility required to have a permit under Code Section 12-8-66. (3) Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency. (4) Any lien filed under subsection (e) of Code Section 12-8-96 or subsection (b) of Code Section 12-13-12 against the property shall be satisfied or settled and released by the director pursuant to Code Section 12-8-94 or Code Section 12-13-6. In order to be considered a participant under the VRP: (1) The participant must be the property owner of the voluntary remediation property or have express permission to enter another's property to perform corrective action. 					
 (2) The participant must not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the director. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I also certify that this property is eligible for the Voluntary Remediation Program (VRP) as defined in Code Section 12-8-105 and I am eligible as a participant as defined in Code Section 12-8-106. 						
APPLICANT'S SIGNATURE	[A]	HT.	<u></u>			
APPLICANT'S NAME/TITLE (PRINT)	Bauce (1)415	ATTORNY	<u> </u>		E 114721,2015
VOLUNTARY REMEDIAT	VOLUNTARY REMEDIATION PLAN FORM 03/30/2010 PAGE 1 Revised 12/1/2010					

QUALIFYING	PROPERTY INFORMATION (For additional q	ualifying properties, please refer to the	last page of application	form)
		NTORY INFORMATION (if applicable)		
HSI Number	10899	Date HSI Site listed	2/11/2009	
HSI Facility Name	90 - 94 Forsyth St and 85 Luckie St	NAICS CODE	812930	
		RTY INFORMATION		
TAX PARCEL ID	14-0078-0012-057-4	PROPERTY SIZE (ACRES)	0.3099	
PROPERTY ADDRESS	90 - 94 Forsyth Street and 85 Luckie	Street		
CITY	Atlanta	COUNTY	Fulton	
STATE	GA	ZIPCODE	30303	
LATITUDE (decimal format)	33.757083	LONGITUDE (decimal format)	-84.389050	
	PROPERTY	OWNER INFORMATION		
PROPERTY OWNER(S)	Toyoko Inn Atlanta, LLC	PHONE #		
MAILING ADDRESS	c/o Bruce White, Barnes & Thornburg	g, LLP, One North Wacker Drive, S	uite 4400	
CITY	Chicago	STATE/ZIPCODE	IL 60606-2833	
ITEM #	DESCRIPTION OF F	REQUIREMENT	Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (Leave Blank)
1.	\$5,000 APPLICATION FEE IN THE FORM C GEORGIA DEPARTMENT OF NATURAL RE (PLEASE LIST CHECK DATE AND CHECK I "LOCATION IN VRP." PLEASE DO NOT INC IN ELECTRONIC COPY OF APPLICATION.)	Attached to VRP		
2.	WARRANTY DEED(S) FOR QUALIFYING P	ROPERTY.	Appendix B	
3.	TAX PLAT OR OTHER FIGURE INCLUDING BOUNDARIES, ABUTTING PROPERTIES, A NUMBER(S).	Map in Appendix B Parcel 14 00780012057		
4.	ONE (1) PAPER COPY AND TWO (2) COMP VOLUNTARY REMEDIATION PLAN IN A SE FORMAT (PDF).	CDs attached to VRP		
			 CSM: p.11-19 Remediation plan: p.20-21 Delineation standards: p. 16 Surface and subsurface setting: p.11-13 Suspected sources: p.13-16 Exposure pathways: p.19-20 Projected schedule: p.21 	

	during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary:	
5.a.	Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment;	Completed March 2008 - p.16-19
5.b.	Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;	Completed - p.16-19 March 2008
5.c.	Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and	Completed - p.16-19 March 2008
5.d.	Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP, including the requisite certifications.	Scheduled - p.21
CHAELR. WIL	SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION: "I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, <u>et seq</u> .) Iam a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances. Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring. I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Iam aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations." M:LACEULE 20443 Printed Name and GA PE/PG Number Signature and Stamp	

ADDITIONAL QUALIFYING PROPERTIES (COPY THIS PAGE AS NEEDED)

PROPERTY INFORMATION						
TAX PARCEL ID	PROPERTY SIZE (ACRES)					
PROPERTY ADDRESS						
CITY	COUNTY					
STATE	ZIPCODE					
LATITUDE (decimal format)	LONGITUDE (decimal format)					
	PROPERTY OWNER INFORMATION					
PROPERTY OWNER(S)	PHONE #					
MAILING ADDRESS						
CITY	STATE/ZIPCODE					

PROPERTY INFORMATION						
TAX PARCEL ID	PROPERTY SIZE (ACRES)					
PROPERTY ADDRESS						
CITY	COUNTY					
STATE	ZIPCODE					
LATITUDE (decimal format)	LONGITUDE (decimal format)					
	PROPERTY OWNER INFORMATION					
PROPERTY OWNER(S)	PHONE #					
MAILING ADDRESS						
CITY	STATE/ZIPCODE					

PROPERTY INFORMATION						
TAX PARCEL ID	PROPERTY SIZE (ACRES)					
PROPERTY ADDRESS						
CITY	COUNTY					
STATE	ZIPCODE					
LATITUDE (decimal format)	LONGITUDE (decimal format)					
	PROPERTY OWNER INFORMATION					
PROPERTY OWNER(S)	PHONE #					
MAILING ADDRESS						
CITY	STATE/ZIPCODE					

Appendix B

Warranty Deed, Land Title Survey Map and Legal Description

Nm:BARNESTHORNBURG(1713243), Rq:239,1

Deed Book 46608 Pg: 276 Filed and Recorded Apr-15-2008 03:30pa 2008-0087909 Real Estate Transfer Tax \$3,943.00 Cathelene Robinson Clerk of Superior Court Fulton County, Georgia CROSS REFERENCE DE Book 48472 Page 555 CROSS REFERENCE DE Book 48472 Page 601

AFTER RECORDING RETURN TO: PRED BU & CALLOWAY TITLE AND ESCROW, L.L.C. 4170 Ashford-Dunwoody Road, Suite 285 Atlanta, GA 30319 Attn.: S. Marcus Calloway, Esquire

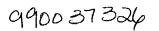
-> MASUDA FUNAI ZOB N. LASALLE, SUITE 2500 CHICAGO, ILLINDIS 60601-1262 ATTN: SHINYA YAMAMOTO

STATE OF GEORGIA

COUNTY OF FULTON

LIMITED WARRANTY DEED

THIS INDENTURE, made and entered into effective the Bhay of April, 2008, between SELIG ENTERPRISES, INC., a Georgia corporation (the "Grantor"), in favor of TOYOKO INN ATLANTA, LLC, a Delaware limited liability company (the "Grantee"), the words "Grantor" and "Grantee" to include their respective heirs, successors and assigns where the context requires or permits.


WITNESSETH:

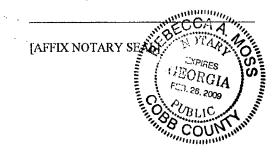
FOR AND IN CONSIDERATION of the sum of Ten and No/100 (\$10.00) Dollars in hand paid by Grantee to Grantor at and before the execution, sealing and delivery hereof, and other good and valuable consideration, the receipt, adequacy and sufficiency of which is hereby acknowledged, Grantor has granted, exchanged, bargained, aliened, conveyed and confirmed, and by these presents does grant, exchange, bargain, alien, convey and confirm unto Grantee, all of the right, title and interest of Grantor in and to all that tract or parcel of land, situated, lying and being in Land Lot 78 of the 14th District, Fulton County, Georgia, commonly known as 90 Forsyth Street, and being more particularly described on Exhibit "A" annexed hereto, together with all rights, members, easements and improvements located thereon or appurtenant thereto (collectively, the "Property").

TO HAVE AND TO HOLD the Property, together with any and all of the rights, members and appurtenances thereof, to the same being, belonging or in any wise appertaining, to the only proper use, benefit and behoof of Grantee forever, in FEE SIMPLE.

THIS CONVEYANCE and Grantor's warranty of title are subject only to those matters set forth in <u>Exhibit "B"</u> annexed hereto.

H:LEGAL - ACQUISITION FILES - RAM'90 Forsyth St. - Sale to Toyoko Inn USA, Inc.\Closing Documents 4-3-08.doc

GRANTOR SHALL WARRANT and forever defend the right and title to the Property unto Grantee, and the successors, legal representatives and assigns of Grantee, against the claims of all persons whomsoever holding, owning or claiming by, through or under Grantor, it being the intention of the parties hereto that such warranties shall be limited to only such period of time that Grantor owned the Property, subject to matters referred to in the preceding paragraph.


IN WITNESS WHEREOF, Grantor has signed, sealed and delivered this Limited Warranty Deed under seal, the day and year first above written.

<u>GRANTOR</u>:

Signed, sealed and delivered in the presence of: fficial Witness

Notary Public

My Commission Expires:

SELIG ENTERPRISES, INC., a Georgia corporation By: Sarahan and a start of the star William J. Dawkins, Senior Vice President and Secretary [CORPORATE SEAL]

HALEGAL - SALE FILES - RAM90 Forsyth St. - Sale to Toyoko Inn USA, Inc./Closing Documents 4-3-08.doc

EXHIBIT A

All that tract or parcel of land lying and being in Land Lot 78 of the 14th District, Fulton County (originally Henry County), Georgia; and being more particularly described as follows:

BEGINNING at a nail set at the intersection of the northwest side of Forsyth Street and the northeast side of Luckie Street; and running thence along the northwest side of Forsyth Street, a distance of 100.07 feet to an iron pin placed; running thence along a course (forming an interior angle of 90 degrees 23 minutes 55 seconds with the last said course), a distance of 135.08 feet to a point; running thence along a course (forming an interior angle of 89 degrees 36 minutes 30 seconds with the last said course), a distance of 99.96 feet to a nail set on the northeast line of the right-of-way of Luckie Street; running thence along a course (forming an interior angle of 90 degrees 25 minutes 55 seconds with the last said course), and following along the said northeast line of the right-of-way of Luckie Street, a distance of 135.09 feet to a nail set, and the Point of Beginning; all according to that certain plat of survey for Peter E. Blue and Robert S. Prother, Jr., dated July 17, 1973, and made by William H. Yeal, Georgia registered Land Surveyor No. 1448. •

.

٩

• `

, ·

.

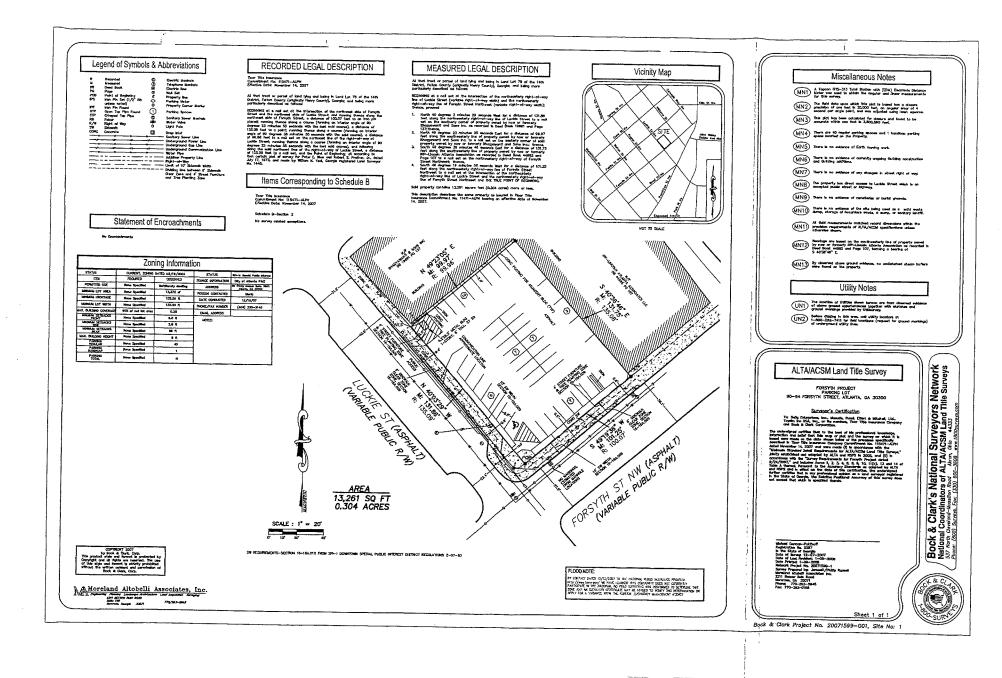

Deed Book 46608 Pg 279 Cathelene Robinson Clerk of Superior Court Fulton County, Georgia

EXHIBIT "B" Permitted Title Exceptions

- 1. All taxes for the year 2008 and subsequent years, not yet due and payable.
- 2. Riparian rights incident to the premises.

HALEGAL - SALE FILES - RAM90 Forsyth St. - Sale to Toyoko Inn USA, Inc./Closing Documents 4-3-08.doc

•

Appendix C

Phase II Environmental Site Assessment (Including Boring Logs and Lab Results)

PHASE II ENVIRONMENTAL SITE ASSESSMENT 90-94 Forsyth Street NW and 85 Luckie Street Atlanta, Georgia

ł

TABLE OF CONTENTS

1.0	INTRODUCTION1
	1.1 Authorization
	1.2 Significant Assumptions
	1.3 User Reliance
2.0	SITE DESCRIPTION4
	2.1 Site Description
	2.2 Background
	2.3 Geology/Hydrogeology
3.0	SAMPLING ACTIVITIES
	 3.1 Soil Sampling Methodology
	3.2 Water Sampling Methodology10
	3.3 Property Soil and Groundwater Conditions
	3.4 Sample Selection and Laboratory Analytical Methods
4.0	SOIL ANALYTICAL RESULTS
5.0	CONCLUSIONS
6.0	SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

the second s	
WEAVER	
B008	
CONSULTANTS	3

i

PHASE II ENVIRONMENTAL SITE ASSESSMENT 90-94 Forsyth Street NW and 85 Luckie Street Atlanta, Georgia

TABLE OF CONTENTS

LIST OF TABLES

Table 1VOCs Soil Analytical Summary

ł

Table 2SVOCs Soil Analytical Summary

LIST OF FIGURES

Figure 2 Site Layout Map

Figure 3 Soil Boring Location Maps

Figure 4 Estimated Extents of Soil Impacts

LIST OF APPENDICES

- Appendix A ALTA/ACSM Land Title Survey
- Appendix B Property Photographs
- Appendix C Soil Boring Logs
- Appendix D Laboratory Analytical Reports

WEAVER BOOB CONBULTANTS

1.0 INTRODUCTION

Weaver Boos Consultants North Central, LLC (Weaver Boos) has completed this Phase II Environmental Site Assessment (ESA) of the Property located at 90-94 Forsyth Street NW and 85 Luckie Street in Atlanta, Georgia (the Property) to further assess the environmental condition of the Property. Specifically, Weaver Boos performed a Phase I Environmental Site Assessment (ESA) for the Property dated January 11, 2008. The Phase I ESA identified the following recognized environmental condition with respect to the Property.

• The potential subsurface impacts in connection with the presence of multiple historical dry cleaners located on adjoining properties.

According to our review of standard environmental record sources, historical local city directories and historical fire insurance maps during our Phase I ESA, two historical drycleaners were located to the west and northeast of the Property. Additionally, Weaver Boos noted the presence of a laundry operation with potential drycleaning operations located in the former Piedmont Hotel adjoining the Property to the southeast. Based on the presence of the adjoining historical drycleaning operations and numerous historical drycleaners in the immediate vicinity (within approximately 500 feet) of the Property as listed in standard environmental record sources, the potential exists for dry cleaning solvents and degradation products to have impacted subsurface soil and/or groundwater beneath the Property.

In January 2008, Weaver Boos initially completed a limited Phase II ESA in an effort to further assess the aforementioned recognized environmental condition. The limited Phase II ESA was completed in conjunction with a geotechnical survey performed by MACTEC Engineering and Consulting, Inc. (Mactec), which included as many as 25 geotechnical soil borings on the Property. Based on the laboratory analyses of the soil samples collected during our January 2008 assessment activities, Weaver Boos completed a supplemental Phase II ESA in March 2008 in an effort to further evaluate the extents of impacted soil identified during our January 2008 assessment activities.

1.1 Authorization

Weaver Boos initiated the limited Phase II ESA pursuant to authorization received from Mr. Keith Groebe and Mr. Shinya Yamamoto of Masuda, Funia, Eifert, & Mitchell, Ltd. on January 4, 2008. Weaver Boos initiated the supplemental Phase II ESA pursuant to authorization received from Mr. Yamamoto on February 22, 2008. Weaver Boos conducted the field activities upon approval of scopes of work by Mr. Yamamoto on January 11, 2008 and February 22, 2008.

1

1.2 Significant Assumptions

Weaver Boos formulated this report using a defined scope of services considered appropriate and agreed upon by all parties on the date the service was authorized, unless the scope of services or the methods used were later modified, in writing, and accepted by all parties prior to performance.

Weaver Boos conducted this investigation in accordance with generally accepted practices in a manner consistent with that level of care exercised by other members of our profession in the same locality and under similar conditions of time and accessibility of improvements and information. No other representations, expressed or implied, and no warranty or guarantee is included or intended to be part of this investigation.

Please note that the scope of services performed in execution of this assessment may not be appropriate to satisfy the needs of other parties. We, therefore, cannot be responsible for independent conclusions, opinions, or recommendations of others based on our assessment. Weaver Boos does not represent that this Phase II ESA reflects the findings of all of the information available for the Property, nor is it representative of any future Property conditions. If additional information from the Property is generated, it should be provided to us so that we may evaluate its impact on our conclusions. As such, any activities or episodes that transpire subsequent to this Phase II ESA are not considered in this assessment. It should be noted that no assessment can completely eliminate the possibility of hazardous waste and/or environmental contamination at a particular site.

1.3 User Reliance

This report is confidential and has been prepared for Toyoko Inn Development Co., Ltd. c/o Masuda, Funai, Eifert & Mitchell, Ltd. (Client). No additional parties may use the information contained in this report without obtaining the written permission of Weaver Boos and the Client. Weaver Boos' duties and obligations extend only to the Client. Weaver Boos' duties and obligations to such parties are not transferable to any person, corporation, or organization without the express written consent of the Client and Weaver Boos.

This report must be read and interpreted as a whole and can only be considered representative of the conditions of the Property as of the date of our investigation described herein. Weaver Boos makes no representation whatsoever concerning the condition of the Property beyond the date of our investigation described herein. Individual sections and appendices of this report are dependent on the balance of this report, and on the terms, conditions, and stipulations contained in the proposal, the report, and any written amendments accepted by Weaver Boos.

2

The following report provides a description of the Property, including Property geology/hydrogeology, followed by a description of the investigation activities undertaken to further investigate the potential impact at the Property. A discussion of the analytical results is presented next, followed by our conclusions based on the data collected during our assessment activities.

WEAVER 1006 CONSULTANTS

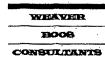
F:\PROJECTS\1782\308\03\Phase II ESA Report (Atlanta, GA) - Final.doc

3

2.0 SITE DESCRIPTION

2.1 Site Description

The Property is located at 90-94 Forsyth Street NW and 85 Luckie Street in Atlanta, Georgia (see **Figure 1**). The Property is oriented in a northwest-southeast direction and generally lies 'northwest of Forsyth Street NW, northeast of Luckie Street, southeast of Fairlie Street NW, and southwest of Williams Street NW (see **Figure 2**).


The Property is currently occupied by AAA Parking and is owned by Selig Enterprises, Inc. Based on our observations of the Property and the ALTA/ACSM Land Title Survey prepared by Moreland Altobelli Associates, Inc., dated January 9, 2008, the Property contains approximately 0.304 acres and is currently developed with an asphalt-paved public parking lot, parking attendant booth and two billboard signs. The Property includes approximately 100 feet of frontage along Forsyth Street NW and approximately 135 feet of frontage along Luckie Street. The Property is described as Land Lot 78 of the 14th District in Fulton County, Atlanta, Georgia A copy of the ALTA/ACSM Land Title Survey for the Property along with the Property legal description are included in Appendix A.

2.2 Background

Weaver Boos performed a Phase I ESA for the Property dated January 11, 2008. At the time of the Phase I ESA, the Property appeared to be developed as a public parking lot including improvements as described above. The Phase I ESA identified the following recognized environmental condition at the Property.

• The potential subsurface impacts in connection with the presence of multiple historical dry cleaners located on adjoining properties.

According to our review of standard environmental record sources, historical local city directories and historical fire insurance maps during our Phase I ESA, the historical use of the Property included an approximately 12-story office and parking garage building (i.e., the Forsythe Building) from approximately 1929 to 1978 and prior to the current use of the Property as a parking lot. In addition, two historical drycleaners were located to the west and northeast of the Property. Additionally, Weaver Boos noted the presence of a laundry operation with potential drycleaning operations located in the former Piedmont Hotel adjoining the Property to the southeast. Based on the presence of the adjoining historical drycleaning operations and

numerous historical drycleaners in the immediate vicinity (within approximately 500 feet) of the Property as listed in standard environmental record sources, the potential exists for dry cleaning solvents and degradation products to have impacted subsurface soil and/or groundwater beneath the Property.

I

In January 2008, Weaver Boos initially completed a limited Phase II ESA in an effort to further assess the aforementioned recognized environmental condition. The limited Phase II ESA was completed in conjunction with a geotechnical survey performed by Mactec, which included as many as 25 geotechnical soil borings on the Property. Based on the laboratory analyses of the soil samples collected during our January 2008 assessment activities, Weaver Boos completed a supplemental Phase II ESA in March 2008 in an effort to further evaluate the extents of impacted soil identified during our January 2008 assessment activities.

2.3 Geology/Hydrogeology

ł

Based on Weaver Boos' review of certain Georgia Geologic Mapping Institute documents (Higgins, Michael W., 2006), "The Atlanta quadrangle, roughly centered on the City of Atlanta, spans from the Valley and Ridge province in its northwestern corner across the Blue Ridge and into the inner Piedmont. The Brevard zone crosses the quadrangle diagonally. The Blue Ridge in western Georgia and Alabama consists of a pile of nappes made up of folded thrust sheets. In the Villa Rica nappe Chilhowee Group rocks are both above and below the core of Great Smoky Group rocks.

Southwest of the Brevard zone is the Atlanta nappe, which preserves a klippe of Lake Russell allochthon, Carolina superterrane, at Soapstone Ridge. Carolina superterrane rocks (Paulding Complex) are also found northwest of the Brevard. Mylonites along the Southeast edge of the Brevard zone dip under the Atlanta nappe. These mylonites also dip under the northeast end of the nappe, where they belong to the Dacula shear zone. East of the Atlanta nappe the Lithonia Gneiss consists of a granitoid phase and the Mount Arabia Migmatite. The migmatite occurs mostly around the edges of the granitoid phase and was probably formed when the Ordovician granitoid phase intruded Stonewall biotite gneiss, which occurs around the edges of the Lithonia and locally as roof pendants on/in the granitoid phase.

Atop the Lithonia, the Stonewall Gneiss and units of the Allatoona allochthon are the aluminous schist and Chattahoochee Palisades Quartzite of the Sandy Springs Group. The Lithonia, its country rock, the Stonewall Gneiss, and overlying Sandy Springs rocks constitute a mantled

gneiss dome assemblage. The aluminous schist and quartzite are interpreted to have been deposited unconformably upon the Lithonia and the other units and were metamorphosed with the Lithonia and thrust across it. Sandy Springs Group rocks emerge from beneath the Brevard and form an outcrop belt along its northwest side.

Northwest of the Sandy Springs outcrop belt the Allatoona allochthon occupies the upper synformal limb of the Villa Rica nappe and is arched over the Dog River window to expose western Blue Ridge rocks of the Great Smoky and Chilhowee Groups. Northwest of the Allatoona allochthon Great Smoky Group and Chilhowee Group rocks emerge from beneath the allochthon and are part of the Talladega belt. Ordovician granitoids have intruded the Great Smoky rocks, providing evidence that the Emuckfaw/Lay Dam/Bill Arp rocks are older than Ordovician."

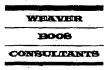
Weaver Boos reviewed the USGS 1997 Northwest Atlanta, Georgia, 7.5-minute quadrangle topographic map showing the area in which the Property is located (see **Figure 1**). The USGS map shows that the Property is at an elevation of approximately 1,058 feet above mean sea level. Additionally, based on our review of the topographic map, the area of the Property is sloping to the northwest. Since the groundwater flow generally mimics the surface topography, the estimated groundwater flow in the area of the Property would potentially be to the northwest toward a reservoir located approximately 2.5 miles northwest of the Property.

BOOS
CONBULTANTS

3.0 SAMPLING ACTIVITIES

3.1 Soil Sampling Methodology

3.1.1 Soil Boring Drilling Contractor

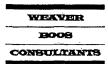

On January 16, 17 and 18, 2008, MACTEC Engineering and Consulting, Inc. (Mactec) of Atlanta, Georgia completed environmental soil sampling from three soil borings in conjunction with their geotechnical survey, which included as many as 25 geotechnical soil borings on the Property. Specifically, three of soil borings (B-1, B-21 and B-24) were completed in the eastern, southeastern and western portions of the parking lot on the Property and were utilized to assess the environmental condition of the soil and groundwater beneath the Property. Specifically, two soil borings (B-1 and B-21) were advanced along the southeastern and southwestern Property boundaries near the above referenced historical drycleaners. Additionally, one soil boring (B-24) was advanced along the southern portion of the southeast Property boundary near the historical laundry and potential drycleaning operations indicated in the former Piedmont Hotel to the southeast of the Property.

On March 3, 4, and 5, 2008, Piedmont Environmental Drilling (Piedmont) of Narcross, Georgia completed environmental soil sampling from an additional nine soil borings completed on the Property. The additional soil borings were completed in an effort to further evaluate the extents of impacted soil identified in soil borings B-1 and B-24 during our January 2008 assessment activities. Specifically, Weaver Boos completed an additional nine soil borings (soil borings EB-1 through EB-9) in a grid pattern across the Property to depths ranging from 9.5 to 21 feet bgs.

Mactec and Piedmont completed the soil borings using a truck-mounted rotary-type drilling rig equipped with hollow-stem augers for the 12 environmental soil borings completed at the Property. Prior to drilling activities, Mactec contacted a private utility locator, to locate public and private utilities on the Property. Weaver Boos representative, Mr. Daniel Tonissen, was present during the soil boring activities to observe and document field conditions and collect the soil samples. Photographs showing the soil boring locations are included in **Appendix B**.

3.1.2 Soil Boring Drilling Methodology

In an effort to assess the areas of concern originally identified in our January 11, 2008 Phase I ESA, Weaver Boos initially completed three environmental soil borings to depths ranging from 18.5 to 23.5 feet bgs during our limited Phase II ESA in January 2008. Specifically, as


7

mentioned above, three of geotechnical soil borings (B-1, B-21 and B-24) were completed in the eastern, southeastern and western portions of the parking lot on the Property and were utilized to assess the environmental condition of the soil and groundwater beneath the Property. Two of the soil borings (B-1 and B-21) were advanced along the southeastern and southwestern Property boundaries near the above referenced historical drycleaners. Additionally, one soil boring (B-24) was advanced along the southern portion of the southeast Property boundary near the historical laundry and potential drycleaning operations indicated in the former Piedmont Hotel to the southeast of the Property. In addition, one of the soil borings (B-24) was completed as temporary monitoring well. **Figures 3a** and **3b** show the location of the environmental soil borings completed on the Property.

On January 16, 2008, Mactec drilled soil borings B-21 and B-24 using a truck-mounted rotarytype drilling rig equipped with hollow-stem augers and split-spoon sampling equipment. On January 17, 2008, Mactech drilled soil boring B-1 using a truck-mounted rotary-type drilling rig equipped with hollow-stem augers and split-spoon sampling equipment; however, a concrete pad was encountered at approximately 10 feet bgs, which resulted in auger refusal. On January 18, 2008, Mactec continued the drilling of soil boring B-1 using an "air-hammer⁵" to break through the concrete encountered at 10 feet bgs. Additionally, during the drilling of soil boring B-1, Weaver Boos noted a very hard layer of rock or concrete encountered at 13.5 to 18 feet bgs, which required use of the air-hammer. After drilling through the 13.5 to 18-foot interval, Mactec resumed sampling with the split-spoon soil sample, where gneiss bedrock was encountered in B-1 at approximately 18.5 feet bgs.

Based on the laboratory analyses of the soil samples collected during our January 2008 assessment activities, Weaver Boos completed a supplemental Phase II ESA in March 2008 in an effort to further evaluate the extents of impacted soil identified in soil borings B-1 and B-24 during our January 2008 assessment activities. Specifically, Weaver Boos completed an additional nine soil borings (soil borings EB-1 through EB-9) in a grid pattern across the Property to depths ranging from 9.5 to 21 feet bgs. In addition, two of the soil borings (EB-1 and EB-3) were completed as temporary monitoring wells in an effort to further assess the

⁵An "air-hammer" uses compressed air and a rigid metal hammer to break apart solid obstructions in the subsurface. and to penetrate to greater depths that would not be possible with the standard hollow-stem auger. The use of the air hammer decimates the soil/rock into sand or silt sized particles, which are then blown out the top if the borehole using the compressed air. Therefore, use of the air hammer, while helpful in advancing depth, results in a lack of sample collection from the interval in which it is used

groundwater conditions on the Property. Figures 3a and 3b show the location of the environmental soil borings completed on the Property.

On March 3, 2008, Piedmont drilled soil borings EB-1, EB-2, EB-3, and EB-4 using a truckmounted rotary-type drilling rig equipped with hollow-stem augers and split-spoon sampling equipment. During the drilling of soil boring B-1, Weaver Boos noted a very hard layer of concrete encountered at 10 feet bgs, which resulted in auger refusal. On March 4, 2008, Piedmont drilled soil borings EB-5 and EB-6, which exhibited concrete and/or concrete debris at depth of 8 to 13 feet bgs. On March 5, 2008, Piedmont completed soil borings EB-7, EB-8, and EB-9 and further advanced soil boring EB-1. During the drilling of soil borings EB-1, EB-5, EB-6, EB-7, EB-8, and EB-9, concrete and/or concrete debris was encountered at various depths ranging from 8 to 14 feet bgs, which necessitated the use of the "air hammer" using the methods described previously. After drilling through the concrete layers, Piedmont resumed sampling in the underlying native soil material using the split-spoon soil sampler.

During the drilling activities, Mactec and Piedmont generally collected soil samples continuously during the performance of truck-mounted soil borings by pushing a 2-foot, one-inch diameter split-spoon sampler into the undisturbed soil immediately below the hollow-stem auger bit, conditions permitting. Mactec and Piedmont decontaminated non-disposable sampling equipment before each sample was collected. The cleaning process consisted of an initial wash with an Alconox/water solution followed by a water rinse. Upon completion of each soil boring, a mix of soil cuttings and bentonite chips were placed into the boring holes.

3.1.3 Soil Sample Inspection, Field Screening, and Sample Collection Methodology

Upon collection of each sample interval collected using the split-spoon soil sampler, Weaver Boos screened each 2-foot interval of soil collected in the split-spoon soil sampler for the presence of volatile organic vapors using a MiniRAE 2000 photo ionization detector (PID) equipped with a 10.6 electron-volt lamp. The PID provides a qualitative field measurement of volatile organic vapors contained in the sample. The field screening process involved placing a portion of the soil sample in a clean zip-lock plastic bag, which was allowed to volatilize for several minutes. The headspace was then sampled and volatile organic vapor concentrations were measured and recorded. In addition, Weaver Boos logged the soil color, soil type, moisture content, visual and olfactory observations, and other applicable characteristics for each soil sample as they were collected. During our drilling activities, no apparent petroleum or chemical

odors were encountered in soils obtained from the split spoon samples collected from each soil boring. Appendix C contains the soil logs for each of the soil borings.

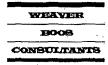
Weaver Boos used the PID measurements and other notable observations of potential impact, such as the nature of the material and apparent odors or staining, if obviously present, in selection of the appropriate sample interval for laboratory analysis. Weaver Boos placed select soil samples from each soil boring into pre-cleaned, laboratory supplied sample containers preserved as necessary for subsequent laboratory analysis. The sample containers were tightly capped, labeled, and placed in a cooler and surrounded with ice in order to maintain their temperature near 4° C. Each sample was logged onto a chain-of-custody form, which is used to track the samples from the point of collection to receipt by the laboratory. The chain-of-custody is included with the laboratory analytical reports in **Appendix D**.

3.2 Water Sampling Methodology

During drilling activities, soil encountered in the soil borings appeared to be dry with no visible indications of groundwater. To further assess the potential for groundwater impacts at the Property, Mactech converted soil boring B-24 into a temporary monitoring well on January 16, 2008. In addition, Piedmont converted soil borings EB-1 and EB-3 into temporary monitoring wells on March 5, 2008 and March 3, 2008, respectively. Figures 3a and 3b show the location of the soil borings that were converted into temporary monitoring wells.

On January 16, 2008, Mactec constructed a temporary monitoring well in the location of soil boring B-24 by installing a 2-inch diameter, five-foot long, polyvinyl chloride (PVC) section of 0.01-inch slotted screen and 17 feet of riser to a total depth of approximately 22 feet bgs. The temporary monitoring well screen was set at the depth immediately above the encountered bedrock within weathered bedrock material and the annulus of the borehole remained open. The temporary monitoring well remained in the borehole for approximately 24-hours after a moderate precipitation event resulting in approximately a half inch of rain/snow. In an effort to reduce surface runoff from entering the temporary monitoring well, bentonite chips were placed on the ground surface around the perimeter of the borehole, and a metal plate was used to cover the borehole. On January 17, 2008, Weaver Boos gauged the temporary monitoring well to assess the groundwater elevations. Since no groundwater was observed in the temporary monitoring well, Weaver Boos did not collect a groundwater sample.

On March 3 and 5, 2008, Piedmont constructed temporary monitoring wells in the location of soil borings EB-3 and EB-1, respectively, by installing 2-inch diameter, ten-foot long, PVC


section of 0.01-inch slotted screens with PVC riser to the ground surface. The temporary monitoring wells were constructed to a total depth of approximately 13 feet bgs and soil boring EB-1 and approximately 18 feet bgs in soil boring EB-3. The temporary monitoring well screens were set within the fill material as well as the native soil material, and the annulus of the boreholes remained open. The temporary monitoring wells remained in the boreholes for approximately three hours in soil boring EB-1 and for approximately 48 hours in soil boring EB-3. It should be noted that the temporary monitoring well installed in soil boring EB-3 remained in the borehole at least 24 hours after an episode of sever weather and a significant precipitation event. On March 5, 2008, Weaver Boos gauged the temporary monitoring wells to assess the groundwater elevations. Since no groundwater was observed in the temporary monitoring wells, Weaver Boos did not collect any groundwater samples.

The temporary monitoring wells were abandoned upon completion of gauging activities by removing the PVC screens and risers and backfilling the boreholes with soil cuttings and granular bentonite, which is specially designed for abandonment of shallow boreholes, and the boreholes were patched with like surface material. The purpose of placing the granular bentonite into the open borehole is to form an expanding low-permeability seal with the hydrated granular bentonite.

3.3 Property Soil and Groundwater Conditions

Generally, Weaver Boos encountered primarily fill material overlying micaceous sandy silts with colors ranging from brown to red and varying particle sizes overlying gneiss bedrock. The fill material in 7 of the 12 soil borings completed on the Property exhibited "rubble" generally consisting of coarse-grained gravel, brick, wood, asphalt, sandy silts and concrete material at depths ranging from 4 to 14 feet bgs with concrete layers noted in 5 of the 7 soil borings at depths of 7.5 to 14 feet bgs. The fill material in the remaining five soil borings completed during our assessment activities generally consisted of coarse-grained gravel and sandy silts to depths ranging from approximately 10.5 to 18 feet bgs. Native material generally consisting of sandy silt and weathered bedrock was encountered beneath the aforementioned fill material to the depths of the completed soil borings or to the depth of bedrock. In the three soil borings completed during our January 2008 assessment, bedrock was encountered at depths of approximately 18.5 feet in soil boring B-1 to approximately 23.5 feet bgs in soil boring B-21.

During drilling activities, soil encountered in the borings appeared to be dry with no visible indications of groundwater. In addition, as summarized in Section 3.2, to further assess the

potential for groundwater impacts at the Property, soil borings B-24, EB-1 and EB-3 were converted into a temporary monitoring wells, which did not exhibit any groundwater approximately 5 to 48 hours after installation. Furthermore, according to Mactec, no groundwater was encountered in any of the remaining geotechnical soil borings completed on the Property during the January 2008 geotechnical drilling activities.

3.4 Sample Selection and Laboratory Analytical Methods

í

Weaver Boos submitted a total of 18 soil samples collected from the Property during our assessment activities for laboratory analyses. Specifically, at least one representative sample⁶ from each soil boring (12 soil samples) for laboratory analysis for certain compounds of concern in each area. In addition, three deeper soil samples collected from the native soil material that exhibited no apparent impacts were submitted from soil borings B-1, B-24, and EB-5 for laboratory analyses in an effort to further characterize the subsurface soil and to assess the vertical extent of impacts. Furthermore, three soil samples of the shallower fill material collected from soil borings EB-1, EB-5, and EB-6 were submitted for laboratory analyses in an effort to further characterize analyses in an effort to further characterize the subsurface soil and to assess the vertical extent of impacts. Furthermore, three submitted for laboratory analyses in an effort to further characterize analyses in an effort to further characterize for laboratory analyses in an effort to further characterize the subsurface soil and to assess the vertical extent of impacts. Furthermore, three soil samples of the shallower fill material collected from soil borings EB-1, EB-5, and EB-6 were submitted for laboratory analyses in an effort to further characterize subsurface soil overlying the identified impacted soil and to assess the vertical extent of impacts in those soil borings.

The select soil samples (18 soil samples total) collected from the Property were submitted to Test America located in Nashville, Tennessee for analysis using standard chain-of-custody documentation and handling procedures. Test America analyzed the select soil samples for volatile organic compounds (VOCs) using Method 5035/8260B and semi-volatile organic compounds (SVOCs) using Method 8270C, which are potential compounds of concern associated with historical adjoining property operations.

The deeper sample collected from soil boring B-24 (18 to 20) was analyzed for PNAs⁷ only in an effort to further evaluate the vertical extent of impacts identified in soil boring B-24 (10 to 12). The deeper sample collected from soil boring B-1 (11.5 to 13.5) was analyzed for VOCs and SVOCs in an effort to further evaluate the vertical extent of VOC and SVOC impacts identified

⁷ Polynuclear aromatic hydrocarbons using Method 8270C

⁶ Typically one sample from each soil boring that exhibited the greatest apparent degree of stains, odors, or elevated organic vapor measurements as measured with a PID. In borings that did not exhibit any apparent impacts or elevated organic vapor measurements, a representative sample from the depth of previously identified impacts was collected for laboratory analysis.

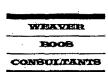
in soil boring B-1 (8 to 10). The deeper soil sample collected from soil boring EB-5 (17 to 19) was analyzed for VOCs in an effort to further evaluate the vertical extent of VOC impacts identified in soil boring EB-5 (9 to 11). It should be noted that the sample collected from soil boring B-24 (18 to 20) was analyzed after the laboratory analytical method hold time. However, the analytical data obtained provides a general characterization of the potential deeper subsurface soil conditions. In addition, the analytical data obtained from the deeper soil sample collected from soil boring EB-5 (17 to 19) located near soil boring B-24 further confirms the data obtained from soil boring B-24 (18 to 20).

The shallower sample of the overlying fill material collected from soil boring EB-1 (4 to 6) was were analyzed for SVOCs in an effort to further evaluate the vertical extent of impacts identified in soil boring EB-1 (8 to 10). The shallower sample collected from soil boring EB-5 (4 to 6) was analyzed for VOCs in an effort to further evaluate the vertical extent of VOC impacts identified in soil boring EB-5 (9 to 11), and the shallower sample collected from soil boring EB-6 (4 to 6) was analyzed for VOCs and PNAs in an effort to further evaluate the vertical extent of VOC and PNA impacts identified in soil boring EB-6 (8 to 9.5).

Sampling and laboratory analyses were performed in general accordance with approved techniques and methods as outlined in USEPA SW-846, Test Methods For Evaluating Solid Waste, Third Edition, and other published sources. The laboratory analytical reports, including the chains-of-custody, are provided in Appendix D. Tables 1 and 2 summarize the analytical results and compares them to Georgia's notification concentrations listed in Appendix I of the Georgia Environmental Protection Division, Rules for Hazardous Site Response, Chapter 391-3-19.

WEAVER
BOOB
CONSULTANTS

4.0 SOIL ANALYTICAL RESULTS


Soil collected from the 12 soil borings completed on the Property during our assessment activities exhibited no apparent chemical odors or staining. Weaver Boos measured organic vapor concentrations of soil ranging from 0.0 to 6.1 parts per million (ppm) when screened with a PID. The highest PID readings were encountered in fill material from soil borings B-21 and B-24 between approximately 8.5 and 10 feet bgs.

Laboratory analysis of the soil samples identified detectable concentrations of certain VOCs in 7 of the 16 soil samples analyzed. The soil samples collected from soil borings B-1 (8 to 10), EB-5 (9 to 11), and EB-6 (8 to 9.5) exhibited carbon disulfide concentrations of 0.00609 milligrams per kilogram (mg/kg), 0.0224 mg/kg, and 0.214 mg/kg, respectively, which exceeds Georgia's notification concentration⁸. The deeper soil samples analyzed from soil borings B-1 (11.5 to 13.5) and EB-5 (17 to 19) exhibited no detectable VOC concentrations, suggesting that the native soil material is not impacted and that the potential extent of VOC impacts is limited to the "rubble" fill material on the Property.

In addition, laboratory analysis of the soil samples identified detectable concentrations of certain SVOCs in 8 of the 16 soil samples analyzed. The soil samples collected from soil boring B-1 (8 to 10), B-24 (10 to 12), EB-1 (8 to 10), and EB-6 (8 to 9.5) exhibited benzo(a)pyrene concentrations ranging from 2.13 mg/kg to 24.5 mg/kg, which exceed Georgia's notification concentration of 1.64 mg/kg. The soil samples collected from soil borings EB-1 (8 to 10) and EB-6 (8 to 9.5) exhibited benzo(a)anthracene concentrations of 30.4 mg/kg and 5.03 mg/kg, respectively, which exceed Georgia's notification concentration of 5 mg/kg.

Furthermore, the soil sample collected from soil boring EB-1 (8 to 10) also exhibited various SVOC concentrations that exceed the notification concentrations. Specifically, detected PNA concentrations consisting of benzo(b)fluoranthene (33.6 mg/kg), benzo(k)fluoranthene (11.8 mg/kg), chrysene (26.6 mg/kg), and indeno(1,2,3-cd)pyrene (14.8 mg/kg) exceed the Georgia notification concentrations of 5 mg/kg for each compound. Additionally, the detected 2,6-dinitrotoluene concentration (0.884 mg/kg) identified in soil sample EB-1 (8 to 10) exceeds the Georgia notification concentration of 0.76 mg/kg

⁸ According to Appendix I of Rule 391-3-19, the notification concentration for carbon disulfide is the laboratory detection limit (i.e., 0.00549 mg/kg, 0.00567 mg/kg, and 0.00720 mg/kg).

The deeper soil samples analyzed from soil borings B-1 (11.5 to 13.5) and B-24 (18 to 20) and the shallower samples analyzed from soil borings EB-1 (4 to 6) and EB-6 (4 to 6) exhibited no detectable SVOC or PNA concentrations that exceed the notification concentrations, suggesting that the native soil material is not impacted and that the potential extent of SVOC impacts is limited to the "rubble" fill material on the Property.

In summary, based on the aforementioned laboratory analytical data, the "rubble" fill material on the Property appears to have been impacted by certain VOCs and SVOCs that exceed Georgia's notification concentrations. This fill material is believed to be related to building and demolition debris associated with an approximately 12-story office and parking garage building (i.e., the Forsythe Building) that occupied the Property from approximately 1929 to 1978 and prior to the current use of the Property as a parking lot.

Laboratory analyses of the deeper soil samples collected from the native soil material from soil borings B-1, B-24, and EB-5 did not exhibit any concentrations of the compounds of concern, suggesting that the impacts are localized to the overlying "rubble" fill material. Additionally, laboratory analyses of the soil collected from the shallower fill material from soil borings EB-1, EB-5 and EB-6 (i.e., generally consisting of less "rubble") did not identify detectable concentrations of the compounds of concern that exceed the Georgia notification concentrations, further suggesting that the identified impacts are limited to the "rubble" fill material.

Based on our observations, the extent of impacted fill/rubble material is generally located in the following two areas of the Property (Figure 4):

- Area A: Generally situated in the northwestern third of the Property, which encompasses soil borings B-1 and EB-1, and contains an area of approximately 3,196 square feet. The estimated thickness of impacted fill/rubble material is approximately 5.5 feet (i.e., approximately 6 to 11.5 feet bgs).
- Area B: Generally situated in the southeastern and central portions of the Property, which encompasses soil borings B-24, EB-5 and EB-6, and contains an area of approximately 3,962 square feet. The estimated thickness of impacted fill/rubble material is approximately seven feet (i.e., approximately 6 to 13 feet bgs).

5.0 CONCLUSIONS

Weaver Boos completed a Phase II ESA of the Property in an effort to assess the potential for subsurface impacts in connection with the recognized environmental condition identified in the January 11, 2008 Phase I ESA performed at the Property and to further evaluate the extent of identified impacts. Based on the field sampling, and laboratory analyses performed during our assessment activities described in this report, the following conclusions are set forth.

- The Property consisted primarily of fill material overlying micaceous sandy silts of varying colors and particle sizes overlying gneiss bedrock. The fill material on the Property included coarse-grained gravel and sandy silts and "rubble" generally consisting of coarse-grained gravel, brick, wood, asphalt, sandy silts and concrete material to depths ranging from approximately 10.5 to 18 feet bgs. The "rubble" fill material was generally encountered at depths ranging from 4 to 14 feet bgs with concrete layers noted in 5 of the 7 soil borings at depths of 7.5 to 14 feet bgs. Native material generally consisting of sandy silt and weathered bedrock was encountered beneath the aforementioned fill material to the depths of the completed soil borings or to the depth of bedrock, which was encountered at depths of approximately 18.5 feet in soil boring B-1 to approximately 23.5 feet bgs in soil boring B-21.
- No groundwater was encountered in any of the geotechnical soil borings completed on the Property. Furthermore, the temporary monitoring wells exhibited no measurable groundwater approximately 5 to 48 hours after installation.
- Based on field screening observations, the soil samples collected exhibited no apparent petroleum or chemical odors or staining.
- Laboratory analysis of the soil samples identified detectable concentrations of certain VOCs in 7 of the 16 soil samples analyzed. The soil samples collected from soil borings B-1 (8 to 10), EB-5 (9 to 11), and EB-6 (8 to 9.5) exhibited carbon disulfide concentrations of 0.00609 mg/kg, 0.0224 mg/kg, and 0.214 mg/kg, respectively, which exceeds Georgia's notification concentration⁹. The deeper soil samples analyzed from soil borings B-1 (11.5 to 13.5) and EB-5 (17 to 19) exhibited no detectable VOC

⁹ According to Appendix I of Rule 391-3-19, the notification concentration for carbon disulfide is the laboratory detection limit (i.e., 0.00549 mg/kg, 0.00567 mg/kg, and 0.00720 mg/kg).

concentrations, suggesting that the native soil material is not impacted and that the potential extent of impact is limited to the "rubble" fill material on the Property.

Laboratory analysis of the soil samples identified detectable concentrations of certain SVOCs in 8 of the 16 soil samples analyzed. Specifically, the soil samples collected from soil boring B-1 (8 to 10 feet bgs), B-24 (10 to 12), EB-1 (8 to 10), and EB-6 (8 to 9.5) exhibited benzo(a)pyrene concentrations ranging from 2.13 mg/kg to 24.5 mg/kg, which exceed Georgia's notification concentration of 1.64 mg/kg. In addition, soil samples collected from soil borings EB-1 (8 to 10) and EB-6 (8 to 9.5) exhibited benzo(a)anthracene concentrations of 30.4 mg/kg and 5.03 mg/kg, respectively, which exceed Georgia's notification concentration of 5 mg/kg. Analysis of the soil sample collected from soil boring EB-1 (8 to 10) also exhibited various SVOC concentrations that exceed the notification concentrations. Specifically, the detected concentrations of benzo(b)fluoranthene (33.6 mg/kg), benzo(k)fluoranthene (11.8 mg/kg), chrysene (26.6 mg/kg), 2,6-dinitrotoluene (0.884 mg/kg), and indeno(1,2,3-cd)pyrene (14.8 mg/kg) exceed the Georgia notification concentrations. The deeper soil samples analyzed from soil borings B-1 (11.5 to 13.5) and B-24 (18 to 20) and the shallower samples analyzed from soil borings EB-1 (4 to 6) and EB-6 (4 to 6) exhibited no detectable SVOC or PNA concentrations that exceed the notification concentrations, suggesting that the native soil material is not impacted and that the potential extent of SVOC impacts is limited to the "rubble" fill material on the Property.

In summary, the "rubble" fill material on the Property appears to have been impacted by certain VOCs and SVOCs that exceed Georgia's notification concentrations. This fill material is believed to be related to building and demolition debris associated with an approximately 12-story office and parking garage building (i.e., the Forsythe Building) that occupied the Property from approximately 1929 to 1978 and prior to the current use of the Property as a parking lot.

Laboratory analyses of the deeper soil samples collected from the native soil material from soil borings B-1, B-24, and EB-5 did not exhibit any concentrations of the compounds of concern, suggesting that the impacts are localized to the overlying "rubble" fill material. Additionally, laboratory analyses of the soil collected from the shallower fill material from soil borings EB-1, EB-5 and EB-6 (i.e., generally consisting of less "rubble") did not identify detectable concentrations of the compounds of concern that exceed the Georgia notification concentrations, further suggesting that the identified impacts are limited to the "rubble" fill material.

Based on our observations, the extent of impacted fill/rubble material is generally located in the following two areas of the Property:

- Area A: Generally situated in the northwestern third of the Property, which encompasses soil borings B-1 and EB-1, and contains an area of approximately 3,196 square feet. The estimated thickness of impacted fill/rubble material is approximately 5.5 feet (i.e., approximately 6 to 11.5 feet bgs).
- Area B: Generally situated in the southeastern and central portions of the Property, which encompasses soil borings B-24, EB-5 and EB-6, and contains an area of approximately 3,962 square feet. The estimated thickness of impacted fill/rubble material is approximately seven feet (i.e., approximately 6 to 13 feet bgs).

Furthermore, the detected concentrations exceeding Georgia's notification concentrations suggest that releases of regulated substances have occurred on the Property. These detected concentrations may potentially require notification to the Georgia Environmental Protection Division for further evaluation.

WEAVER BOOS CONSULTANTS

6.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

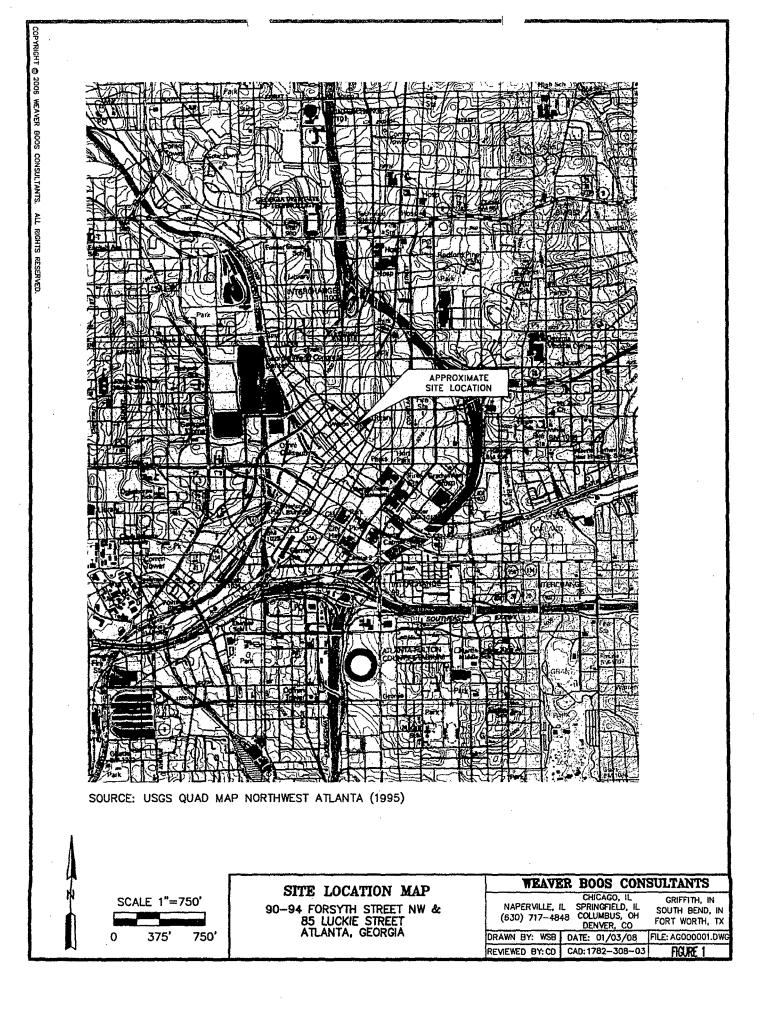
This Phase II ESA was performed under the direct supervision of or reviewed by the undersigned environmental professional.

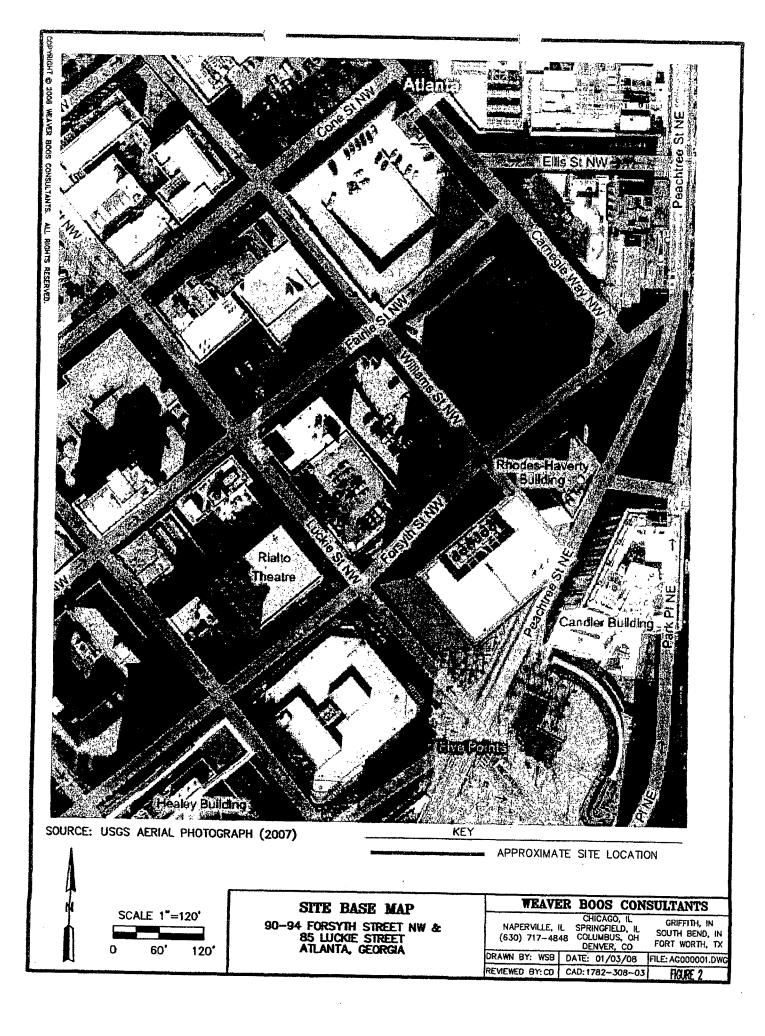
SMassen

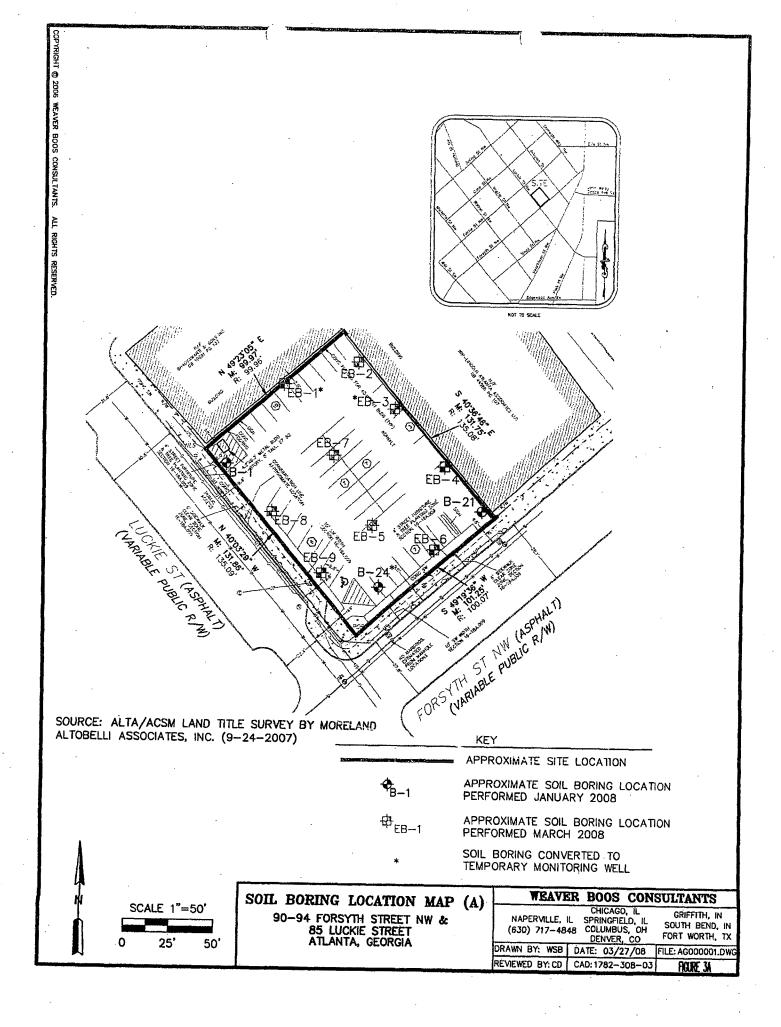
Daniel Tonissen Staff Geologist

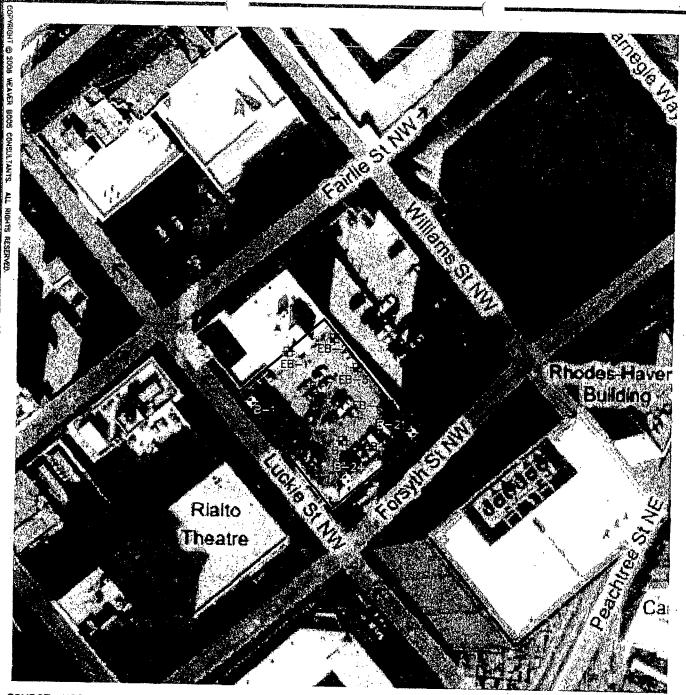
Carl R. Dawes

Senior Project Manager

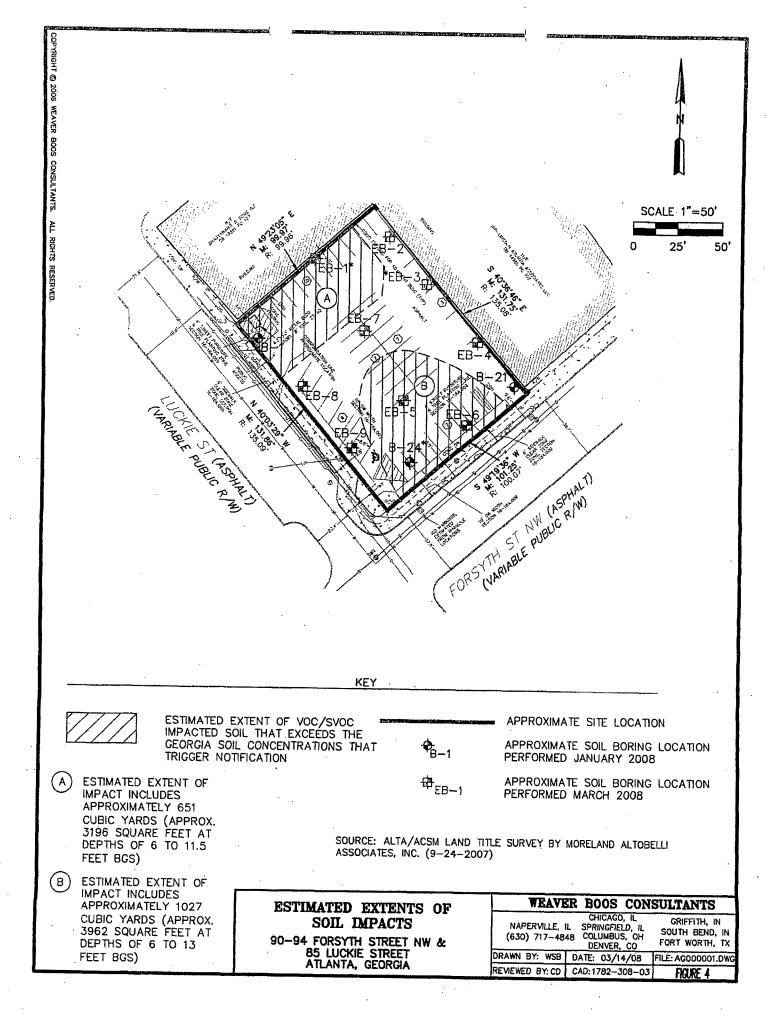

WEAVER BOOS CONSULTANTS


F:\PROJECTS\1782\308\03\Phase II ESA Report (Atlanta, GA) - Final.doc


·


(

Figures



SOURCE: USGS AERIAL PHOTOGRAPH (2007)

			KEY	· · · · · · · · · · · · · · · · · · ·
		Concerning and the second s	APPR	OXIMATE SITE LOCATION
		4 B-1	APPR(PERFC	DXIMATE SOIL BORING LOCATION RMED JANUARY 2008 (SHOWN IN YELLOW)
		₽ EB−1	APPR(PERFC	DXIMATE SOIL BORING LOCATION RMED MARCH 2008 (SHOWN IN GREEN)
		*	SOIL E TEMPC	BORING CONVERTED TO RARY MONITORING WELL
T.		SOIL BORING LOCATION MAN	P (B)	WEAVER BOOS CONSULTANTS
	SCALE 1"=80'	90-94 FORSYTH STREET NW & 85 LUCKIE STREET ATLANTA, GEORGIA		CHICAGO, IL GRIFFITH, IN NAPERVILLE, IL SPRINGFIELD, IL SOUTH BEND, IN (630) 717-4848 COLUMBUS, OH DENVER, CO FORT WORTH, TX
N	° 10 00			DRAWN BY: WSB DATE: 03/27/08 FILE: AG000001.DWG
				REVIEWED BY: CD CAD: 1782-308-03 FIGURE 38

TABLES

•

Tables

.

.

.

.

۲

Table 1 VOC Soil Analytical Summary 90-94 Forsyth Street NW and 85 Luckie Street Atlants, Georgia

				Weaver Boos Limited Phrue If (January 15-17, 2008)	at If (January 15-17,	2008]												
Acatre	Units	Soil Concentrations That Trigger Notification*	1.2	141	8-21	8-34	Ē	28-2	18-3	ł	â	EB-5	EB-5	68-6	EBK	1-4.3		ļ
				(5.61-5.11)	(8.5-10)	(10-12)	(8-10)	(10-12)	(10-12)	(10-12)	(4-6)	(9-11)	(61-11)	Į	(5.6-8)	(-1-2) (1 (î 1 j	(11-6)
Actione	me/Kr.	2.47	0.0661	<0.0508	<0.0507	<0.0683	0.0525	<0.0512	<0.0559	<0.0522	<0.0568	0.(13	<0.0539	<0.0582	6.123	9.0551	-10542	
Benzene	m0/Kg	0.02	<0.00220	<0,00203	<0.00203	0.00359	96100'0>	<0.00205	<0.00224	<0.00209	<0.00227	<0,00227	<0.00216	<0.00233	<0.00788	×1000.02	arcon or	L/ I'n
Bromobenzene	ms/Kg	1	<0,00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00785	PILUD US		00700-T
Bromochloromethane	me/Kg	;	<0.00220	c0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	40.00216	1100000	aaruu U>	- 1200 4	61700/0	90700-02
Bromodichloromethane	mg/Kg	1.18	<0.00220	<0.00203	<0.00203	<0.00273	96100'0>	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	11200	ed fores	*1700.0	41700.05	80700'0>
Bromoform	mp/Kc	_	<0.00220	40.00203	<0.00203	<0.00273	901000	<0.00105	ACCOM ON	ant of the					007000	+1700.05	41200'0>	40.00208
Bromomethane	mg/Ks	0.8	-0.00220	<0.00203	<0.00203	ET200.0>	96100.0>	<0.00705	200024	20700.02	/7700'02	<0.00227	<0.00216	<0.00233	<0.0288	<0.00214	<0.00219	<0.00208
Z-Butanone	me/Kg	0.79	<0.0549	<0.0508	<0.0507	19005	CD DAM	0.0613	10000		1770010-	17700.02	91700102	<0.00233	<0.00288	40.00214	<0.00219	<0.00208
sec-Butvibenzene	me/K =		0.000	ECCUPICA	0000			TICKA	ACCIVITY	7750/05		<0.0567	<0.0539	<0.0582	A.0720	<0.0536	<0.0548	<0.0521
C. C				6070070	50700'05	6/200/02	\$100.02	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0,00214	<0.00219	<0.00208
11-12-01/10-em/2016	mg/Kg	i	<0.00220	<0.00203	<0.00203	<0.00273	<0,00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
tert-Butylbenzene	ms/Ks	+	<0.00220	<0.00203	<0.00203	€7200.0>	-00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00708
Carbon disutfide	mg/Kg	0.00549*	0,00609	<0.00508	<0.00507	<0.00683	<0.00490	<0.00512	<0.00559	<0.00522	<0.00568	8.0224	<0.00539	<0.00582	40214	AD 00 14	<0 DOSAE	0,0051
Carbon Tetrachloride	ms/Kg	0.17	<0.00220	E0200.0>	<0.00203	<0.00273	⊴0,00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	40.00288	<0.00714	0100	aut.vo 02
Chiorobenzene	mg/Kg	4,18	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	ECO00	40 00 EE	r tuou u	A DATE A	00000
Chlorodibromomethane	mg/Ks	1.63	<0,00220	<0.00203	<0.00203	<0.00273	96100.0>	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	400014	00000	entron the
Chloroethane	mgKg	0,17	<0.00549	<0.00508	<0.00507	<0.00683	0620,05	<0.00512	<0.00559	<0.00522	<0.00568	<0.00227	<0.00539	<0.00587	ect00.02	-U NCIK	- ODEAE	00000
Chloroform	mg/Kg	0.68	<0.00220	<0.00203	<0.00203	<0.00273	961000⊳	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	CD0023	00000		area 4	17Cm.b-
Chloromethane	ms/Kg	0.04	0.00464	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00788	en north	41200.02	40.00208
2-Chlorotoluene	mg/Kg		<0.00220	<0.00203	E0200.0>	<0.00273	96100'0>	<0.00205	<0.00224	<0.00209	<0.00227	<0,00227	<0.00216	EE200.0>	AL 00288	<0.00714	BILUU	autor
4-Chlorotoluene	mg/Kg	ł	<0.00220	<0.00203	<0.00203	<0.00273	96100 [°] 0≻	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	88C00 02	20,00014	01000	entro/0-
1.2-Dibrome-3-chloropropune	те/Кв	-	<0.00549	<0.00508	<0.00507	<0.00683	<0,0490	<0.00512	<0.00559	<0.00522	<0.00568	<0.00567	€00539	<0.00582	<0.00720	YLSU CE	41 PUCKS	100000
1.2-Dibromoethane	mc/Kg	10'0	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.0288	40.00214	91.000	aucuous
Dibromomethune	mg/Kg	1000	<0.00220	<0.00203	<0.00203	<0.00273	96100'0>	<0.00205	<0.00224	<0,00209	<0.00227	<0.00227	<0.00216	CE200.0>	40.00288	<0.00214	<0.0016	50 00 05
1,4-Dichlorobenzene	mp/Kg	0.0136	<0.00220	<0.00203	=0.00203	<0.00273	96100'0>	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	40.00214	<0.00219	SUCOO US
1,3-Dichlorobenzene	meKs	222	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.60219	40.0020R
1,2-Dichlorobenzene	marka	25	<0.00220	<0.00203	<0.00203	<0,00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	30000
Dichlerodifluoromethane	mg/Kg	1.49	<0.00220	<0.00203	<0.00203	<0.00273	-0.00196	<0.00205	<0.00224	-0.00209	<0.00227	<0.00227	<0.00216	CC00.0>	<0.00283	<0.00214	<0.00219	SD 00708
1,1-Dickforoothane	ms/Kg	920	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	-0.00233	<0.00288	<0.00214	<0.00219	<0.00208
1,2-Dichlorocthane	ms/Kg	0.02	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0,00233	<0.00285	<0.00214	<0.00219	<0.00208
cis-1,2-Dichloraethene	mg/Kg	i	40.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	40.00214	<0.0010	ancinio
1,1-Dichloroethene	ma/Ka	0.03	<0.00220	<0.00203	<0,00203	<0.00273	-0.00196	<0.00205	-0.00224	<0.00209	<0.00227	-0.00227	<0.00216	<0.00233	<0.00288	<0.00214	\$1200 CD	autor (
Irans-1,2-Dichloroctheae	mg/Kg	0.53	<0.00220	<0.00203	<0.00203	<0.00273	96100'0≻	<0.00205	<0.00224	<0.00209	<0,00227	<0.00227	<0.00216	<0.00233	38000	200014	aroo o-	00100 C
1,3-Dichlaropropane	ma/K.e	0.2	<0.00220	<0.00203	<0.00203	<0.00273	36100.02	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.0088	<0.0014	010010	auroo (r
1,2-Dichloropropane	mg/Kg	0.02	40,00220	<0.00203	<0.00203	<0,00273	96100.0>	<0.00205	<0.00224	<0.00209	<0.00227	40,00227	40.00216	<0.00233	<0.00288	1000	01000	enzino (
2,2-Dichloropropune	mø/Ke	10	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	-0.00227	<0.00216	-	<0.0288	<0.0014	er china	80400

tal Protection: Hazardous Ste Response 3. Soliconsensions. The Trigger Neidensin listed in Georgeb Dependence of Natural Resources: Environment on Natural Sciences: Environment Sciences: Environment Sciences: Sciences 2014, 501 (2014). Solid Research Sciences and Sciences an

F:/PROJECTS/175Z308/03/Mnahylca/Tables

4/3/20055/00 PM

Table 2 SVOC Soil Analytical Summary 90-94 Forsyth Street NW and 85 Luckie Street Atlanta, Georgia

.

. ...

· . 1

. •

		Soit	*	Weaver Boos Limited Phase II (January 15th thru 17th, 2088)	Phase II (January 1	5th thru 17th, 2008)						Weaver Boos Sup	Weaver Boos Supplemental Phase JJ (March 3-5, 2008)	(farch 3-5, 2008)				
Алађас	Coic N 20 N 20 N 20 N 20 N 20 N 20 N 20 N 20	Concentrations That Trigger Notification	B-1 ^b (8-10) ⁴	B-1 (11.5-13.5)	B-21 (8.5-10)	8-24 (10-12)	B-24 (18-20)	E8-1 (4-6)	EB-1 (8-10)	EB-2 (10-12)	EB-3 (10-12)	EB-4 (10-12)	EB-5 (9-11)	287 197	5.8-6 (2.9.2)	58-7 (5:1-3)	8-83 (8-9)	E8-9 (9-11)
Acenaphthene	my/Kg	300	<0.751	-0.379	<0.358	12:0>	<0.0664	<0.397	4.62	081.02	×0.186	C0 182	AE1 02	4210 02				
Acenaphthylene	meKe	-	<0.751	<0.379	<0.358	<0.371	<0.0664	<0,397	1.9	<0.389	<0.386	<0.382	012.0>	<0.0772	1007	20.388	20.271	<0.446
Revo (a) anthroate	mg/kg	+	1.43	45.02	<0.358	0.817	<0.0664	<0.397	12.2	<0.389	<0.386	<0.382	0.691	<0.0772	1.59	<0,388	<0.371	<0.446
Benzo (a) overne	- AND	, ,,,,	1 0.1	4/5/2	20,558	2.01	<0.0664	<0.397	30.4	<0.389	<0.386	<0.382	1.77	<0.0772	5.03	<0,388	<0.371	0.686
Benzo (b) (horanthene	me/Ku		154	61.51A	0100	517	<0.0664	<0.397	245	<0.389	<0.386	<0.382	1.53	<0.0772	4.2	<0.388	<0.371	0.617
Benzo (a.h.i) perylene	me/Ku	200	2.05	022.02	50 358	1.20	P000.0-	165.02	52.5	<0.389	<0.386	<0.382	1.71	<0.0772	3.73	<0.388	<0.371	0.606
Benzo (k) fluoranthene	morke		3.15	<0 379	<0.358	117	10000 V	196.02	c .	6907.02	<0.586	40.382	1.09	<0.072	3.50	<0.388	<0.371	<0.446
4-Bromophenyl phenyl ether	ma/Ku		<0.751	<0.579	<0.55 C	127.02	*000*	145.02	11.5	<0.189 40.760	<0.386	<0.382	1.00	<0.0772	3.02	<0.388	<0.371	0.568
Butyl benzyl phthalate	mø/Kg		<0.751	<0.379	S0 758	12:02	VN	160.02	CSEUP SECON	485.02	<0.366	40.382	<0.370	ΥN	<0.437	<0.388	<0.371	<0.446
Carbazole	me/Kc	-	<0.751	40.379	<0.25R	2070	AN AN	Lac	20130	685.12	<0.3%	<0.382	<0.370	YN	<0.437	<0.388	<0.371	<0.446
4-Chloro-3-methylphenol	me/Kg		<0.751	<0.379	<0.358	122 05	MA	145.02	120	<0.389	<0.380	<0.382	<0.370	YN.	0.316	<0.388	<0.371	<0,446
4-Chloroanifine	my/Ks	-	<0.751	<0.379	<0.358	<0.771	VN.	<0.207	210	1 20.369	50.380	<0.382	40.370	¥1	<0.437	<0.388	<0.371	<0.446
Bis(2-chloroethoxy)methane	mg/Kg	┝	<0.751	<0.379	<0.358	<0.771	AN	C0 107	201102	102.02	201.02	235.02	<0.370	M	<0.437	40.388	<0.371	<0.446
Bis(2-chloroethyl)ether	mg/Kg	0.55	<0.751	<0.379	<0.358	<0.371	AN	<0.397	20105	<0.100	Age 0>	2007	0/5/02	NA	40,437	40.388	<0.371	<0.446
Bis(2-chloroisopropyi)ether	mg/Kg	_	<0.751	<0.379	<0.358	<0.371	AN	<0.397	20,335	<0.389	<0.78K	187 02	0100	N.V.	164.05	<0.588	125.05	<0.446
2-Chloronaphthalene	mg/Kg	-	<0.751	<0.379	<0.358	<0,371	AN	<0.397	<0.335	<0.189	70.02	200.00 Cal 02	OV F'DS	YU II	<0.437	40.388	12:0>	<0.446
2-Chlorophenol	mg/Kg		<0,751	<0.379	<0.358	<0.371	NA	70.0>	<0.315	<0.380	<0 186	20102	010.0	~	104.02	20, 388	40.371	<0,446
4-Chlorophenyl phenyl ether	mg/Kg		<0.751	≪0.379	<0.358	<0.371	NA	795.0>	40.335	<0.389	<0.786	cat up	042.02	~	1000	20,568	50.57	<0.446
Chrysene	mgKg		3.82	<0.379	<0.358	1.98	<0,0664	<0.397	26.6	<0.389	<0.386	≤0.382	171	CT (1)	1000	000.00	10:02	<0.440
Dibenz (a.h) anthracene	mg/Kg	~	<0.751	<0.379	<0.358	<0.371	<0.0664	<0.397	1.59	<0.389	<0.386	<0.187	7470	110.00		000.00	40.51	0.655
Ditenzolucan	mg/Kg	_	<0.751	<0.379	<0.358	<0.371	NA	<0.397	3.05	<0.389	<0.386	<0.382	0/1 (D	NA.	1.467	002.02	12107	045/7
LI-B-DUTY PRIABATE	morke	+	<0.751	<0.379	<0.358	<0,371	NA	<0.397	0.459	€36,0>	<0.386	<0.382	<0.370	YX XX	<0.437	<0.388	121.05	<0,446
	MUC B		41.151	40.379	40.358	<0.371	AN	<0.397	<0.335	<0.389	<0.386	<0.382	<0.370	NN	<0.437	<0.388	<0.371	<0.44K
	E2KS		50./31	40.579	<0.358	40.371	AN	<0.397	₫,335	<0.389	<0.386	<0.382	<0.370	NA	<0.437	<0.388	<0.571	<0.44K
7 3_Dickloschenvidine	Sular		10.0	200	SCF 17	<0.371	M	<0.397	<0.335	<0.389	<0.386	<0.382	<0.370	NA	<0.437	<0.388	<0.371	<0.446
2.4-Dichloropheno[moliko		20.75	81.0	11/02	142	YN	8.9	<0.670	40.780	<0.774	\$2.9	<0.741	NA	<0.875	<0.778	<0,744	<0.894
Dicting phthelate	mg/Kg		<0.751	0.379	<0 758	12.00	AN AN	165.02	316.02	10.100	40,386	40.382	<0.370	VX	<0.437	<0.388	<0.371	<0.446
2.4-Dimethylphenol	mg/Kg	1.51	<0.751	€0.379	<0.358	40.371	AN	<0.797	50135	C0 180	202.02	287.02	016.02	ž	<0,437	40.388	<0.371	<0.446
Dimethyl phthalate	mg/Kg		<0.751	<0.379	<0,358	<0.371	NA	<0.397	<0.335	<0.789	20.266	191.02	2007	YV	41.457	2388	<0.371	<0.446
4.6-Dinitro-2-methylphenol	mg/Kg		<1.88	<0.949	<0.896	<0.928	NA	\$0,994	<0.837	40.02	<0.967	20.954	202.02	NA NA	<1.00	<0.388 20.071	<0.371	20.446
2.4-Dimitrophenol	mg/Kg		<1,88	<0.949	<0.896	<0.928	NA	<0.994	<0,837	<0.974	<0.967	40.954	40.925	VN	8	1000	50.870	
	TEVN8	0/70	10.75	6/5/0>	<0.358	40,371	NA	<0.397	0.884	<0.389	<0.386	<0.382	<0.370	NA	<0.437	<0.388	177.05	CD 446
Discostyl attribute Discostyl attribute		╀	10/10	<0.379	<0.158	<0.371	N A	<0.397	<0.35	<0.389	-20.386	<0.382	<0.370	NA	<0.437	<0.388	LE 0>	40.446
Bird2-erhotherotholithelate		+	132.00	010	80702	15.15	AN	40.397	<0.335	<0.389	<0.386	<0.382	075.0>	NA	<0.437	<0.388	1/6.0>	<0.446
Fluoranthene			867	c/ 170	845 V	1/5/2	NA	0.414	SEE	<0.389	<0.386	<0.382	025.02	YN	1.11	<0.388	<0.371	<0.446
Fluorene		+	<0.751	<0.379	83E 05	122.02	10000	100.02	689	435.02	<0.386	<0.382	333	<0.0772	8.51	0.467	0.454	1.55
Headhlorobenzene		-	<0.751	40.379	0.358	122.00	VN NA	101 10	241.02	1 260	02500	280.02	0.370	<0.0772	0.827	<0,388	<0.371	<0.446
Hexachiorobutadiene		17.5	<0,751	<0.379	<0.358	115.05	NA	161 (12	ALL OF	0110	20.380	40.382	0/10	×	<0.437	<0.388	120.371	<0.446
Hexachlorocyclopentadiene			<0.751	<0.379	<0.358	<0.371	NA	<0.397	40.335	<0.389	<0.786	<0.787	OVC V	Vu Vu	10:00	40.388	<0.371	<0.446
Hexachlorpethane		_	<0.751	<0.379	<0.358	<0.371	NA	<0.397	<0.335	<0.389	<0.386	<0.382	012.02	1	1000	597 V	115.05	<0 446
Indeno (1,2,3-cd) pyrene		-	1.94	<0.379	<0.358	1.13	<0.0664	<0.397	14.8	<0.389	<0.386	<0.382	1200	<0.0772	2.99	1 188	1/5/02	<0.446
Asoptorene		+	4 751	40.379	<0.358	40.371	NA	40,397	<0,335	<0.369	<0.386	<0.382	<0.370	NA	40.437	<0.388	125.05	CD 446
2.Metholofamol	mole a		10.15	415.15	<0.358	0.507	YN I	<0.397	1.72	<0.389	<0.386	28E.0>	<0,370	AN N	<0.437	<0.388	<0.371	<0.446
3/4-Mcthytohenof	merke	38	<0.751	02.02	352 U.S	10.271	YN YN	20.397	40.335	<0.389	<0.386	<0.382	<0.370	NA	<0.437	<0.388	-0.371	<0.446
Naphthalene	morke		<0,751	40.379	40.758	0.409	CD DKK4	101.02		425.02	20,380	40.382	≤0.370	AN	<0.437	<0.388	<0.371	<0.446
3-Witroaniline	me/Kg		1.88	<0.949	<0.896	40.928	NA	<0.994	<0.837	<0.074	<0.000 <0.000	20.382	<0.50	40.0772	0.474	<0.388	40.371	<0.446
2-Nitroamiine	me/Kg	ī	<1.88	<0.949	<0.896	<0.928	NA	46,02	<0,837	<0.974	<0.967	40 02	2000	WN N	8.7	11670	<0.929	<1.12
4-Nitroaniline		_	<1.88	<0.949	<0.396	<0.928	NA	A0.994	<0.837	<0.974	<0.967	150 02	2002	-	5 8	1/6/05	40.929	<1.12
Nitrobeazene		0.7	40.751	<0.379	<0.358	<0.371	NA	<0.397	<0.335	<0.389	<0.386	<0.382	<0.370	NA.	<0.477	cr 182	1110	51,12
- Nicrophenot		+	38'12	40.949	-0.896	\$2,928	NA	<0.994	<0.837	<0.974	40,967	<0.954	<0.925	MA	812	<0.971	<0.070	0112
Nitrocodiation		+	10.70	ALL OF	307.02	40.371	VN	<0.397	50.05	<0.389	<0.386	<0.352	<0.370	NA	<0.437	<0.388	176.0>	<0.446
N.Nitrosodi-e-trondarine		$\left \right $	10/02	DLL US	92000	1/5/12	YN I	40.397	40.335	<0.389	<0.386	<0.382	<0.370	NA	<0.437	<0,368	<0.371	<0,446
Pentachlorophenol	l		<1.88	696.0>	20.896	20.02	AN NA	140.02	255.02	-0.024	40'32E	<0.382	<0.370	VN.	<0.437	\$0.388	<0.371	<0.446
Phenanthrane		110	5.67	<0.379	<0.358	4.02	<0.0664	40.397	46.6	<0.180	AU 78K	PCV.U2	<0.925	NA	41.09	<0.971	<0.929	<1.12
Phenol			<0.751	<0.379	\$50.02	<0.371	NA	<0.397	\$0.335	<0.780	30.02	1307	200	21/0/12	6.07	0.429	<0.371	1.20
Pyrene		-	7.67	<0.379	<0.358	5.11	<0.0664	<0.397	47.0	<0.389	<0.386	<0.382	326	<0077	101	90 JB6	115.05	<0.446
1.2.4-Trichforobenzene		+	<0.751	6100	<0.358	<0.371	NA	<0.397	40,335	<0.389	980.0>	<0.382	<0.370	NA	417	880.02	115.00	10.1
1]-Methylnsphthalene	mg/Kg	+	40.751	<0.379	<0.358	0,405	NA	<0.397	1.28	<0.389	<0.386	<0.382	<0.370	VN.	0.437	<0.188	102.02	<0.445
2.4.0-1 nchlorophenol 2.4.5-Trichlorophenol	mg/AS	0.66	<0.751 c1 88	<0.379	<0.358	<0.371	AN NV	<0.397	<0.335	<0.389	<0.386	<0.382	≤0.370	NA	<0.437	-0.388	<0.371	<0,446
animula investi 1 - C.*.*	IIN'NK I		1 00 1	50, Y4Y 1	0.670	1 975/05	NA	<0.994	1 168.0>	<0.974	<0.967	<0.954	<0.925	NA	<1.09	<0.971	<0.929	41.12
Nutee:																		

XDMS: * Sold Concernations That Figure Notification lated in George Dependent of Natured Restructs. Diversement Protection: Haardoon Site Response Append: Print Systems, 2014, 2013); Sold Sociest detailed in Figure 4. Sold Sociest and Sociest and Sociest Sold Sociest (Sociest Appendix (Socies

- ----

F.PROJECTSN1782008/03MeabyleafTebles 4/220085;09 PM

Table 1 VOC Soil Analytical Summary 90-94 Forsyth Street NW and 85 Luckie Street Atlauta, Georgia

. . .

	`	 		Wenver Boos Limited Phase II (January 15-17, 2008)	ise II (January 15-17,	2005)					Weaver B	Waver Boos Supplemental Phare 11 (March 3-5, 2008)	Phase [] (March 3	-5, 2008)				
Analyte	4 4 5	sou concentrations That Trigger Notification	д-1 ^в (8-10) ⁵	8-1 (2112-11)	8-21 (8.5-10)	B-24 (10-12)	EB-1 (5-10)	EB-2 (10-12)	ER-3 (10-12)	EBT (10-12)	EB-5 (4-6)	EB-S	EB-5 (17-19)	EB-6 (4-9)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r-83 (c.7-2)	EB-8 (6-8)	28-9 (9-11)
cis-1, J.Dichloropropenc	ngKs	i	<0.00220	<0.00203	<0.00203	-0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	-0.00227	<0.00216	CO233	<0.00288	<0.00214	<0.00219	-0.50208
trans-1,3-Dichloropropene	mg/Kg	1	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	 <0.002.05 	<0,00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	SOCIA OS
1,1-Dichloropropene	me/Kg	1	<0.00220	<0.00203	<0.00203	<0,00273	<0.00196	<0.00205	<0,00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
Ethylbenzene	mg/Ks	20.00	<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
Heuchlorobutadiene	mg/Kg	521	<0.00549	<0.00508	<0.00507	<0,00683	<0.0490	<0.00512	<0.00559	<0.00522	<0.00565	<0.00567	<0.00539	<0.00582	<0.00720	<0.00536	<0.00548	<0.00521
2-Hexanone	mc/Ke	1	<0.0549	<0.0508	<0.0507	<0.0683	<0.0490	2150.0>	<0.0559	<0.0522	<0.0568	<0,0567	40.0539	<0.0582	<0.0720	<0.0536	<0.0548	1690
Lopropy benzene	mø/Kg	21.88	<0.00220	<0,00203	E0200.0>	<0.00273	96100'0>	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0,00219	<0.00208
p-Isopropyltoluene	mg/Kg	21.88	0.002375	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	40 <u>.00</u> 209	<0.00227	<0.00227	<0.00216	<0.00233	19600.0	<0.00214	<0,00219	<0.00208
Methyl inn-Butyl Ether	møKg		<0.00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
Methylene Chloride	mg/Kg	0,08	95600.0>	2010/05	1010/0>	<0.0137	<0.00979	<0.0102	<0,0112	<0.0104	<0.0114	c110:0>	×0.10.0	<0.0116	<0.0144	7010.0>	0110	<0.0104
4-Methyl-2-pentarione	mg/KS	3.3	<0.0549	<0.0505	<0.0507	<0.0683	<0.0490	<0.0512	<0.0559	<0.0522	<0.0568	<0.0567	<0.0539	<0.0582	<0.0720	<0.0536	<0.0548	1250'0>
Naphthatene	mg/Kg	100	0.0942	<0.00508	<0.00507	<0.00683	6710.0	<0.00512	<0.00559	<0,00522	<0.00568	0.0109	<0.00539	<0.00582	0.0629	<0.00536	<0.00548	<0.00521
n-Propylbenzene	mg/KE		<0,00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00205	<0.00227	<0.00227	<0.00236	-0.00233	<0.00288	<0,00214	<0.00219	-0.00208
Styrene	mg/KS	14	40,00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	-0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
1,1.1.2-Tetrachloroethane	mg/Kg	1.03	-0,00220	<0.00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	40.00288	<0.00214	61200.0>	<0.00208
1,1,2,2-Tetrachloroethane	ms/Kg	0.13	<0.00220	<0.00203	<0.00203	<0.00273	-0.00196	<0.00205	<0.00224	40,00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	-0.00219	<0.00205
Tetrachioroethene	mg/Kg	0.18	<0.00220	<0.00203	<0.00203	0.0096	-0.00196	<0.00205	<0.00224	-0.00209	<0.00227	<0.00277	<0.00216	EE200.0>	<0.00288	<0.00214	<0.00219	<0.00208
Tolucne	mc/Kg	14.4	0.00646	<0.00203	<0.00203	0.00912	0.00275	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0,00216	<0.00233	<0.00285	<0.00214	<0.00219	<0.00208
1.2.3. Trichlorobertzene	mg/Kg	1	<0.00220	E0200.0>	<0.00203	<0.00273	56100.0>	<0.00205	<0.00224	<0.00209	<0.00227	-0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
1.2.4-Trichlorobenzene	mg/Kg	10.83	<0.00220	<0.00203	<0.00203	<0.00273	-0.00196	<0.00205	<0.00224	<0.00209	≪0.00227	-0.00227	<0.00216	-0.00233	<0.00288	<0.00214	<0.00219	<0.00208
1,1,2-Trichloroethane	mg/Kg	1	<0,00549	<0.00508	<0.00507	<0.00683	<0.0490	<0.00512	<0.00559	<0.00522	<0.00568	40.00567	<0.00539	<0.00582	<0.00720	<0.00536	<0.00548	<0.00521
1,1,1-Trichleroethane	mg/Kg	-	<0.00220	<0.00203	<0.00203	C200.02	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	€0 00208
Trichloroethene	mg/Kg	61.0	<0.00220	<0,00203	<0.00203	<0.00273	<0.00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
Trichlorofluoromethane	mg/Kg	0.7	<0.00220	<0.00203	<0.00203	<0.00273	≪0,00196	<0.00205	<0.00224	<0.00209	<0.00227	<0.00227	<0.00216	EE200.0≻	<0.00288	-0.00214	40,00219	<0.00208
1,2,3-Trichloropropane	mg/Kg	0.54	<0.00220	<0.00203	<0.00203	<0.00273	>00196	<0.00205	<0.00224	<0.00209	<0.00227	<0,0027	<0.00216	<0.00233	<0.00288	40.00214	<0.00219	<0.00208
1,3,5-Trimethylbeazene	mg/Kg	ı	<0.00220	<0.00203	<0.00203	<0.00273	40.00196	<0.00205	<0.00224	€0,00209	<0.00227	40.00227	<0.00216	<0.00233	<0.00288	<0.00214	<0.00219	<0.00208
1,2,4-Trimethylbeazene	mc/Kg	1	6,0032	-40.00203	<0.00203	<0.00273	96100'0≻	<0.00205	+0.00224	<0.00209	<0.00227	0.00301	<0.00216	<0.00233	6.00315	<0.00214	40.00219	40.00208
	mg/Kg	0.04	<0.00220	<0.00203	<0.00203	<0.00273	40,00196	<0.00205	<0.00224	<0.00209	<0,00227	<0,00227	<0.00216	<0.00233	<0,00288	<0.00214	<0.00219	<0.00208
Xylenes, total	mg/Kg	20	0.00701	<0.00508	<0.00507	0.0107	<0500.0450	<0.00512	<0.00559	<0.00522	<0.00568	<0.00567	6ESOO.0>	<0.00582	<0.00720	<0.00536	89500.02	<0.00521

....

ment of Nanual

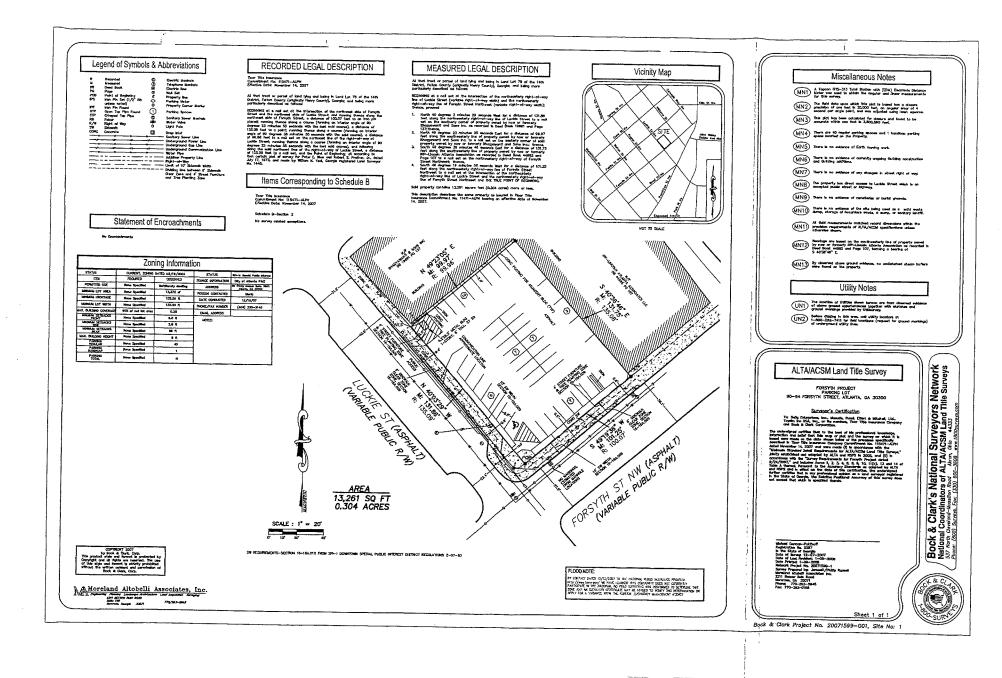
Hazardous Site Response

er NoitiGation are equal to the descrive limit for the ample anonentions That Trigger Notification, Appendix I, Rule 391, 3-19. 04(3)(b) I Concentrations That Trigger Notification

Motts. Sul Connentation That "Taget buildcation listed in Groep's Dynames Approx. Evel 29: 29: 24-24-21(3) Sail Pacing identifications. The Taget Mottalian are equal to be detection line "Sain Pacing Concentration That "Taget Mottalian are equal to the detection line "Sail Concentration That "Tagget Mottalian are equal to the detection line "Sail Concentration That "Tagget Mottalian" Appl "Sail Concentration That "Tagget Mottalia" Appl Mottal vulne vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulne vulnes and and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes and and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes and and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes vulnes vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vulnes vulnes vulnes and a Sail Concentration That "Tagget Mottalian", Appl Mottal vulnes vul

F:PROJECTS117823050334naly5ca0Tables

4/3/20065:00 PM


.

.

.

Appendix A

ALTA/ACSM Land Title Survey

APPENDIX B

4

Appendix B

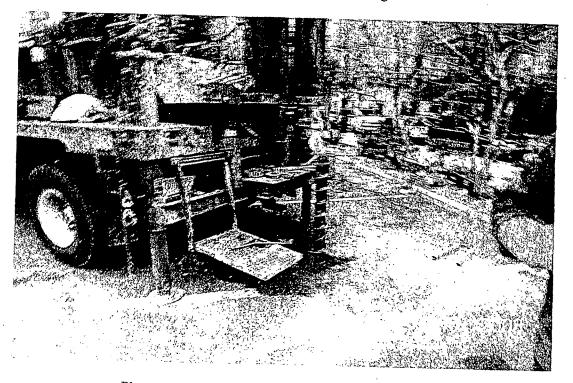
(

C

r •

,- ·

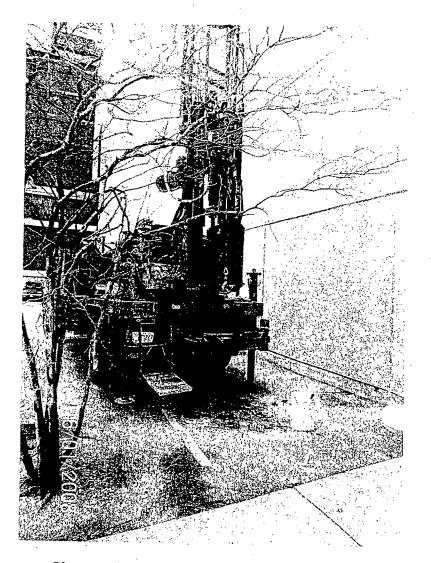
Property Photographs


Site: >J-94 Forsyth Street NW and 85 Luckie Street Atlanta, Georgia

Taken By: Daniel Tonissen Date: January 16 and 17, 2008

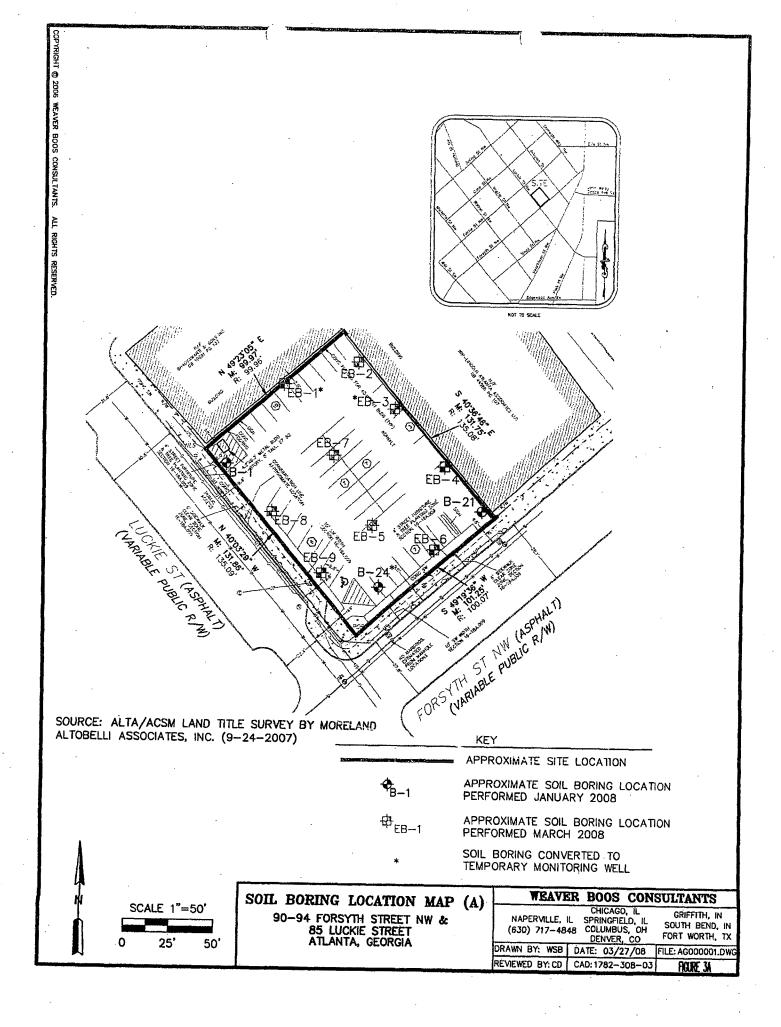
Page 1 of 7 Project Number: 1782-308-03

Photograph #1 – View of B-1 soil boring location.



Photograph # 2 - View of B-24 soil boring location.

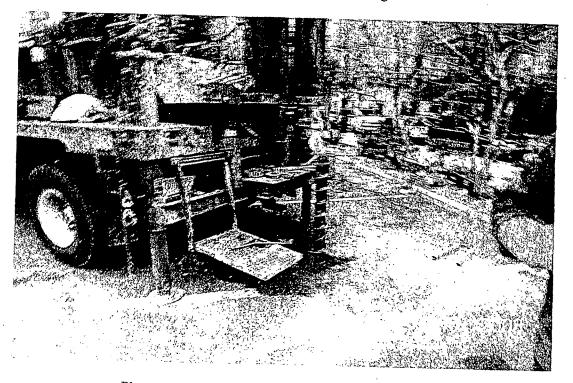
F:\PROJECTS\1782\308\03\Phase II Photo log.doc


Taken By: Daniel Tonissen Date: January 16 and 17, 2008

Page 2 of 7 Project Number: 1782-308-03

Photograph #3 –View of B-21 soil boring location.

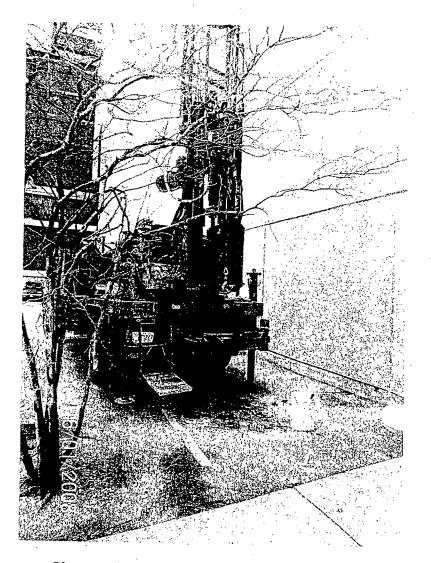
F:\PROJECTS\1782\308\03\Phase II Photo log.doc


Site: >J-94 Forsyth Street NW and 85 Luckie Street Atlanta, Georgia

Taken By: Daniel Tonissen Date: January 16 and 17, 2008

Page 1 of 7 Project Number: 1782-308-03

Photograph #1 – View of B-1 soil boring location.

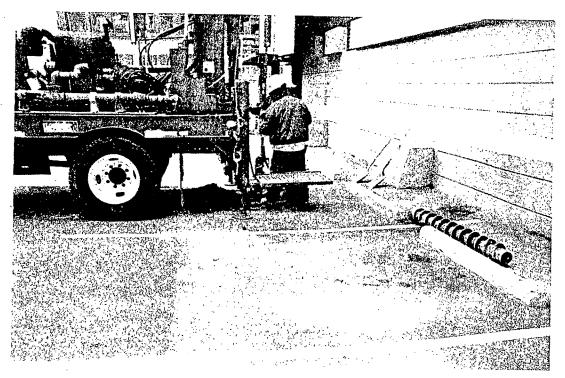


Photograph # 2 - View of B-24 soil boring location.

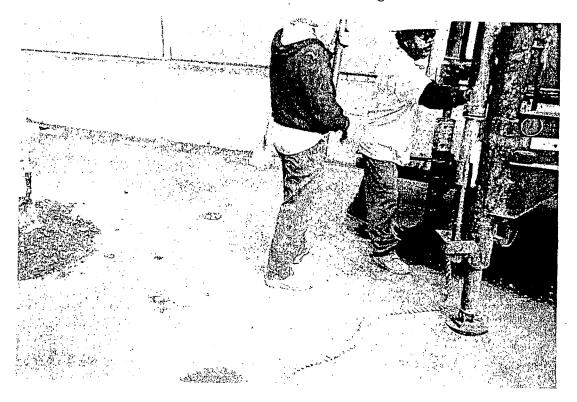
F:\PROJECTS\1782\308\03\Phase II Photo log.doc

Taken By: Daniel Tonissen Date: January 16 and 17, 2008

Page 2 of 7 Project Number: 1782-308-03


Photograph #3 –View of B-21 soil boring location.

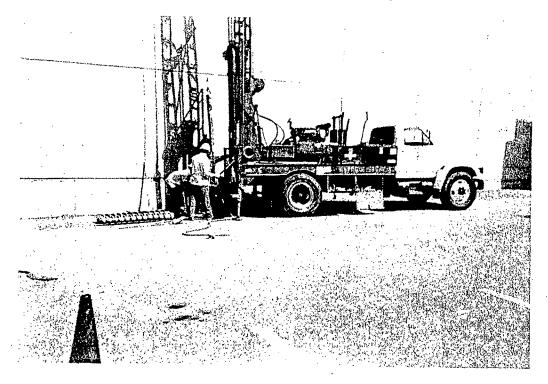
F:\PROJECTS\1782\308\03\Phase II Photo log.doc


Site: -0-94 Forsyth Street NW & 85 Luckie Sueet Atlanta, Georgia

Taken By: Dan Tonissen Date: March 3, 4 and 5, 2008

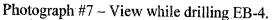
Page 3 of 7 Project Number: 1782-308-03

Photograph #4 – View while drilling EB-1.



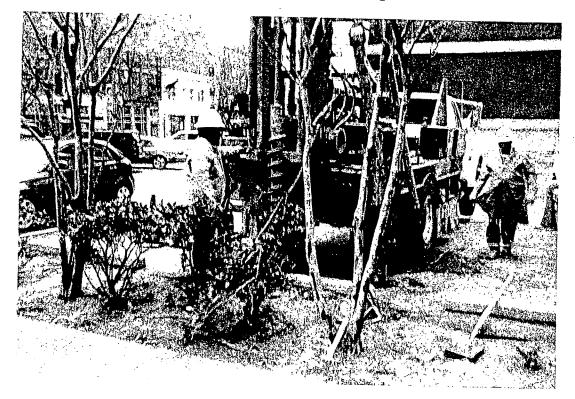
Photograph #5 – View while drilling EB-2.

Site: >0-94 Forsyth Street NW & 85 Luckie Street Atlanta, Georgia


Taken By: Dan Tonissen Date: March 3, 4 and 5, 2008

Page 4 of 7 Project Number: 1782-308-03

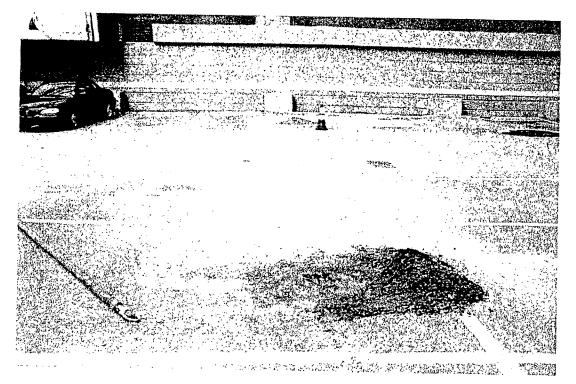
Photograph #6 – View while drilling EB-3.


Site. 30-94 Forsyth Street NW & 85 Luckie Street Atlanta, Georgia

Taken By: Dan Tonissen Date: March 3, 4 and 5, 2008

Page 5 of 7 Project Number: 1782-308-03

Photograph #8 – View while drilling EB-5.



Photograph #9 – View while drilling EB-6.

Site: JJ-94 Forsyth Street NW & 85 Luckie Street Atlanta, Georgia

Taken By: Dan Tonissen Date: March 3, 4 and 5, 2008

Page 6 of 7 Project Number: 1782-308-03

Photograph #10 - View of EB-7 after completion.

Photograph #11 – View while drilling EB-8.

Site: -0-94 Forsyth Street NW & 85 Luckie Street Atlanta, Georgia

Taken By: Dan Tonissen Date: March 3, 4 and 5, 2008

Page 7 of 7 Project Number: 1782-308-03

Photograph #12 - View while drilling EB-9.

.

. APPENDIX C

. .

· .

• •

Appendix C

Soil Boring Logs

(.

				I	og of	f Soil Bor	ing No.: ${f B}$ -	.1		
WE	AVER	Time Started	4.	0700: 1/17			1782-308-0			
7-24		Time Compl		1445: 1/18			Toyoko Inn			
		Drilling Co:					1/17/2008 a	USA, Inc.	10	
CONSU		-	Thermen		Date		and the second sec	ER LEVEL		
	Ir	Helper:	Javier			NE				
NORTH CE		•	85 Luck	ie Street	The second s	NA	Ft WHILE DRILLING Ft AT COMPLETION			
GEO-ENVIRONN	MENTAL ENGINEERS		Atlanta,						TION	
AND S	CIENTISTS	•		0						
			·			SĀ	MPLE DAT	Ϋ́Α		
Below Ground			Sample			PID	Moisture			
Surface	Soil Description		ID	Recovery (in.)		(ppm)	Content	- Odor	Comments	
(ft.)						(ppar)	Content			
	Asphalt					,				
I.0	Fill- Gray SILTY SAND so	ome gravel	1	18		0	Dry	None		
			-			Ŭ	Diy			
2.0	Fill- Brown SANDY SILT	some mica								
3.0			NSC		- 1					
4.0										
	Fill- Red brick		2	6		0	Dry	None	1	
5.0	Fill- Gray GRAVELLY	SAND		•						
		SAND								
6.0	Fill- Gray SANDY GRAV	FL some								
·	sand and concrete		•3	3		0.1	• Dry	None		
7.0	Sund und concrete	, 		•						
 8.0			NSC							
9.0			4	2		1.1	Duri	N	Collected sample	
10.0			т	2		1.1	Dry	None	B-1 @ (8'-10')	
10.0										
11.0	Concrete (No Recove	ery)								
11.0		•	NSC							
12.0	Red SANDY SILT some									
	Red SANDY SILT Some	e mica								
13.0	Yellow coarse SAN	<u> </u>	6	6		0.1	Dry	None	Collected sample	
······································	Redish gray SANDY SILT so								B-1 @ (11.5'-13.5')	
14.0		Sine Bravel		·····						
· · · · · · · · · · · · · · · · · · ·	Very hard concrete or calcite	rock some							Encountered reddish	
15.0	red SANDY SILT (No Re					l			SANDY SILT and	
• • • • • • • • • • • • • • • • • • •									hard concrete or	
16.0	· · ·		NSC				·		calcite rock while	
~~						l			drilling with air	
17.0									hammer, no recovery	
				•					in split spoon.	
18.0										
	Gray weathered gnei		7	4		0	Dry	None		
19.0	Gneiss Bedrock encount	ered at								
20.0	.18' 6'' bgs									
	NSC- No Sample Collected									
NOTES:	INSU- INO SAMBLE L'OLIEGTER	• N/A - N/A* A	nnlinghi	9* NIL' NI~* *	naar					

(

١

	Ì ,									
			-							
ŴĿ	AVER		,	L	og of	Soil Bori	ng No.: B-	21	*****	
B	oos					No.: nt:				
CONSU	LTANTS	Drilling Co: Driller:		C	Date		Toyoko Inn USA, Inc. 1/16/2008 WATER LEVEL DATA			
	ENTRAL, LLC MENTAL ENGINEERS	Helper: Location:	Javier 85 Luckie Street Atlanta, Georgia		NE NA		Ft V	VHILE DRILI	LING	
AND S	SCIENTISTS			Georgia		~ ~			·····	
Below Ground		····				SA	MPLE DAT	Γ <u>Α</u>	T	
Surface (ft.)	Soil Descriptio	n	Sample ID			PID (ppm)	Moisture Content	Odor	Comments	
1.0	Asphalt Fill - Gray SANDY SILT	some gravel	I	3		0.1	Dry	None		
2.0			NSC							
3.0 4.0	Fill - Reddish SAND									
5.0	THI - REQUISIT SAND		2	6		1	Dry	None		
6.0		II - Weathered mica and phyllite some		. 6		2.4	Dry	None		
7.0	sand and silt	ohyllite some								
8.0			NSC			·				
9.0 10.0	Fill - Reddish tan SANDY mica	SILT trace	4	20		6.1	Dry	None	Collected samp B-21 @ (8.5'-10	
			NSC	·						
11.0 12.0			5	18		1.9	Dry	None		
13.0			NSC					***		
14.0	Fill - Red SANDY SILT in with brown SANDY		6	22		0.2	Dry	None		
15.0			NSC							
16.0			1450		-+					
17.0			7	15		0	Dry	None		
18.0			NSC		-+				······	
19.0	Brown weathered gneiss, some mica and trace c		8	19		1.8	Dry	None		
20.0 NOTES:	NSC- No Sample Collecte	d: NA- Not A	Applicable	: NE- Not F		Intered		<u> </u>		

	aver	' 		L	og of Soil Bor	ing No.: ${f B}$ -2	21	
		 Time Starte 		1035	File No.:	1782-308-0		<u></u>
B	oos	Time Comp		1200	Client:	Toyoko Inn	USA, Inc.	
CONSU	LTANTS	 Drilling Co Driller: 	Thermen		Date:	1/16/2008	ER LEVEL I	NA (15) 4
			Javier	· · · · · · · · · · · · · · · · · · ·	NE		ER LEVEL I /HILE DRILL	
	entral, LLC	Location:	85 Lucki		NA		T COMPLET	
GEO-ENVIRON	MENTAL ENGINEERS		Atlanta, Georgia					
					S.	AMPLE DAT	A	
Below Ground Surface (ft.)	Soil Description	on	Sampte ID	Recovery ((in.) PID (ppm)	Moisture Content	Odor	Comments
21.0	Brown weathered gneis some mica and trace	s, sandy silt	<u> </u>					
22.0	some mica and trace	e calcite	9	12	0.2	Dry	None	
23.0			10		0.1	Dry	None	
24.0	Gneiss Bedrock encou 23' 6" bgs	intered at						
25.0	20 0 053							;
26.0								
27.0								
28.0		·						
29.0								
30.0								
31.0								
32.0								
33.0								
34.0								
35.0								
36.0								
37.0								
38.0								
39.0								
40.0 NOTES:	NSC- No Sample Collect	•						

	aver			L	og ol	f Soil Bori	ng No.: B-	24	
		Time Starte	d:	1330		e No.:	1782-308-0		
B	005	Time Comp		1445		ent:	Toyoko Inn		
]		Drilling Co:		С	Dat		1/16/2008		
CONSU	LTANTS	Driller:	Thermen					ER LEVEL	DATA
		Helper:	Javier		1	NE		VHILE DRIL	
NORTHCE	ENTRAL, LLC	Location:	85 Lucki	e Street		NE		T COMPLE	
GEO-ENVIRON	MENTAL ENGINEERS		Atlanta,	Georgia			• •		
AND S	CIENTISTS								
						SA	MPLE DAT	Ϋ́Α	
Below Ground			Sample			PID	Moisture		
Surface	Soil Description	ו	ID	Recovery (in.)	(ppm)	Content	Odor	Comments
(ft.)		·····				(pp.ii)	Content		
	Asphalt								
1.0	Fill - Gray SANDY SILT s	some gravel	1	6 .		0	Dry	None	
2.0						Ů	2.,	110110	
2.0		IDV ou #							
3.0	Fill - Reddish brown SAN		NSC						
5.0	some mica, trace wood a	nd gravel							
4.0									
		i	2	24		0.1	Dry	None	
5.0							•		
6.0									
			3	11		0.1	Dry	None	
7.0							-		
/.0						┢───┤			
8.0			NSC						
						┢┈╌╌┥			
9.0									
			4	18		0.5	Dry	None	
10.0	Fill - Red SANDY S	NI.T							
· · · · · · · · · · · · · · · · · · ·					,	<u> </u>			
11.0	Fill - Reddish brown SAN	IDY SILT							Collected sample
	some mica	0.21	5	12		5.3	Dry	None	B-24 @ (10'-12')
12.0	Fill - Black SILTY SAND s	ome gravel							D-24 @ (10-12)
		8				<u>├</u> ────┤			
13.0			6	8		1.5	Dry	None	
							2.7	1 tone	
14.0									
	Fill - Reddish brown SAN	DY SILT	7	15		1.1	Dry	None	
15.0									
16.0	Fill - Tanish brown SANDY	SILT some	8	20		0.5	D .	N	
	mica	1	°	20		0.5	Dry	None	
17.0									
			NSC	*==					
18.0									
	Reddish brown SANDY S	ILT some							
19.0	mica		9	17		3.0	Dry	Nona	Collected sample
				4.5		5.0	Diy	None	B-24 @ (18'-20')
20.0	NGO N. G. J. G. H.								
NOTES:	NSC- No Sample Collected;			N		·····			
	Soil boring terminated at 22'	ogs	Logged by	: Dan Tonis	ssen				Page 1 of 2

(

	an fan skrief fan de	s 			-					
	AVER	Time Of			og of Soil Bo	_				
B	oos	 Time Starte Time Comp 		1330 1445	File No.: Client:	1782-308-0				
CONSI	JLTANTS	 Drilling Co 	: MACTE	C	Date:	1/16/2008				
	ENTRAL, LLC		Thermer Javier	1	NE	WAT	ER LEVEL D	ΑΤΑ		
		Location:	85 Luck		NE		WHILE DRILLI AT COMPLETI			
AND	MENTAL ENGINEERS		Atlanta,	Georgia						
Below Ground	1				S.	AMPLE DAT	ΓA			
Surface	Soil Descripti	on	Sample	Recovery (i	PID	Moisture	Odor			
(ft.)	Roddich house CANTEN	0.00	ID		(ppm)	Content	Odor	Comments		
21.0	Reddish brown SANDY	SILTSOME								
22.0		,	10	1	0.2	Dry	None			
	Gneiss Bedrock enco	intered at				1		·····		
23.0	22' bgs									
24.0							•			
25.0		•								
26.0						·				
27.0										
28.0										
29.0										
30.0										
							4.			
31.0										
32.0	χ.									
33.0						•				
							· ·			
34.0										
35.0							• *			
36.0										
37.0		,					Ϋ́.			
38.0		. •								
39.0							×			
40.0										
NOTES:	NSC- No Sample Collected; Temporary Monitoring well PVC riser from 17' bgs to gro	NE- Not Enco	ountered				·			

	AVER			Lo	og of Soil Bor	ing No.: EI	B-1			
в	oos	Time Started			File No.:	1782-308-0)3 .			
		Time Comp		the second s	Client:			·		
CONSU	JLTANTS	Drilling Co: Driller:	George	t	Date:	3/3/2008 &				
NORTHC	ENTRAL, LLC	Helper:	Cleo		NE	WATER LEVEL DATA Ft WHILE DRILLING				
		Location:	85 Lucki	the second se	NA		AT COMPLE			
	IMENTAL ENGINEERS SCIENTISTS		Atlar							
Below Ground			ļ		S	AMPLE DA	TA			
Surface (ft.)	Soil Descriptio	n	Sample ID	Recovery (i	n.) [·] PID (ppm)	Moisture Content	Odor	Comments		
	Asphalt									
1.0 2.0	Fill - Pinkish brown SAN	IDY SILT	1	18	0	Dry [.]	None			
<u> </u>	Fill - Brownish-gray SAND	Y SILT trace								
3.0	gravel and bric		2	21	0	Deri				
4.0	Fill - Reddish-pink SAN	DY SILT	2	21	. 0	Dry	None			
5.0	Fill - Brown SANDY SILT	, trace gravel	3	17		n		Collected sample I		
6.0		trace graver		17	0	Dry	None	1 (4-6) at 1335		
7.0										
9.0	Concrete or large co	bbles	NSC					Used air hammer advance deeper		
9.0	Fill - Rubble consisting or	f concrete.								
10.0	asphalt, brick and SANI		4	12	0	Dry	None	Collected sample I I (8-10) at 1410		
1i.0										
12.0	Concrete ·		NSC							
13.0										
14.0							*******			
15.0										
16.0	-									
17.0										
18.0										
19.0										
	· ·									
NOTES:	Due to obstruction, boring w *Temporary Monitoring well riser from 3' bgs to ground su	installed in o rface. Well re	pen borel emained in	ole using 0.0	01 inch PVC : proximately f	slotted screen	from 13th	as to 3' has and a DI		
	NSC- No Sample Collected; Soil boring terminated at 13'	NA- Not App	licable; N	E-Not Enco	untered					
	con coming terminated at 13	ugs L	Jugged by	: Dan Toniss	en			Page 1 o		

	AVER	a	u ^a	I	_og of	Soil Bor	ing No.: EI	3-2	
		- Time Starte	d:	1050	File		1782-308-0		
B	oos	Time Comp		1230	Clier		1702-508-0		·····
		- Drilling Co:	Piedmon		Date		3/3/2008		
CONSU	JLTANTS	Driller:			1			ER LEVEI	DATA
NORTHCI	entral, LLC	Helper:	Cleo		_	NE		VHILE DRI	
		Location:	the second se			NA		AT COMPLI	
GEO-ENVIRON	MENTAL ENGINEERS		Atlanta, GA						
	JUCKIISIS				<u> </u>	0			
Below Ground		······					AMPLE DA		
Surface (ft.)	Soil Descriptio	on	Sample ID	Recovery	(in.)	PID (ppm)	Moisture Content	Odor	Comment
·····	Asphalt								
1.0 2.0	Fill - Pinkish-brown SANI gravel	DY SILT trace	· 1	14		0	Dry	None	
2.0									
			2	12		. 0	Dry	None	
5.0	Fill - Brown SANDY SIL	I few gravel	3	19	·	0	Dry	None	Collected samp 2 (4-6) at 1
6.0									2 (4-0) at 1
7.0	Fill - Gravel								
8.0	-		· 4	21		0	Dry	None	
9.0 10.0	Fill - Brown SANDY SIL	T few gravel	5	16		0	Dry	None	Collected samp 2 (8-10) at 1
11.0 12.0			6	18		0	Dry	None	Collected samp 2 (10-12) at 1
13.0			7	18		0	Dry	None	
14.0 15.0 16.0	Brownish-orange laminate SILT, some weathered gne bgs		8	12		0	Dry .	None	
17.0			9	6		0	Dry	None	Collected samp 2 (15-17) at 1
18.0							<u></u>		1
19.0	,								
20.0			······						
	Concrete at 10' bgs and reba NSC- No Sample Collected; Soil boring terminated at 17'	; NA- Not App	olicable; N	IE- Not End	counter	was offse red	t and redrille	ed to 17 fee	,
,	SOUL DORING Terminated at 17	'has I	ogged by	: Dan Tonis					Page

1				L	og of S	Soil Bori	ng No.: EF	8-3		
MX REA	AVER	Time Starte	d:	1315	File N		1782-308-0			
B		Time Comp		1415	Clien		1702-300-0			
		Drilling Co:		t	Date:		3/3/2008			
CONSU	ILTANTS	Driller:	George	·····	-		WAT	ER LEVEI	L DATA	
NORTHCI		Helper:	Cleo]	NE		HILE DRI		
		Location:	85 Lucki]	NA	Ft A	T COMPLE	ETION	
GEO-ENVIRON AND	MENTAL ENGINEERS SCIENTISTS		Atla	nta, GA						
Below. Ground	1		Į			SA	MPLE DAT	ГА		
Surface (ft.)	Soil Description	l .	Sample ID	Recovery (i	in.)	PID (ppm)	Moisture Content	Odor	Comments	
	Asphalt									
1.0			1	4			5			
				4		0	Dry	None		
2.0			L							
3.0										
<u> </u>	Fill - Brown SANDY SILT	trace gravel	2	18		0	Dry	None		
4.0		auto gravel	1				-			
			f					·····	+	
5.0			2	10	Ι.				Collected sample E	
			. 3	12	1	0	Dry	None	3 (4-6) at 1325	
6.0		_		····						
7.0	Same as above with trace	es of red				Í				
/.0	micacious rock		4	18		0	Dry	None		
8.0						Í				
	,									
9.0	Same as above with styr	rofoam				1				
			5	. 18		0	Dry	None		
10.0		· · ·								
11.0			6	20		0	Dry	None	Collected sample El	
12.0								itone	3 (10-12) at 1340	
, *#:0										
13.0			_							
			7	22		0	Dry	None	•	
14.0										
									1	
15.0	Deditt dome		8	17		0	Dry	None		
16.0	Reddish-brown SANDY	SILT	-	- /		Ĭ I	~, `	TIONE	1	
10.0		ŀ				ŀ				
17.0									Collected	
			9	3		0	Dry	None	Collected sample EF 3 (16-18) at 1400	
18.0								•	5 (10-10) at 1400	
····· ···· ····			<i>,,</i> ,,,,			d				
19.0										
20.0										
20.0	*Temporary Monitoring	installed	once 1	hala	01 1	1			-	
NOTES:	*Temporary Monitoring well riser from 8' bgs to ground sur	rface Well -	open bore	noie using 0	UI in	ich PVC	slotted scree	n from 18'	bgs to 8' bgs and a PV	
	NA- Not Applicable; NE- Not	t Encountere	ed and	in noie tor ap	proxi	matery 4	o nours, no v	vater obser	ved in well.	
·	Soil boring terminated at 18' b			/: Dan Tonis	sen				Page 1 of	
							· · · · · · · · · · · · · · · · · · ·		rage 1 01	
				· .		• •				
		· ·								
	·									

WYE	EAVER			L	og of Soil Be	Soil Boring No.: EB-4				
·		Time Starte	ed:	the second s	File No.:					
N. N	Boos	Time Com	pleted:	1530	Client:	1782-308-03				
(A TOTO		Drilling Co	: Piedmor	Mindles de Carlos de Carlo	Date:	3/3/2008				
	ULTANTS		George				TER LEVE			
North	ENTRAL, LLC	Helper: Location:	Cleo		NE	Ft	WHILE DR	ILLING		
GEO-ENVIRC	NMENTAL ENGINEERS	Location:	85 Luck		NA		AT COMPL			
ANI	D SCIENTISTS		Alla	inta, GA						
Below Ground			J	J		SAMPLE DA	TA			
Surface	Soil Descriptio	_	Sample		DID	Moisture	1	1		
(ft.)	Son Descriptio	n	ID	Recovery (in	n.) (ppm)	Content	Odor	Comments		
	Asphalt				. (PP)	Content				
1.0										
			1	24	0	Dry	None			
2.0										
3.0										
5,0			2	23	0	D				
4.0				25		Dry	None			
						L				
5.0						1				
			3	12	0	Dry	None	Collected sample		
6.0	Fill - Brown SANDY SILT	trace gravel						4 (4-6) at 1430		
7.0		trace graver					İ			
/.0			4	19	0	D -				
8.0	1			17		Dry	None			
9.0										
			5	17	0	Dry	None			
10.0										
11.0								+		
11.0			6	16	0	D		Collected sample I		
12.0			Ŭ	10	0	Dry	None	4 (10-12) at 144		
	Red SANDY SILT	r f								
13.0						T				
	Reddish-brown SANDY	SILT	7	23	0	Dry	None			
14.0						-				
15.0										
13.0	Brown SANDY SIL	T.	8	18		_				
16.0	Gneiss Gravel		,	10	0	Dry	None			
	Unciss Gravel	<u> </u>								
17.0	Oran aight 11									
	Orangish-red laminated SAN	DY SILT	9	15	0	Dry	None			
18.0						-				
19.0	D. 11				++			······		
19.0	Brownish-orange laminated	SANDY	10	21						
20.0	SILT trace gneiss grav	/el		Z1	0	Dry	None			
	Brownish-orange laminated	CANDY								
21.0	SILT trace gneiss grav		11	7	0	Dry	None	Collected sample El		
	NA- Not Applicable; NE- Not	Encountered	l			219	140116	4 (19-21) at 1500		
	Soil boring terminated at 21' by	- novumeret	the second s	Dan Tonisser						

B	005	Time Started Time Compl	leted:	1040 1220	File No Client:		1782-308-0	3	······································
	ILTANTS	Drilling Co: Driller: Helper:	George	t	Date:			L DATA	
GEO-ENVIRON	SNTRAL, LLC MENTAL ENGINEERS SCIENTISTS SCIENTISTS		Cleo 85 Luckie Street Atlanta, GA		the second s	IE IA	Ft WHILE DRILLING Ft AT COMPLETION		
						\$A	AMPLE DA	ГА	
Below Ground Surface (ft.)	Soil Descriptio	on	Sample ID	Recovery (in.)	PID (ppm)	Moisture Content	Odor	Comments
1.0	Asphalt		1	17		0	Dry	None	
2.0 3.0	Fill - Pinkish-brown SANDY SILT trace gravel		2	18		0	Dry	None	
4.0			-	10		Ŭ.			
5.0 6.0	Fill - Brown SANDY SILT trace gravel (brick at 7.75' to 8' bgs)		3	12		0	Dry	None	Collected sample El 5 (4-6) at 1100
7.0	(brick at 7.75' to 8'	bgs)	4	15		0	Dry	None	
9.0	Fill - Wood and cor	ncrete	NSC					***	
10.0 11.0	Fill - concrete, soil an	nd brick	5	4		0	Dry	None	Collected sample EF 5 (9-11) at 1130
12.0 13.0	Fill - concrete or large	cobbles	NSC						
14.0 15.0	Reddish-orange laminate SILT trace grave		6	17		0	Dry	None	
16.0 17.0	Brownish-orange laminate SILT trace grave		7	4		0	Dry	None	
18.0	Reddish-orange laminate SILT trace grave		8	. 24		0	Dry	None	Collected sample EE 5 (17-19) at 1220
19.0 20.0]							
NOTES:	Due to obstruction, boring v	vas attempted	two times	s. Metal obst	ruction	encoun	tered at 9 fe	et bgs in fir	st attempt
	NSC- No Sample Collected Soil boring terminated at 19	NA-Not Ap	plicable; 1	<u>NE- Not Enc</u> y: Dan Tonis	ountere	ed			Page 1 of

		1		L	og of S	Soil Bori	ng No.: ${f EB}$	-6	, ,		
	XVER	. Time Started	l:		File N		1782-308-03				
)Ba	dos	Time Compl		1605	Clien						
		Drilling Co:		t	Date:		3/4/2008	D I DI IDI			
	LTANTS	Helper:	George Cleo			NE		ER LEVEL HILE DRIL			
North Ce	NTRAL, LLC	Location:	85 Lucki	e Street		NA		T COMPLE			
GEO-ENVIRONN AND S	IENTAL ENGINEERS CIENTISTS		Atla	nta, GA							
Below Ground			ļ			SA	AMPLE DAT	<u>A</u>			
Surface (ft.)	Soil Descriptio	n	Sample ID	Recovery ((in.)	PID (ppm)	Moisture Content	Odor	Comments		
·	Asphalt										
1.0			1	19		0	Dry	None			
2.0				<u></u>							
3.0			2	14		0	Dry	None			
4.0	Fill - Pinkish-brown SANI gravel	OY SILT trace									
5.0	giavei		3	20		0	Dry	None	Collected sample E 6 (4-6) at 1450		
6.0								<u> </u>			
7.0			4	18		0	Dry	None			
8.0	Fill - Concrete and rubble	consisting of							Collected sample E		
9.0	asphalt, brick, SANE		5	12		0	Dry	None	6 (8-9.5) at 1540		
11.0											
12.0			.•								
13.0						•					
14.0											
15.0											
16.0							,	,			
17.0											
18.0											
19.0				.*							
20.0					`						
NOTES:	Due to obstructions, boring in each attempt.			mes. Metal	obstru	uctions w	ere encounte	red at 8', 8'	and 9.5' bgs respectiv		
	NA- Not Applicable; NE-								Th 1		
	Soil boring terminated at 9	.5' bgs	Logged	by: Dan Tor	nissen				Page 1		

	AVER Tit	ne Started:			g of Soil Bor File No.:	1782-308-0		
B		ne Completed:		and the second se	Client:	1.02-00-0		······
	Dr	illing Co: Pied			Date:	3/5/2008		
CONSU	ILTANTS Dri	iller: Geo	rge				ER LEVEI	L DATA
NORTHCE		lper: Cleo			NE		WHILE DRI	
ومعرفي المتجري والقلي التكري			85 Luckie Stre		NA	- Ft /	AT COMPLI	ETION
GEO-ENVIRONN AND S	MENTAL ENGINEERS		Atlar	nta, GA				
· · · ·	<u> </u>			I	S	AMPLE DA	ΤA	
Below Ground		Sample Date (1)				1		1
Surface	Soil Description	San		Recovery (in	.) PID	Moisture	Odor	Comments
(ft.)					.) (ppm)	Content		Comments
1.0	Asphalt				·			
1.0				18	0	Dry	None	
2.0								
	EUL District 1 Constant		-+				 	
3.0	Fill - Pinkish-brown SANDY					_		
		2	•	7	0	Dry	None	
4.0								<u> </u>
5.0	Same on share with the							
	Same as above with trace brid	ck and 3		15	0	Dry	None	
6.0						*		
	Fill - Brownish-pink SANDY	SILT	-+					
7.0	trace gravel, crushed concret			12	0	Dry	None	Collected sample El
	asphalt					5		7 (6-7.5) at 0820
8.0			T					
9.0								
<i></i>	Concrete	NS	c					
10.0								1
11.0			1			;		
100	1	5		18	0	Den	N	· ·
12.0				10	, v	Dry	None	
		270	-+					
		NS	4					·
14.0	Orangish-red laminated SAND	1						
	some think black layers	6		16	0	Dry	None	
15.0								
16.0		7		20	0	Dry	None	Collected sample EE
17.0						,		7 (15-17) at 0850
· ·	6 	- <u> </u>		•				
18.0	·							
							•	
19.0						•		
								•
20.0	Due to shate stire 1 - i							
NOTES:	Due to obstruction, boring was at NSC- No Sample Collected: NA	tempted two ti	imes.	. Metal obstru	ction encoun	tered at 7.5'	bgs in first	attempt.
	NSC- No Sample Collected; NA- Soil boring terminated at 17' bgs	Not Applicab	$\frac{1}{1}$	E- Not Encou Dan Tonisse	untered			Page 1 of

	aver 005	Time Starter Time Comp	leted:	0910 1045	File No Client:	o.:	ng No.: EF 1782-308-0		
CONSU	ILTANTS	Drilling Co: Driller:	George	nt	Date:		3/5/2008	ER LEVEL	DATA
	ENTRAL, LLC	Helper:	Cleo			E		HILE DRIL	
GEO-ENVIRON	MENTAL ENGINEERS	Location:	85 Lucki Atla	ie Street inta, GA	<u>N</u>	A	Ft A	T COMPLE	TION
ANDS	SCIENTISTS	L	[S/	AMPLE DAT	ГА —	
Below Ground Surface (ft.)	Soil Descriptio	n	Sample ID	Recovery (in.) [PID (ppm)	Moisture Content	Odor `	Comments
·	Asphalt								
1.0			1	24		0	Dry	None	
2.0	Fill - Pinkish-brown SAN	NDY SILT							
3.0			2	9		0	Dry	None	
4.0	Same as above with trace asphalt	brick and							
5.0	aspitati		3	12		0	Dry	None	Collected sample EE 8 (4-6) at 0925
6.0									
7.0 8.0			4	7		0	Dry	None	Collected sample EE 8 (6-8) at 0940
9.0	· ·				-				
10.0									
11.0	Concrete		NSC						
12.0									
13.0						{			
14.0	Brown SANDY SI		NSC						
15.0	Brownish-red laminated SA	NDY SILT	5	6		0	Dry	None	
16.0									
17.0	Brownish-orange laminate SILT some thin black		6	20		0	Dry	None	Collected sample EB 8 (16-18) at 1045
18.0		-							0 (10-10) at 1043
19.0									
20.0								•	
NOTES:	Due to obstruction, boring v NSC- No Sample Collected; Soil boring terminated at 18'	NA- Not Ap	<u>plicable;</u> 1	NE- Not Enc	ountere	n encou d	intered at 8.5	' bgs in firs	-
	son boring terminated at 18	ogs	Logged b	y: Dan Tonis	ssen				Page 1 of

na and a state of some consideration of the		1					-		
	AVER	TT' OIL				Boring No.: ${f E}$			
19-20	oos	Time Starte Time Comp		The second se	File No.: Client:	1782-308	-03		
		Drilling Co		The second se	Date:	3/5/2008	·····		
CONSU	ILTANTS	Driller:	George			the second se	WATER LEVEL DATA		
NORTHCI	ENTRAL, LLC	Helper:	Cleo		NE		WHILE DRI		
GEO-ENVIRON	MENTAL ENGINEERS SCIENTISTS	Location:	85 Lucki Atla	nta, GA	NA	F	AT COMPLI	ETION	
Below Ground	·					SAMPLE D	ATA		
Surface (ft.)	Soil Descriptio	n	Sample ID	Recovery (ii	n.) PH (ppr	1	Odor	Comments	
·	Asphalt								
1.0	Fill - Pinkish-brown SAND	Y SILT trace	1	. 16	0	Dry	None		
3.0 4.0	gravel	۰.	2	12	0	Dry	None		
5.0 <u> </u>	Fill - Brown SANDY SILT		3	18	0	Dry	None	-	
7.0	and asphalt	иасе опск	4	9	0	Dry	None	Collected sample EB- 9 (6-8) at 1135	
9.0			5	4	0	Dry	None		
10.0 11.0	Fill - crushed concrete, gra wood, SANDY SI	ivel, brick, LT	6	5	0	Dry	None	Collected sample EB- 9 (9-11) at 1150	
12.0									
13.0 14.0	Concrete		NSC					Air hammer used to advance deeper.	
15.0 16.0	Light brown laminated SA	NDY SILT	7	24	0	Dry	None		
17.0 18.0	Brownish-orange SANDY S calcite	SILT some	8	16	0	Dry	None	Collected sample EB- 9 (16-18) at 1225	
19.0 20.0			<i>.</i> .				<u>.</u>	L	
	NSC- No Sample Collected; 1	NTA DE A							

APPENDIX D

Appendix D

(

(

Ľ

Laboratory Analytical Reports

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

February 07, 2008 1:29:07PM

Client: Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn: Carl Dawes

SAMPLE IDENTIFICATION

B-1 (8-10) B-1 (11.5-13.5) LAB NUMBER

Project Nbr:

P/O Nbr:

NRA1896-01 NRA1896-02

Work Order: NRA1896 Project Name: Atlanta Rush Project [none] Date Received: 01/19/08

COLLECTION DATE AND TIME

01/18/08 10:30 01/18/08 12:45

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments: **Revised Report 2/07/08**

Dry weight corrected per client request. Replaces report dated 1/29/08 @ 09:58. Georgia Certification Number: Florida cert E87358

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

Rozanne L. Connor

Roxanne Connor

Program Manager - Conventional Accounts

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Hoos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Carl Dawes

Attn

Work Order: NRA1896 Project Name: Project Number: [none] Received: 01/19/08 08:00

Atlanta Rush Project

ANALYTICAL REPORT

		A	NALYTICAL RE	PORT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1896-01 (B-1	(8-10) - Soil) Samr	oled: 01/1	8/08 10.30				• • • • • • • • • • • • • • • • • • • •	
General Chemistry Parameters	(*,,		0/00 10.00					
% Dry Solids	87.0		%	0.500				
			70	0.500	1	01/23/08 11:03	SW-846	8013559
Volatile Organic Compounds by I	EPA Method 8260B							
Acetone	0.0661		mg/kg dry	0.0549	1	01/24/08 23:04	SW846 8260B	8013999
Benzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Bromobenzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Bromochloromethane	ND		mg/kg dry	0.00220	i	01/24/08 23:04	SW846 8260B	8013999
Bromodichloromethane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Bromoform	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Bromomethane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
2-Butanone	ND		mg/kg dry	0.0549	1	01/24/08 23:04	SW846 8260B	8013999
sec-Butylbenzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
n-Butylbenzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
tert-Butylbenzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Carbon disulfide	0.00609		mg/kg dry	0.00549	1	01/24/08 23:04	SW846 8260B	8013999
Carbon Tetrachloride	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Chlorobenzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Chlorodibromomethane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Chloroethane	ND		mg/kg dry	0.00549	1	01/24/08 23:04	SW846 8260B	
Chloroform	ND.		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Chloromethane	0.00464		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
2-Chlorotoluene	ND ·		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
4-Chlorotoluene	ND		mg/kg dry	0.00220	1	01/24/08 23:04		8013999
1,2-Dibromo-3-chloropropane	ND		mg/kg dry	0.00549	1	01/24/08 23:04	SW846 8260B	8013999
1,2-Dibromoethane (EDB)	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Dibromomethane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,4-Dichlorobenzene	ND		mg/kg dry	0.00220	1		SW846 8260B	8013999
1,3-Dichlorobenzene	ŇD		mg/kg dry	0.00220		01/24/08 23:04	SW846 8260B	8013999
1,2-Dichlorobenzene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Dichlorodifluoromethane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,1-Dichloroethane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,2-Dichloroethane	ND		mg/kg dry		1	01/24/08 23:04	SW846 8260B	8013999
cis-1,2-Dichloroethene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,1-Dichloroethene	ND			0.00220	1	01/24/08 23:04	SW846 8260B	8013999
trans-1,2-Dichlorgethene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,3-Dichloropropane	ND		mg/kg dry	0.00220	I	01/24/08 23:04	SW846 8260B	8013999
1,2-Dichloropropane	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
2,2-Dichloropropune	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
cis-1,3-Dichloropropene			mg/kg dry	0.00220	I	01/24/08 23:04	SW846 8260B	8013999
trans-1,3-Dichloropropene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,1-Dichluropropene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Ethylbenzone	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Hexachlorobutadiene	ND		mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B.	80139 9 9
2-Hexanone	ND		mg/kg dry	0.00549	1	01/24/08 23:04	SW846 8260B	8013999
e-riovanone	ND		mg/kg dry	0.0549	t	01/24/08 23:04	SW846 8260B	8013999

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order:NRA1896Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/19/08 08:00

Analyte	Result F	Plag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1896-01 (B-1) (8-1)		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
Volatile Organic Compounds by EPA		-	·				
Isopropylbenzene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
p-Isopropyltoluene	0.00275	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Methylene Chloride	ND	mg/kg dry	0.0110	L	01/24/08 23:04	SW846 8260B	8013999
4-Methyl-2-pentanone	ND	mg/kg dry	0.0549	L L	01/24/08 23:04	SW846 8260B	8013999
Naphthalene	0.0942	mg/kg dry	0.00549	ì	01/24/08 23:04	SW846 8260B	8013999
n-Propylbenzene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Styrene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,1,1,2-Tetrachloroethane	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00220	· 1	01/24/08 23:04	SW846 8260B	8013999
Tetrachloroethene	ND	mg/kg dry	0.00220	-1	01/24/08 23:04	SW846 8260B	8013999
Toluene	0.00646	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,1,2-Trichloroethane	ND	mg/kg dry	0.00549	1	01/24/08 23:04	SW846 8260B	8013999
1,1,1-Trichloroethane	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Trichloroethene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Trichlorofluoromethane	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,2,3-Trichloropropane	ND	mg/kg dry	0.00220	I	01/24/08 23:04	SW846 8260B	8013999
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
1,2,4-Trimethylbenzene	0.00320	mg/kg dry	0.00220	1	01/24/08 23:04	SW846 8260B	8013999
Vinyl chloride	ND	mg/kg dry	0.00220	I	01/24/08 23:04	SW846 8260B	8013999
Xylenes; total	0.00701	mg/kg dry	0.00549	1	01/24/08 23:04	SW846 8260B	8013999
Surr: 1,2-Dichloroethane-d4 (41-150%)	101 %				01/24/08 23:04	SW846 8260B	8013999
Surr: Dibromofluoromethane (55-139%)	98 %				01/24/08 23:04	SW846 8260B	8013999
Surr: Toluene-d8 (57-148%)	115 %				01/24/08 23:04	SW846 8260B	8013999
Surr: 4-Bromofluorobenzene (58-150%)	141 %				01/24/08 23:04	SW846 8260B	8013999
Semivolatile Organic Compounds by	EPA Method 8270C						
Acenaphthene	ND	mg/kg dry	0.751	2	01/22/08 22:09	SŴ846 8270C	8013382
Acenaphthylene	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Anthracene	1.43	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Benzo (a) anthracene	4.32	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Benzo (a) pyrene	3.86	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Benzo (b) fluoranthene	3.54	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Benzo (g,h,i) perylene	2.05	mg/kg dry	0.751	2	01/22/08 22:09	ŚW846 8270C	8013382
Benzo (k) fluoranthene	3.15	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
4-Bromophenyl phenyl ether	NĎ	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Butyl benzyl phthalate	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Carbazole	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
4-Chloro-3-methylphenol	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	801338
4-Chloroaniline	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	801338
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	801338

TestAmerica

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

 Client
 Weaver Boos Consultants LLC (1407793)
 Work

 70 West Madison, Suite 4250
 Project

 Chicago., IL 60602
 Project

 Attn
 Carl Dawes
 Receit

Work Order:NRAProject Name:AtlaProject Number:[norReceived:01/4

NRA1896 Atlanta Rush Project [none] 01/19/08 08:00

· .			ANALYTICAL REPO	RT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1896-01 (B-1	(8-10) - Soil) - coi	nt. Sample	ed: 01/18/08 10:30					
Semivolatile Organic Compounds								
Bis(2-chloroisopropyl)ether	ND		mg/kg dry	0.751	- 2	01/22/08 22:09	SW846 8270C	8013382
2-Chloronaphthalene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
2-Chlorophenol	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Chrysene	3.82		ing/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Dibenz (a,h) anthracene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Dibenzofuran	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Di-n-butyl phthalate	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
1,4-Dichlorobenzene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
1,2-Dichlorobenzene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
1,3-Dichlorobenzene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
3,3-Dichlorobenzidine	ND		mg/kg dry	1.50	2	01/22/08 22:09	SW846 8270C	8013382
2,4-Dichlorophenol	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Diethyl phthalate	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
2,4-Dimethylphenol	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Dimethyl phthalate	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
4,6-Dinitro-2-methylphenol	ND		mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
2,4-Dinitrophenol	ND		mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
2,6-Dinitrotoluene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
2,4-Dinitrotoluene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Di-n-octyl phthalate	ND		mg/kg dry	. 0.751	2	01/22/08 22:09	SW846 8270C	8013382
Bis(2-ethylhexyl)phthalate	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Fluoranthene	8.67		mg/kg dry	3.75	10	01/23/08 17:24	SW846 8270C	8013382
Fluorene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Hexachlorobenzeno	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Hexachlorobutadiene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Hexachlorocyclopentadiene	ND		mg/kg dry	0.751	. 2	01/22/08 22:09	SW846 8270C	8013382
Hexachloroethane	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Indeno (1,2,3-cd) pyrene	1.94		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Isophorone	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
2-Methylnaphthalene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
2-Methylphenol	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
3/4-Methylphenol	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Naphthalene	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
3-Nitroaniline	ND		mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
2-Nitroaniline	ND		mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
4-Nitroaniline	ND		mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
Nitrobenzene	ND		mg/kg drý	0.751	2	01/22/08 22:09	SW846 8270C	8013382
4-Nitrophenol	ND	L	mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
2-Nitrophenol	ND	L	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C SW846 8270C	8013382
N-Nitrosodiphenylamine	ND			0.751	2	01/22/08 22:09	SW846 8270C	8013382
N-Nitrosodi-n-propylamine		r	mg/kg dry mg/kg dry				SW846 8270C	
• • •	ND	L	mg/kg dry	0.751	2	01/22/08 22:09		8013382
Pentachlorophenol	ND		mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382

· ·

Page 4 of 37

neri

. 1

2960 Fosler Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes Attn

Work Order: NRA1896 Project Name: Atlanta Rush Project Project Number: [none] 01/19/08 08:00 Received:

			ANALYTICAL RE	PORT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1896-01 (B-1 (8-1	10) - Soil) - con	t. Sample	d: 01/18/08 10:3	n				
Semivolatile Organic Compounds by E				~				
Phenanthrene	5.67		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Phenol	ND		mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Pyrene	7.67		mg/kg dry	3.75	10	01/23/08 17:24	SW846 8270C	8013382
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.751	2	01/22/08 22:09		
1-Methylnaphthalene	ND		mg/kg dry	0.751			SW846 8270C	8013382
2,4,6-Trichlorophenol	ND			_	2	01/22/08 22:09	SW846 8270C	8013382
2,4,5-Trichlorophenol	ND	•	mg/kg dry	0.751	2	01/22/08 22:09	SW846 8270C	8013382
Surr: Terphenyl-d14 (26-128%)			mg/kg dry	1.88	2	01/22/08 22:09	SW846 8270C	8013382
Surr: 2,4,6-Tribromophenol (20-132%)	- 30 % 12 %	ZX				01/22/08 22:09	SW846 8270C	801338,
Surr: Phenol-d5 (23-113%)	21%	ZX ZX				01/22/08 22:09	SW846 8270C	801338.
Surr: 2-Fluorobiphenyl (19-109%)	26%	21				01/22/08 22:09	SW846 8270C	801338
Surr: 2-Fluorophenol (19-105%)	12%	ZX				01/22/08 22:09	SW846 8270C	8013382
Surr: Nitrobenzene-d5 (22-104%)	31 %	227				01/22/08 22:09 01/22/08 22:09	SW846 8270C SW846 8270C	8013382 • 8013382
Sample ID: NRA1896-02 (B-1 (11	.5-13.5) - Soil) (Sampled:	01/18/08 12:45					
General Chemistry Parameters								
% Dry Solids	86.9		%	0.500	1	01/25/08 08:58	SW-846	· 8014074
Volatile Organic Compounds by EPA	Method 8260B							
Acetone	ND		mg/kg dry	0.0508	1	01/24/08 18:07	SW846 8260B	8013912
Benzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromobenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromochloromethane	ND		mg/kg dry	0.00203		01/24/08 18:07		
Bromodichloromethane	ND		mg/kg dry	0.00203	l 1		SW846 8260B	8013912
Bromoform	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromomethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912

% Dry Solids	86.9	%	0.500	1	01/25/08 08:58	SW-846	· 8014074
Volatile Organic Compounds b	y EPA Method 8260B						
Acetone	ND	mg/kg dry	0.0508	1	01/24/08 18:07	SW846 8260B	8013912
Benzene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromobenzene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromochloromethane	ND	mg/kg dry	0.00203	L	01/24/08 18:07	SW846 8260B	8013912
Bromodichloromethane	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromoform	· ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Bromomethane	ND	mg/kg dry	0.00203	· 1	01/24/08 18:07	SW846 8260B	8013912
2-Butanone	ND	mg/kg dry	0.0508	1	01/24/08 18:07	SW846 8260B	8013912
sec-Butylbenzene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
n-Butylbenzene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
tert-Butylbenzene	ND	mg/kg dry	0.00203	L	01/24/08 18:07	SW846 8260B	8013912
Carbon disulfide	ND	mg/kg dry	0.00508	· 1	01/24/08 18:07	SW846 8260B	8013912
Carbon Tetrachloride	ND	mg/kg dry	0.00203	1.	01/24/08 18:07	SW846 8260B	8013912
Chlorobenzene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Chlorodibromomethane	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Chloroethane	ND	mg/kg dry	0.00508	1	01/24/08 18:07	SW846 8260B	8013912
Chloroform	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Chloromethane	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
2-Chlorotoluene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
4-Chlorotoluene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,2-Dibromo-3-chloropropane	ND	mg/kg dry	0.00508	1	01/24/08 18:07	SW846 8260B	8013912
1,2-Dibromoethane (EDB)	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Dibromomethane	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,4-Dichlorobenzene	ND	mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,3-Dichlorobenzene	ND	mg/kg dry	0.00203	-	01/24/08 18:07	SW846 8260B	8013912
· .		- • •					

Amer

Ca

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRA1896

[none]

Atlanta Rush Project

01/19/08 08:00

Work Order:

Received:


Project Name:

Project Number:

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

					Dilution	Analysis	·····	
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRA1896-02 (B-1 (11.5	-13.5) - Soil) -	- cont. San	pled: 01/18/08	12:45				
Volatile Organic Compounds by EPA M			-	•				
1,2-Dichlorobenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Dichlorodifluoromethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,1-Dichloroethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,2-Dichloroethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
cis-1,2-Dichloroethene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,1-Dichloroetheno	ND		mg/kg dry	0.00203	I	01/24/08 18:07	SW846 8260B	8013912
trans-1,2-Dichlorocthene	ND		mg/kg dry	0.00203	1,	01/24/08 18:07	SW846 8260B	8013912
1,3-Dichloropropane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,2-Dichloropropane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
2,2-Dichloropropane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
cis-1,3-Dichloropropene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
trans-1,3-Dichloropropene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,1-Dichloropropene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Ethylbenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Hexachlorobutadiene	ND		mg/kg dry	0.00508	1	01/24/08 18:07	SW846 8260B	8013912
2-Hexanone	ND		mg/kg dry	0.0508	1	01/24/08 18:07	SW846 8260B	8013912
Isopropylbenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
p-Isopropyltoluene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Methyl tert-Butyl Ether	ND		mg/kg dry	0.00203	Л	01/24/08 18:07	SW846 8260B	8013912
Methylene Chloride	ND		mg/kg dry	0.0102	1	01/24/08 18:07	SW846 8260B	8013912
4-Methyl-2-pentanone	ND		mg/kg dry	0.0508	I	01/24/08 18:07	SW846 8260B	8013912
Naphthalene	ND		mg/kg dry	0.00508	1	01/24/08 18:07	SW846 8260B	8013912
n-Propylbenzene	ND		mg/kg dry	0.00203	ì	01/24/08 18:07	SW846 8260B	8013912
Styrene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,1,1,2-Tetrachloroethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,1,2,2-Tetrachloroethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Tetrachloroethene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
Toluene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	8013912
1,2,3-Trichlorobenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
1,1,2-Trichloroethune	ND		mg/kg dry	0,00508	1	01/24/08 18:07	SW846 8260B	801391
1,1,1-Trichloroethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
Trichloroethene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
Trichlorofluoromethane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
1,2,3-Trichloropropane	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
1,3,5-Trimethylbenzene	ND:		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
1,2,4-Trimethylbenzene	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
Vinyl chloride	ND		mg/kg dry	0.00203	1	01/24/08 18:07	SW846 8260B	801391
Xylenes, total	ND		mg/kg dry	0.00508	1	01/24/08 18:07	SW846 8260B	801391
Surr: 1,2-Dichloroethane-d4 (41-150%)	120 %		·			01/24/08 18:07	SW846 8260B	80139
Surr: Dibromofluoromethane (55-139%)	101 %					01/24/08 18:07		
Surr: Toluene-d8 (57-148%)	108 %					01/24/08 18:07	SW846 8260B	
Surr: 4-Bromofluorobenzene (58-150%)	112 %					<i>01/24/08 18:07</i>	SW846 8260B	80139.

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NRJProject Name:AtlaProject Number:[nonReceived:01/1

NRA1896 Atlanta Rush Project [none] 01/19/08 08:00

Analyte				Dilution	Analysis		" <u></u>
· · · · · · · · · · · · · · · · · · ·	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRA1896-02 (B-1	(11.5-13.5) - Soil)	- cont. Sampled: 01/18/08	12:45				
Semivolatile Organic Compounds							
Acenaphthene	ND	mg/kg dry	0.379	1	01/26/08 10:13	011046 00700	0014120
Acenaphthylene	ND	mg/kg dry	0.379	1 1		SW846 8270C	8014138
Anthracene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Benzo (a) anthracene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	801413
Benzo (a) pyrene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Benzo (b) fluoranthene	ND	mg/kg dry	0.379		01/26/08 10:13	SW846 8270C	8014138
Benzo (g,h,i) perylene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Benzo (k) fluoranthene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.379	· 1	01/26/08 10:13	SW846 8270C	8014138
Butyl benzyl phthalate	ND	mg/kg dry		1	01/26/08 10:13	SW846 8270C	8014138
Carbazole	ND	mg/kg dry	0.379	l	01/26/08 10:13	SW846 8270C	8014138
4-Chloro-3-methylphenol	ND	mg/kg dry	0.379 0.370	1 -	01/26/08 10:13	SW846 8270C	8014138
4-Chloroaniline	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Bis(2-chloroethoxy)methane	ND		0.379	I .	01/26/08 10:13	SW846 8270C	8014138
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.379	1 ·	01/26/08 10:13	SW846 8270C	8014138
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2-Chloronaphthalene	ND	mg/kg dry mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2-Chlorophenol	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
4-Chlorophenyl phenyl ether	ND	mg/kg dry	0.379 0.379	1	01/26/08 10:13	SW846 8270C	8014138
Chrysene	ND	mg/kg dry		1	01/26/08 10:13	SW846 8270C	8014138
Dibenz (a,h) anthracene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Dibenzofuran	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Di-n-butyl phthalate	ND		0.379	1	01/26/08 10:13	SW846 8270C	8014138
1,4-Dichlorobenzene	ND	mg/kg dry	0.379	ł	01/26/08 10:13	SW846 8270C	8014138
1,2-Dichlorobenzene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
1,3-Dichlorobenzene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
3,3-Dichlorobenzidine	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2,4-Dichlorophenol	ND ·	mg/kg dry	0.760	1	01/26/08 10:13	SW846 8270C	8014138
Diethyl phthalate	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2,4-Dimethylphenol	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Dimethyl phthalate	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2,4-Dinitrophenol	ND	mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
2,6-Dinitrotoluene	ND	mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
2,4-Dinitrotoluene	ND ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Di-n-octyl phthalate	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Bis(2-ethylhexyl)phthalate		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Fluoranthene	ND ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Fluorene	ND	mg/kg dry	0,379	l	01/26/08 10:13	SW846 8270C	8014138
Hexachlorobenzene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Hexachlorobutadiene	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Hexachlorocyclopentadiene	ND	mg/kg dry	0.379	- 1	01/26/08 10:13	SW846 8270C	801,4138
Hexachloroethane	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
reversited octing the	ND	mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	801413

TestAmerica

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793) //) West Madison, Suite 4250	Work Order: Project Name:	NRA1896 Atlanta Rush Project	
Attn	('hicago,, IL 60602 ('hrl Dawes	Project Number: Received:	[none] 01/19/08 08:00	

·		1	ANALYTICAL RE	PORT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1896-02 (B-1 (11	.5-13.5) - Soil)	- cont. Sa	mpled: 01/18/08	12:45				
Semivolatile Organic Compounds by I	EPA Method 827	0C - cont.						
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Isophorone	ND		mg/kg dry	0.379	l	01/26/08 10:13	SW846 8270C	8014138
2-Methylnaphthalene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2-Methylphenol	ND		mg/kg dry	0.379	l	01/26/08 10:13	SW846 8270C	8014138
3/4-Methylphenol	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Naphthalene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
3-Nitroaniline	ND.		mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
2-Nitroaniline	ND		mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
4-Nitroaniline	ND		mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
Nitrobenzenc	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
4-Nitrophenol	ND		mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
2-Nitrophenol	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
N-Nitrosodiphenylamine	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
N-Nitrosodi-n-propylamine	ND		mg/kg dry	0.379	i	01/26/08 10:13	SW846 8270C	8014138
Pentachlorophenol	ND		mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
Phenanthrene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Phenol	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
Pyrene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
I-Methylnuphthalene	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2,4,6-Trichlorophenol	ND		mg/kg dry	0.379	1	01/26/08 10:13	SW846 8270C	8014138
2,4,5-Trichlorophenol	ND		mg/kg dry	0.949	1	01/26/08 10:13	SW846 8270C	8014138
Surr: Terphenyl-d14 (26-128%)	88 %					01/26/08 10:13	SW846 8270C	8014138
Surr: 2,4,6-Tribromophenol (20-132%)	78 %					01/26/08 10:13	SW846 8270C	8014138
Surr: Phenol-d5 (23-113%)	64 %					01/26/08 10:13	SW846 8270C	8014138
Surr: 2-Fluorobiphenyl (19-109%)	65%					01/26/08 10:13	SW846 8270C	8014138
Surr: 2-Fluorophenol (19-105%)	61 %					01/26/08 10:13	SW846 8270C	8014138
Surr: Nitrobenzene-d5 (22-104%)	60 %					01/26/08 10:13	SW846 8270C	8014138

lestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes . Work Order: Project Name: Project Number: Received:

NRA1896 Atlanta Rush Project [none] 01/19/08 08:00

SAMPLE EXTRACTION DATA

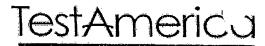
Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Semivolatile Organic Compounds by	y EPA Method 8270	C	• • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
SW846 8270C	8013382	NRA1896-01	30.60	.1.00	01/21/08 11:30	BAD	EPA 3550B
SW846 8270C	8013382	NRA1896-01RE1	30.60	1.00	01/21/08 11:30	BAD	EPA 3550B
SW846 8270C	8014138	NRA1896-02	30,30	1.00	01/25/08 08:40	MSR	EPA 3550B
Volatile Organic Compounds by EP	A Method 8260B						
SW846 8260B	8013999	NRA1896-01	5.23	5.00	01/21/08 11:49	NKN	EPA 5035
SW846 8260B	8013912	NRA1896-02	5.66	5.00	01/18/08 12:45	MXE	EPA 5035

lestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client 70 West Madison, Suite 4250 Chicago,, IL 60602


Attn

Weaver Boos Consultants LLC (1407793) NRA1896 Work Order: Atlanta Rush Project Project Name: Project Number: [none] Carl Dawes 01/19/08 08:00 Received:

PROJECT QUALITY CONTROL DATA

Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by EPA Method 8260B						
8013912-BLK1	·				•	
Acetone	<0.0250		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Benzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Bromobenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Bromochloromethane	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Bromodichloromethane	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Bromoform	<0.000530		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Bromomethane	<0.00157		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
2-Butanone	<0.00500		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
sec-Butylbenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
n-Butylbenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
tert-Butylbenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Carbon disulfide	<0.000670		mg/kg wet	8013912	8013912-BLKI	01/24/08 13:05
Carbon Tetrachloride	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Chlorobenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Chlorodibromomethane	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Chloroethanc	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Chloroform	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Chloromethane	<0.000880		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
2-Chlorotoluene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
4-Chiorotoluene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,2-Dibromo-3-chloropropane	<0.00100		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,2-Dibromoethane (EDB)	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Dibromomethane	<0.000540		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,4-Dichlorobenzene	<0.000640		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,3-Dichlorobenzene	<0.000530		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,2-Dichlorobenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Dichlorodifluoromethane	<0.000930		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,1-Dichloroethane	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,2-Dichloroethane	<0.000800		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
cis-1,2-Dichloroethene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,1-Dichloroethene trans-1,2-Dichloroethene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,3-Dichloropropano	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,2-Dichloropropane	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
2,2-Dichloropropano	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
cis-1,3-Dichloropropene	<0.000420		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
trans-1,3-Dichloropropene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
1,1-Dichloropropene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 [3:05
Ethylbenzene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Hexachlonibutadiene	<0.000670		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
2-Hexanono	<0.000630		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
Isopropylbenzene	<0.00407 <0.000570		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05
	~0.000070		mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05

ļ

į

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

(

Work Order: Project Name: Project Number: Received:

NRA1896 e: Atlanta Rush Project ber: [none] 01/19/08 08:00

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by	EPA Method 8260B	•••••••••••••••••••••••••••••••••••••••		••••••••••••••••••		
8013912-BLK1						
p-Isopropyitoluene	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	•
Methyl tert-Butyl Ether	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Methylene Chloride	<0.00348	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
4-Methyl-2-pentanone	<0.00426	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Naphthalene	<0.00151	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
n-Propylbenzene	<0.000530	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Styrene	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,1,1,2-Tetrachloroethane	<0.000500	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,1,2,2-Tetrachloroethane	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Tetrachlorocthene	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Toluene	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,2,3-Trichlorobenzene	<0.000660	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,2,4-Trichlorobenzene	<0.000650	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,1,2-Trichloroethane	<0.00102	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,1,1-Trichloroethane	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Trichloroethene	<0.000280	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Trichlorofluoromethane	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,2,3-Trichloropropane	<0.000550	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,3,5-Trimethylbenzene	<0.000670	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
1,2,4-Trimethylbenzene	<0.00127	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Vinyl chloride	<0.000710	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Xylenes, total	<0.00172	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Diisopropyl Ether	<0.00100	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	,
1,2-Dichloroethene (total)	<0,00144	mg/kg wet	8013912	8013912-BLK1	01/24/08 13:05	
Surrogate: 1,2-Dichloroethane-d4	121%		8013912	8013912-BLK1	01/24/08 13:05	
Surrogate: Dibromofluoromethane	103%		8013912	8013912-BLK1	01/24/08 13:05	
Surrogate: Toluene-d8	105%		8013912	8013912-BLK1	01/24/08 13:05	
Surrogate: 4-Bromofluorobenzene	107%		8013912	8013912-BLK1	01/24/08 13:05	
8013999-BLK1		• •				
Acetone	<0.0250	rtig/kg wet	8013999	8013999-BLK1	01/04/00 17:00	
Benzenc	<0.000670	mg/kg wet	8013999		01/24/08 17:32	
Bromobenzene	<0.000670	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Bromochloromethane	<0.000670	mg/kg wet	8013999	8013999-BLK1 8013999-BLK1	01/24/08 17:32	
Bromodichloromethane	<0.000670		8013999		01/24/08 17:32	
Bromoform	<0.000530	mg/kg wet mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Bromomethane	<0.00157	mg/kg wet		8013999-BLK1	01/24/08 17:32	
2-Butanone	<0.00500	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
sec-Butylbenzene	<0.000670	mg/kg wet	8013999 8013999	8013999-BLK1	01/24/08 17:32	
n-Butylbenzene	<0.000670		8013999	8013999-BLK1	01/24/08 17:32	
tert-Butylbenzene	<0.000670	mg/kg wet mg/kg wet	8013999 8013999	8013999-BLK1	01/24/08 17:32	
Carbon disulfide	<0.000670	mg/kg wet	8013999	8013999-BLK1 8013999-BLK1	01/24/08 17:32 01/24/08 17:32	

TestAmerica

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 (hicago,, IL 60602

Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: Project Name: Project Number: Received:

NRA1896 Atlanta Rush Project [none] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA

Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds b	y EPA Method 8260B					
8013999-BLK1						
Carbon Tetrachloride	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Chlorobenzene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Chlorodibromomethane	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Chloroethane	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Chloroform	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Chloromethane	<0.000880		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
2-Chlorotolucne	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
4-Chlorotolucne	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,2-Dibromo-3-chloropropane	<0.00100		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,2-Dibromoethane (EDB)	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Dibromomethane	<0.000540		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,4-Dichlorobenzene	<0.000640		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,3-Dichlorobenzene	<0.000530		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,2-Dichlorobenzene	<0.000670		mg/kg wet	8013999	8013999-BLKI	01/24/08 17:32
Dichlorodifluoromethane	<0.000930		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,1-Dichloroethane	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,2-Dichloroethane	<0.000800		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
cis-1,2-Dichloroethene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,1-Dichloroethene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
trans-1,2-Dichloroethene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,3-Dichloropropane	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,2-Dichloropropane	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
2,2-Dichloropropane	<0.000420		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
cis-1,3-Dichloropropene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
trans-1,3-Dichloropropene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,1-Dichloropropene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Ethylbenzene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Hexachlorobutadiene	<0.000630		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
2-Hexanone	<0.00407		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Isopropylbenzene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
p-Isopropyltoluene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Methyl tert-Butyl Ether	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Methylene Chloride	0.00389		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
4-Methyl-2-pentanone	<0.00426		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Naphthalene	<0.00151		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
n-Propylbenzene	<0.000530		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Styrene	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,1,1,2-Tetrachloroethane	<0.000500		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,1,2,2-Tetrachloroethane	<0.000670		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
Tetrachloroethene	<0.000670		mg/kg wet	8013999	8013999-BLKI	01/24/08 17:32
Toluene	<0.000670	·	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
1,2,3-Trichlorobenzene	<0.000660		mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32
	·		0.00			51124100 17.5M

TestAmerics

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

{

Work Order:NR.Project Name:AtlaProject Number:[nonReceived:01/1

NRA 1896 Atlanta Rush Project [none] 01/19/08 08:00

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by	EPA Method 8260B				·····	••••••
8013999-BLK1						
1,2,4-Trichlorobenzene	<0.000650	. mg/kg wet	8013999	8012000 DT KA		
1,1,2-Trichloroethane	<0.00102	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
1,1,1-Trichloroethane	<0.000670	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Trichloroethene	<0.000280	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Trichlorofluoromethane	<0.000670	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
1,2,3-Trichloropropane	<0.000550	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
1,3,5-Trimethylbenzene	<0.000670	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
1,2,4-Trimethylbenzene	<0.00127	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Vinyl chloride	<0.000710	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Xylenes, total	<0.00172	mg/kg wet	8013999	8013999-BLK1	01/24/08 17:32	
Surrogate: 1,2-Dichloroethane-d4	103%	mg ng wor	8013999	8013999-BLK1	01/24/08 17:32	
Surrogate: Dibromofluoromethane	99%		8013999	8013999-BLK1	01/24/08 17:32	
Surrogate: Toluene-d8	104%		8013999	8013999-BLK1	01/24/08 17:32	
Surrogate: 4-Bromofluorobenzene	106%		8013999	8013999-BLK1	01/24/08 17:32	
				8013999-BLK1	01/24/08 17:32	
Semivolatile Organic Compound	s by EPA Method 82706					
8013382-BLK1	•	-				
Acenaphthene	<0.0310	mg/kg wet	8013382	9012292 DI KI	01/00/00 1 5 6 5	
Acenaphthylene	<0.0320	mg/kg wet	8013382	8013382-BLK1 8013382-BLK1	01/22/08 16:31	
Anthracene	<0.0330	mg/kg wet	8013382		01/22/08 16:31	•
Benzo (a) anthracene	<0.0380	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (a) pyrene	<0.0290	mg/kg wet	8013382	8013382-BLK1 8013382-BLK1	01/22/08 16:31	
Benzo (b) fluoranthene	<0.0320	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (g,h,i) perylene	<0.0290	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (k) fluoranthene	<0.0290	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Bromophenyl phenyl ether	<0.111	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Butyl benzyl phthalate	<0.0890	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Carbazole	<0.165	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Chloro-3-methylphenol	<0.100	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Chloroaniline	<0.289	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Bis(2-chloroethoxy)methane	<0.111	ing/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Bis(2-chloroethyl)ether	<0.135	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31 01/22/08 16:31	
Bis(2-chloroisopropyl)ether	<0.102	mg/kg wet	8013382	8013382-BLK1		
2-Chloronsphthalene	<0.0680	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31 01/22/08 16:31	
2-Chlorophenol	<0,109	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Chlorophenyl phenyl ether	<0.111	mg/kg wet	8013382	8013382-BLKI		
Chrysene	<0.0390	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Dibenz (a,h) anthracene	< 0.0310	mg/kg wet	8013382	8013382-BLK1 8013382-BLK1	01/22/08 16:31	
Dibenzofuran	<0.0890	mg/kg wet	8013382	8013382-BLK1 8013382-BLK1	01/22/08 16:31	
Di-n-butyl phthalate	<0.0860	mg/kg wet	8013382	8013382-BLK1 8013382-BLK1	01/22/08 16:31	
1,4-Dichlorobenzene	<0.115	mg/kg wet	8013382	8013382-BLK1 8013382-BLK1	01/22/08 16:31	
			0910004	OUT JOZ-BLKI	01/22/08 16:31	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Work Order:NRA1896Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/19/08 08:00

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Semivolatile Organic Compou	unds by EPA Method 827(C				•••••••••••••••••••••••••••••••••••••••	
8013382-BLK1							
1,2-Dichlorobenzene	<0.0880	n	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
1,3-Dichlorobenzene	<0.0800	л	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
3,3-Dichlorobenzidine	<0.270	C	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dichlorophenol	<0.0870	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Diethyl phthalate	<0.0500	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dimethylphenol	<0.281	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Dimethyl phthalate	<0.0880	τ	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4,6-Dinitro-2-methylphenol	<0.0910	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dinitrophenol	<0.135	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,6-Dinitrotoluene	<0.111	ſ	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dinitrotoluene	<0.0880	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Di-n-octyl phthalate	<0.132	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Bis(2-ethylhexyl)phthalate	<0.111	I.	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Fluoranthene	<0.0340	r	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Fluorene	<0.0390	ı,	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachlorobenzene	<0.0830	I	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachlorobutadienc	<0,108	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachlorocyclopentadiene	<0.111	t	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachloroethane	<0.105	3	ng/kg wet	8013382	8013382-BLK1	01/22/08 16;31	
Indeno (1,2,3-cd) pyrene	<0.0310	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Isophorone	<0.100	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2-Methylnaphthalene	<0.0330	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2-Methylphenol	<0.0990	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
3/4-Methylphenol	<0.145	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Naphthaleno	<0.0410	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
3-Nitroaniline	<0.110	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2-Nitroaniline	<0.111	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Nitroaniline	<0.275	1	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Nitrobenzene	<0.106	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Nitrophenol	<0.276	1	ng/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2-Nitrophenol	<0.197	:	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
N-Nitrosodiphenylamine	<0.109	;	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
N-Nitrosodi-n-propylamine	<0.122	1	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Pentachlorophenol	<0.0740	:	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Phenanthrene	<0.0340	:	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Phenol	<0.0690	:	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Рутепе	<0.0410	1	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Pyridine	<0.0940	1	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
1,2,4-Trichlorobenzene	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
1-Methylnaphthalene	-0.000			8013382	8013382-BLK1	01/22/08 16:31	
	<0.0320		mg/kg wet	0015502	COIDDOL DENCI	01/22/08 10.51	
2,4,6-Trichlorophenol	<0.0320		mg/kg wet mg/kg wet	8013382	8013382-BLKI	01/22/08 16:31	

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Work Order: Project Name: Project Number: Received:

NRA 1896 Atlanta Rush Project [none] 01/19/08 08:00

Analyte	Blank Value	Q·	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compound	is by EPA Method 827	0C	••••••••••••••••			
8013382-BLK1						
Surrogate: Terphenyl-d14	75%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: 2,4,6-Tribromophenol	41%		2	8013382	8013382-BLK1	01/22/08 16:31
Surrogate: Phenol-dS	73%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: 2-Fluorobiphenyl	63%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: 2-Fluorophenol	63%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: Nitrobenzene-d5	85%			8013382	8013382-BLK1	01/22/08 16:31
8014138-BLK1						
Accamphthene	<0.0310		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Acenaphthylene	<0.0320		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Anthracene	<0.0330		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Benzo (a) anthracene	<0.0380		mg/kg wet	8014138	8014138-BLK1	
Benzo (a) pyrene	<0.0290		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Benzo (b) fluoranthene	<0.0320		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Benzo (g,h,i) perylene	<0.0290		mg/kg wet	8014138		01/26/08 09:12
Benzo (k) fluoranthene	<0.0290		mg/kg wet	8014138	8014138-BLK1 8014138-BLK1	01/26/08 09:12
4-Bromophenyi phenyi ether	<0.111		mg/kg wet	8014138		01/26/08 09:12
Butyl benzyl phthalate	<0.0890		mg/kg wet	8014138	8014138-BLK1 8014138-BLK1	01/26/08 09:12
Carbazole	<0.165		mg/kg wet	8014138		01/26/08 09:12
4-Chloro-3-methylphenol	<0.100		mg/kg wet	8014138	8014138-BLK1 8014138-BLK1	01/26/08 09:12
4-Chloroaniline	<0.289		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Bis(2-chloroethoxy)methane	<0.111		mg/kg wet	8014138		01/26/08 09:12
Bis(2-chloroethyl)ether	<0.135		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Bis(2-chloroisopropyl)ether	<0.102		mg/kg wet		8014138-BLK1	01/26/08 09:12
2-Chloronaphthalene	<0.0680		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
2-Chlorophenol	<0.109			8014138	8014138-BLK1	01/26/08 09:12
4-Chlorophenyl phenyl ether	<0.111		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Chrysene	<0.0390		tng/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Dibenz (a,h) anthracene	<0.0310		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Dibenzofuran	<0.0890	·	mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Di-n-butyl phthalate	<0.0860		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
1,4-Dichlorobenzene	<0.115		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
1,2-Dichlorobenzene	<0.0880		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
1,3-Dichlorobenzene	<0.0880		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
3,3-Dichlorobenzidine	<0.270		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
2,4-Dichlorophenol			mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Diethyl phthalate	<0.0870		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
2,4-Dimethylphenol	<0.0500		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
Dimethyl phthalate	<0.281	,	mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
4,6-Dinitro-2-methylphenol	<0.0880		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
2,4-Dinitrophenol	<0.0910		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
-	<0.135		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12
2,6-Dinitrotoluene	<0.111		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRA1896

[none]

Atlanta Rush Project

01/19/08 08:00

Work Order:

Project Name:

Received:

Project Number:

Client Weaver Boos Consultants LLC (1407793) /0 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

PROJECT QUALITY CONTROL DATA Blank - Cont.										
Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time				
Semivolatile Organic Compounds	s by EPA Method 827	0C		· · · · · · · · · · · · · · · · · · ·						
8014138-BLK1	•									
2,4-Dinitrotoluene	<0.0880		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Di-n-octyl phthalate	<0.132		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Bis(2-ethylhexyl)phthalate	0.593		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Fluoranthene	<0.0340		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Fluorene	<0.0390		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Hexachlorobenzene	<0.0830		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Hexachlorobutadiene	<0.108		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Hexachlorocyclopentadiene	<0.111		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Hexachloroethane	<0.105		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Indeno (1,2,3-cd) pyrene	<0.0310		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Isophorone	<0.100		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
2-Methylnaphthalene	<0.0330		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
2-Methylphenol	<0.0990		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
3/4-Methylphenol	<0.145		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Naphthalene	<0.0410		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
3-Nitroaniline	<0.110		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
2-Nitroaniline	<0.111		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
4-Nitroaniline	<0.275		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Nitrobenzene	<0.106		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
4-Nitrophenol	<0.276		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
2-Nitrophenol	<0.197		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
N-Nitrosodiphenylamine	<0.109		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
N-Nitrosodi-n-propylamine	<0.122		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Pentachlorophenol	<0.0740		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Phenanthrene	<0.0340		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Phenol	<0.0690		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Pyrene	<0.0410		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
1,2,4-Trichlorobenzene	<0.111		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
I-Methylnaphthalene	<0.0320		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
2,4,6-Trichlorophenol	<0.0870		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
2,4,5-Trichlorophenol	<0.0680		mg/kg wet	8014138	8014138-BLK1	01/26/08 09:12				
Surrogate: Terphenyl-d14	95%			8014138	8014138-BLK1	01/26/08 09:12				
Surrogate: 2,4,6-Tribromophenol	72%			8014138	8014138-BLK1	01/26/08 09:12				
Surrogate: Phenol-d5	70%			8014138	8014138-BLKI	01/26/08 09:12				
Surrogate: 2-Fluorohiphenyl	76%			8014138	8014138-BLK1	01/26/08 09:12				
Surrogate: 2-Fluorophenol	68%			8014138	8014138-BLK1	01/26/08 09:12				
Surrogate: Nitrobenzene-d5	73%			8014138	8014138-BLK1	01/26/08 09:12				

TestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order: Project Name: Project Number: Received:

NRA 1896 Atlanta Rush Project [none] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	0	Units	0/ D	Target Range		Analyzed
	• • • • • • • • • • • • • • • • • • • •		Q	0 n KS	% Rec.		Batch	Date/Time
Volatile Organic Compounds by EPA	wethod 8260B							
8013912-BS1 Acetone	050		•					
Benzene	250	235	MNRI	ug/kg	94%	49 - 150	8013912	01/24/08 11:30
Bromobenzene	50.0	48.0	MNR1	ug/kg	96%	76 - 130	8013912	01/24/08 11:30
Bromochloromethane	50.0	54.5	MNR1	ug/kg	109%	80 - 128	8013912	01/24/08 11:30
Bromodichloromethane	50.0	47.6	MNRI	ug/kg	95%	70 - 135	8013912	01/24/08 11:30
Bromoform	50.0	58.3	MNR1	ug/kg	117%	78 - 135	8013912	01/24/08 11:30
Bromomethane	50.0	53.4	MNR1	ug/kg	107%	67 - 143	8013912	01/24/08 11:30
2-Butanone	50.0	53.0	MNR1	ug/kg	106%	58 - 150	8013912	01/24/08 11:30
sec-Butyibenzene	250	257	MNRI	ug/kg	103%	61 - 143	8013912	01/24/08 11:30
n-Butylbenzene	50.0	53.5	MNR1	ug/kg	107%	80 - 134	8013912	01/24/08 11:30
tert-Butylbenzene	50.0	56,5	MNR I	ug/kg	113%	71 - 141	8013912	01/24/08 11:30
Carbon disulfide	50.0	54.4	MNR1	ug/kg	109%	79 - 132	8013912	01/24/08 11:30
Carbon Tetrachloride	50.0	36.8	MNR1	ug/kg	74%	70 - 134	8013912	01/24/08 11:30
Chlorobenzene	50.0	58.0	MNR1	· ug/kg	116%	75 - 137	8013912	01/24/08 11:30
Chlorodibromomethane	50.0	51.6	MNR1	ug/kg	103%	80 - 121	8013912	01/24/08 11:30
Chloroethane	50.0	52.0	MNR1	ug/kg	104%	77 - 130	8013912	01/24/08 11:30
Chloroform	50.0 50.0	47.7	MNR1	ug/kg	95%	62 - 149	8013912	01/24/08 11:30
Chloromethane	50.0	54.8	MNR I	ug/kg	110%	75 - 130	8013912	01/24/08 11:30
2-Chlorotoluene	50.0	31.2	MNR1	ug/kg	62%	35 - 130	8013912	01/24/08 11:30
4-Chlorotoluene	50.0	55.3	MNR1	ug/kg	111%	80 - 131	8013912	01/24/08 11:30
1,2-Dibromo-3-chloropropane	50.0	56.9	MNR1	ug/kg	114%	, 80 - 129	8013912	01/24/08 11:30
1,2-Dibromoethane (EDB)	50.0	49.6	MNRI	ug/kg	99%	62 - 142	8013912	01/24/08 11:30
Dibromomethane	50.0	52.1	MNR1	ug/kg	104%	81 - 130	8013912	01/24/08 11:30
1,4-Dichlorobenzene		52.4	MNR1	ug/kg	105%	77 - 133	8013912	01/24/08 11:30
1,3-Dichlorobenzene	50.0	53.9	MNR1	ug/kg	108%	75 - 128	8013912	01/24/08 11:30
1,2-Dichlorobenzene	50.0	54.8	MNRI	ug/kg	110%	79 - 128	8013912	01/24/08 11:30
Dichlorodifluoromethane	50.0	54.6	MNRI	ug/kg	109%	80 - 130	8013912	01/24/08 11:30
1,1-Dichloroethane	50.0	27.7	MNR1	ug/kg	55%	11 - 129	8013912	01/24/08 11:30
1,2-Dichloroethane	50.0	48.5	MNR1	ug/kg	97%	68 - 150	8013912	01/24/08 11:30
cis-1,2-Dichloroethene	50.0 50.0	59.1	MNR1	ug/kg	118%	72 - 132	8013912	01/24/08 11:30
1,1-Dichloroethene	50.0	52.0	MNR1	ug/kg	104%	77 - 132	.8013912	01/24/08 11:30
trans-1,2-Dichloroethene	50.0	41.0	MNR1	ug/kg	82%	75 - 133	8013912	01/24/08 11:30
1,3-Dichloropropane	50.0	49.0	MNR1	ug/kg	98%	79 - 133	8013912	01/24/08 11:30
1,2-Dichloropropane	50.0	50.7	MNR1	ug/kg	101%	80 - 125	8013912	01/24/08 11:30
2,2-Dichloropropane		47.2	MNR1	ug/kg	94%	75 - 124	8013912	01/24/08 11:30
cis-1,3-Dichloropropene	50.0	54.2	MNR1	ug/kg	108%	59 - 144	8013912	01/24/08 11:30
trans-1,3-Dichloropropene	. 50.0	58.3	MNR1	ug/kg	117%	80 - 137	8013912	01/24/08 11:30
1,1-Dichloropropene	50.0	54.4	MNR1	ug/kg	109%	75 - 133	8013912	01/24/08 11:30
Bthylbenzene	50.0	52.4	MNR1	ug/kg	105%	76 - 133	8013912	01/24/08 11:30
Hexachlorobutadiene	50.0	53.9	MNRI	ug/kg	108%	80 - 128	8013912	01/24/08 11:30
2-Hexanone	50.0	65.0	MNRI	ug/kg	130%	60 - 150	8013912	01/24/08 11:30
	250	257	MNR1	'ug/kg	103%	63 - 149	8013912	01/24/08 11:30

<u>TestAmerica</u>

THE LEADIER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRA1896

[none]

Atlanta Rush Project

01/19/08 08:00

Work Order:

Project Name:

Received:

Project Number:

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

PROJECT QUALITY CONTROL DATA LCS - Cont.									
Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time	
Volatile Organic Compounds by El	PA Method 8260B							•••••••••••	
8013912-BS1									
Isopropylbenzene	50.0	51.2	MNR1	ug/kg	102%	74 - 131	8013912	01/24/08 11:30	
p-Isopropyltoluene	50.0	53.6	MNR1	ug/kg	107%	75 - 133	8013912	01/24/08 11:30	
Methyl tert-Butyl Ether	50.0	49.4	MNR1	ug/kg	99%	67 - 130	8013912	01/24/08 11:30	
Methylene Chloride	50.0	45.4	MNR I	ug/kg	91%	65 - 144	8013912	01/24/08 11:30	
4-Methyl-2-pentanone	250	231	MNR1	ug/kg	93%	64 - 142	8013912	01/24/08 11:30	
Naphthalene	50.0	54.4	MNR1	ug/kg	109%	63 - 144	8013912	01/24/08 11:30	
n-Propylbenzene	50,0	53.0	MNRI	ug/kg	106%	80 - 131	8013912	01/24/08 11:30	
- Styrene	50.0	59.1	MNRI	ug/kg	118%	80 - 144	8013912	01/24/08 11:30	
1,1,1,2-Tetrachloroethane	50.0	57.1	MNR1	ug/kg	114%	80 - 129	8013912	01/24/08 11:30	
1,1,2,2-Tetrachloroethane	50.0	49.3	MNRI	ug/kg	99%	73 - 139	8013912	01/24/08 11:30	
Tetrachloroethene	50.0	53.9	MNR1	ug/kg	108%	76 - 128	8013912	01/24/08 11:30	
Toluene	50.0	50.4	MNRI	ug/kg	101%	80 - 125	8013912	01/24/08 11:30	
1,2,3-Trichlorobenzene	50.0	61.5	MNRI	ug/kg	123%	64 - 136	8013912	01/24/08 11:30	
1,2,4-Trichlorobenzene	50.0	65.8	MNRI	ug/kg	132%	58 - 145	8013912	01/24/08 11:30	
1,1,2-Trichloroethane	50.0	51.1	MNR1	ug/kg	102%	80 - 127	8013912	01/24/08 11:30	
1,1,1-Trichloroethane	50.0	57.1	MNRI	ug/kg	114%	76 - 134	8013912	01/24/08 11:30	
Trichloroethene	50.0	51.2	MNRI	ug/kg	102%	75 - 131	8013912	01/24/08 11:30	
Trichlorofluoromethane	50.0	48.1	MNR1	ug/kg	96%	63 - 130	8013912	01/24/08 11:30	
1,2,3-Trichloropropane	50.0	50.6	MNRI	ug/kg	101%	66 - 129	8013912	01/24/08 11:30	
1,3,5-Trimethylbenzene	50.0	56.2	MNR I	ug/kg	112%	78 - 133	8013912	01/24/08 11:30	
1,2,4-Trimethylbenzene	50.0	56.3	MNRI	ug/kg	113%	76 - 135	8013912	01/24/08 11:30	
Vinyl chloride	50.0	40.1	MNR1	ug/kg	80%	58 - 134	8013912	01/24/08 11:30	
Xylenes, total	150	165	MNRI	ug/kg	110%	79 - 130	8013912	01/24/08 11:30	
Diisopropyl Ether	50.0	47.9	MNR1	ug/kg	96%	69 - 132	8013912	01/24/08 11:30	
1,2-Dichloroethene (total)	100	101	MNR1	ug/kg	101%	78 - 132	8013912	01/24/08 11:30	
Surrogate: 1,2-Dichloroethane-d4	50.0	61.1			122%	41 - 150	8013912	01/24/08 11:30	
Surrogate: Dibromofluoromethane	50.0	52.2			104%	55 - 139	8013912	01/24/08 11:30	
Surrogate: Toluene-d8	50.0	54.5			109%	57 - 148	8013912	01/24/08 11:30	
Surrogate: 4-Bromufluorobenzene	50.0	54.3			109%	58 - 150	8013912	01/24/08 11:30	
8013999-BS1									
Acetone	250	252		ug/kg	101%	49 - 150	8013999	01/24/08 16:09	
Benzene	50,0	52.8		ug/kg	106%	76 - 130	8013999	01/24/08 16:09	
Bromobenzene	50.0	55.9		ug/kg	112%	80 - 128	8013999	01/24/08 16:09	
Bromochloromethane	50.0	58.7		ug/kg	117%	70 - 135	801 3999	01/24/08 16:09	
Bromodichloromethane	50,0	53.6		ug/kg	107%	78 - 135	80139 9 9	01/24/08 16:09	
Bromoform	50,0	54.0		ug/kg	108%	67 - 143	8013999	01/24/08 16:09	
Bromomethane	50.0	45.0		ug/kg	90%	58 - 150	8013999	01/24/08 16:09	
2-Butanono	250	267		ug/kg	107%	61 - 143	8013999	01/24/08 16:09	
sec-Butylbenzene	50,0	47.5		ug/kg	95%	80 - 134	8013999	01/24/08 16:09	
n-Butylbenzene	50.0	· 47.9		ug/kg	96%	71 - 141	8013999	01/24/08 16:09	
teit-Butylbenzene	50;0	51.1		ug/kg	102%	79 - 132	8013999	01/24/08 16:09	

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, 1L 60602 Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:MProject Name:AProject Number:[1]Received:0

NRA 1896 Atlanta Rush Project [none] · 01/19/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Target Analyzed Analyte Known Val. Analyzed Val Q Units % Rec. Range Date/Time Batch Volatile Organic Compounds by EPA Method 8260B 8013999-BS1 Carbon disulfide 50.0 47.7 95% ug/kg 70 - 134 8013999 01/24/08 16:09 Carbon Tetrachloride 50.0 51.7 103% ug/kg 75 - 137 8013999 01/24/08 16:09 Chlorobenzene 50.0 56.1 ug/kg 112% 80 - 121 8013999 01/24/08 16:09 Chlorodibromomethane 50.0 54.5 109% ug/kg 77 - 130 8013999 01/24/08 16:09 Chloroethane 50.0 50.1 ug/kg 100% 62 - 149 8013999 01/24/08 16:09 Chloroform 50.0 53.1 ug/kg 106% 75 - 130 8013999 01/24/08 16:09 Chloromethane 50.0 54.1 ug/kg 108% 35 - 130 8013999 01/24/08 16:09 2-Chlorotoluene 50.0 55.4 ug/kg 111% 80 - 131 8013999 01/24/08 16:09 4-Chlorotoluene 50.0 55.9 112% ug/kg 80 - 129 8013999 01/24/08 16:09 1,2-Dibromo-3-chloropropane 50.0 54.9 ug/kg 110% 62 - 142 8013999 01/24/08 16:09 1,2-Dibromoethane (EDB) 50.0 ·54.7 ug/kg 109% 81 - 130 8013999 01/24/08 16:09 Dibromomethane 50.0 54.0 108% ug/kg 77 - 133 8013999 01/24/08 16:09 1,4-Dichlorobenzene 50.0 56.7 113% 75 - 128 ug/kg 8013999 01/24/08 16:09 1,3-Dichlorobenzene 50.0 56,2 112% ug/kg 79 - 128 8013999 01/24/08 16:09 1,2-Dichlorobenzene 50.0 57.8 116% ug/kg 80 - 130 8013999 01/24/08 16:09 Dichlorodifluoromethane 50.0 43.8 ug/kg 88% 11 - 129 8013999 01/24/08 16:09 1,1-Dichloroethane 50.0 52.0 ug/kg 104% 68 - 150 8013999 01/24/08 16:09 1,2-Dichloroethane 50.0 52.4 ug/kg 72 - 132 105% 8013999 01/24/08 16:09 cis-1,2-Dichloroethene 50.0 51.3 ug/kg 103% 77 - 132 8013999 01/24/08 16:09 1,1-Dichloroethene 50.0 46.1 92% ug/kg 75 - 133 8013999 01/24/08 16:09 trans-1,2-Dichloroethene 50.0 48.7 97% 79 - 133 ug/kg 8013999 01/24/08 16:09 1,3-Dichloropropane 50.0 51.6 103% ug/kg 80 - 125 8013999 01/24/08 16:09 1,2-Dichloropropane 50,0 49.0 98% 75 - 124 ug/kg 8013999 01/24/08 16:09 2,2-Dichloropropane 50.0 50.8 ug/kg 102% 59 - 144 8013999 01/24/08 16:09 cis-1,3-Dichloropropene 50.0 53.3 107% ug/kg 80 - 137 8013999 01/24/08 16:09 trans-1,3-Dichloropropene 50.0 53.3 ug/kg 107% 75 - 133 8013999 01/24/08 16:09 1,1-Dichloropropene 50.0 50.9 ug/kg 102% 76 - 133 8013999 01/24/08 16:09 Ethylbenzene 50.0 55.7 111% ug/kg 80 - 128 8013999 01/24/08 16:09 Hexachiorobutadiene 50.0 43.9 ug/kg 88% 60 - 150 8013999 01/24/08 16:09 2-Hexanone 250 281 112% ug/kg 63 - 149 8013999 01/24/08 16:09 Isopropylbenzene 50.0 50.0 100% 74 - 131 ug/kg 8013999 01/24/08 16:09 p-Isopropyltoluene 50.0 47.3 ug/kg 95% 75 - 133 8013999 01/24/08 16:09 Methyl tert-Butyl Ether 50.0 46.7 ug/kg 93% 67 - 130 8013999 01/24/08 16:09 Methylene Chloride 50.0 53.5 107% ug/kg 65 - 144 8013999 01/24/08 16:09 4-Methyl-2-pentanone 250 280 ug/kg 112% 64 - 142 8013999 01/24/08 16:09 Naphthalene 50.0 51.7 ug/kg 103% 63 - 144 8013999 01/24/08 16:09 n-Propylbenzene 50.0 51.1 ug/kg 102% 80 - 131 8013999 01/24/08 16:09 Styrene 50.0 64.4 ug/kg 129% 80 - 144 8013999 01/24/08 16:09 1,1,1,2-Tetrachloroethane 50.0 57.2 uġ/kg 114% 80'- 129 8013999 01/24/08 16:09 1,1,2,2-Tetrachloroethane 50.0 58.6 117% ug/kg 73 - 139 8013999 01/24/08 16:09 Tetrachloroethene 50.0 51.8 ug/kg 104% 76 - 128 8013999 01/24/08 16:09

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

,

Client Weaver Hoos Consultants LLC (1407793) 70 West Madison, Suite 4250 (chicago,, IL 60602

Attn Carl Dawes

Work Order:	NRA1896
Project Name:	Atlanta Rush Project
Project Number:	[none]
Received:	01/19/08 08:00

PROJECT QUALITY CONTROL DATA

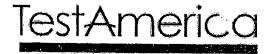
LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by El	PA Method 8260B			••••••	• • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • •	
8013999-BS1								
Toluene	50.0	\$3.3		ug/kg	107%	80 - 125	8013999	01/24/08 16:09
1,2,3-Trichlorobenzene	50.0	53.0		ug/kg	106%	64 - 136	8013999	01/24/08 16:09
1,2,4-Trichlorobenzenc	50.0	\$5.7		ug/kg	111%	58 - 145	8013999	01/24/08 16:09
1,1,2-Trichloroethane	50.0	50.3		ug/kg	101%	80 - 127	8013999	01/24/08 16:09
1,1,1-Trichloroethane	50.0	52,1		ug/kg	104%	76 - 134	8013999	01/24/08 16:09
Trichloroethene	50,0	54.2		ug/kg	108%	75 - 131	8013999	01/24/08 16:09
Trichlorofluoromethane	50.0	53.3		ug/kg	107%	63 - 130	8013999	01/24/08 16:09
1,2,3-Trichloropropane	50.0	53.3		ug/kg	107%	66 - 129	8013999	01/24/08 16:09
1,3,5-Trimethylbenzene	50.0	51.1		ug/kg	102%	78 - 133	8013999	01/24/08 16:09
1,2,4-Trimethylbenzene	50.0	52.2		ug/kg	104%	• 76 - 135	8013999	01/24/08 16:09
Vinyl chloride	50.0	51.2		ug/kg	102%	58 - 134	8013999	01/24/08 16:09
Xylenes, total	150	170		ug/kg	113%	79 - 130	8013999	01/24/08 16:09
Surrogate: 1,2-Dichloroethane-d4	50.0	51.8		0.0	104%	41 - 150	8013999	01/24/08 16:09
Surrogate: Dibromofluoromethane	50.0	50.6			101%	55 - 139	8013999	01/24/08 16:09
Surrogate: Toluene-d8	50.0	53.8			108%	57 - 148	8013999	01/24/08 16:09
Surrogate: 4-Bromofluorobenzene	50.0	53.4			107%	58 - 150	8013999	01/24/08 16:09
Semivolatile Organic Compounds b	y EPA Method 8270C							
8013382-BS1					÷			
Acenaphthene	1.67	1.53		mg/kg wet	92%	52 - 106	8013382	01/22/08 16:53
Acenaphthylene	1.67	1.58		mg/kg wet	95%	53 - 109	8013382	01/22/08 16:53
Anthracene Banna (a) anthracene	1.67	1.68		mg/kg wet	100%	54 - 124	8013382	01/22/08 16:53
Benzo (a) anthracene	1.67	1.61		mg/kg wet	97%	53 - 111	8013382	01/22/08 16:53
Benzo (a) pyrene	1.67	1.74		mg/kg wet	105%	52 - 122	8013382	01/22/08 16:53
Benzo (b) fluoranthene	1.67	1.65		mg/kg wet	99%	48 - 115	8013382	01/22/08 16:53
Benzo (g,h,i) perylene	1.67	, 1.54		mg/kg wet	92%	46 - 114	8013382	01/22/08 16:53
Benzo (k) fluoranthene	1.67	1.43		mg/kg wet	86%	41 - 121	8013382	01/22/08 16:53
4-Bromophenyl phenyl ether	1.67	1.37		mg/kg wet	82%	47 - 102	8013382	01/22/08 16:53
Butyl benzyl phthalate Carbazole	1.67	1.88		mg/kg wet	113%	56 - 127	8013382	01/22/08 16:53
4-Chloro-3-methylphenol	1.67	1.70		mg/kg wet	102%	53 - 113	8013382	01/22/08 16:53
4-Chloroanlline	1.67	1.63		mg/kg wet	98%	42 - 121	8013382	01/22/08 16:53
Bis(2-chloroethoxy)methane	1.67	1.41		mg/kg wet	84%	40 - 112	8013382	01/22/08 16:53
Bis(2-chloroethyl)ether	1.67	1.52		mg/kg wet	91%	45 - 105	8013382	01/22/08 16:53
	1.67	1.66		mg/kg wet	99%	45 - 106	8013382	01/22/08 16:53
Bis(2-chloroisopropyl)ether 2-Chloronaphthalene	1.67	1.64		mg/kg wet	98%	46 - 109	8013382	01/22/08 16:53
2-Chlorophenol	1.67	1.44		mg/kg wet	86%	49 - 105	8013382	01/22/08 16:53
2-Chlorophenyl phenyl ether	1.67	1.68		mg/kg wet	101%	44 - 119	8013382	01/22/08 16:53
Chrysene	1.67	1.51		mg/kg wet	91%	53 - 110	8013382	01/22/08 16:53
-	1.67	1.47		mg/kg wet	88%	49 - 113	8013382	01/22/08 16:53
Dibenz (a,h) anthracene	1.67	1.60		mg/kg wet	96%	47 - 117	8013382	01/22/08 16:53
Dibenzofuran	1.67	1.58		mg/kg wet	95%	55 - 111	8013382	01/22/08 16:53

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes


l

Work Order:NProject Name:AProject Number:[nReceived:01

NRA1896 Atlanta Rush Project [nonc] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method 8270C		• • • • • • • • • • •	•••••	• • • • • • • • • •	••••••••••	•••••••••••	••••••
8013382-BS1		,						
Di-n-butyl phthalate	1.67	1.85		mg/kg wet	111%	54 - 150	8013382	01/22/08 16:53
1,4-Dichlorobenzene	1.67	1.48		mg/kg wet	89%	35 - 109	8013382	-
1,2-Dichlorobenzene	1.68	1.54		mg/kg wet	91%	36 - 112	8013382	01/22/08 16:53
1,3-Dichlorobenzene	1.67	1.57		mg/kg wet	94%	36 - 112 36 - 110	8013382	01/22/08 16:53
3,3-Dichlorobenzidine	1.67	1.69		mg/kg wet	101%	42 - 111		01/22/08 16:53
2,4-Dichlorophenol	1.67	1.46		mg/kg wet	88%	40 - 118	8013382	01/22/08 16:53
Diethyl phthalate	1.67	1.65		mg/kg wet	99%	40 - 118 43 - 122	8013382	01/22/08 16:53
2,4-Dimethylphenol	1.67	1.72		mg/kg wet	103%	43 - 122 31 - 128	8013382	01/22/08 16:53
Dimethyl phthalate	1.67	1.54		mg/kg wet	. 93%	54 - 111	8013382	01/22/08 16:53
4,6-Dinitro-2-methylphenol	1.67	1.73		mg/kg wet	104%	24 - 111 24 - 131	8013382	01/22/08 16:53
2,4-Dinitrophenol	1.67	1.47		mg/kg wet	88%	11 - 148	8013382	01/22/08 16:53
2,6-Dinitrotoluene	1.67	1.86		mg/kg wet	112%	51 - 119	8013382	01/22/08 16:53
2,4-Dinitrotoluene	1.67	1.79		mg/kg wet	107%		8013382	01/22/08 16:53
Di-n-octyl phthalate	1.67	1.84		mg/kg wet	110%	54 - 113 45 - 134	8013382	01/22/08 16:53
Bis(2-ethylhexyl)phthalate	1.67	1.90		mg/kg wet	114%	43 - 134 52 - 122	8013382	01/22/08 16:53
Fluoranthene	1.67	1.70		mg/kg wet	102%	52 - 122 52 - 113	8013382	01/22/08 16:53
Fluorene	1.67	1.48		mg/kg wet	89%	52 - 113 54 - 107	8013382	01/22/08 16:53
Hexachlorobenzene	1.67	1.44		mg/kg wet	87%	51 - 117	8013382	01/22/08 16:53
Hexachlorobutadiene	1.67	1.45		mg/kg wet	87%	38 - 117	8013382	01/22/08 16:53
Hexachlorocyclopentadiene	1.67	1.69		mg/kg wet	101%	14 - 123	8013382	01/22/08 16:53
Hexachloroethane	1.67	1.71		mg/kg wet	101%	40 - 114	8013382	01/22/08 16:53
Indeno (1,2,3-cd) pyrene	1.67	1.53		mg/kg wet	92%		8013382	01/22/08 16:53
Isophorone	1.67	1.76		mg/kg wet	106%	47 - 115	8013382	01/22/08 16:53
2-Methylnaphthalene	1.67	1.41		mg/kg wet	85%	35 - 107	8013382	01/22/08 16:53
2-Methylphenol	1.67	1.75		mg/kg wet	105%	42 - 112	8013382	01/22/08 16:53
3/4-Methylphenol	1.67	1.98		mg/kg wet		44 - 119	8013382	01/22/08 16:53
Naphthalene	1.67	1.32		mg/kg wet	119%	49 - 129	8013382	01/22/08 16:53
3-Nitroaniline	1.67	1.82		mg/kg wet	79% 109%	34 - 107 50 122	8013382	01/22/08 16:53
2-Nitroaniline	1.67	1.77		mg/kg wet	109%	50 - 123	8013382	01/22/08 16:53
4-Nitroaniline	1.67	1.81		mg/kg wet	100%	54 - 120	8013382	01/22/08 16:53
Nitrobenzene	1.67	1.69		mg/kg wet	109%	46 - 124	8013382	01/22/08 16:53
4-Nitrophenol	1.67	2.80	L	mg/kg wet		35 - 102	8013382	01/22/08 16:53
2-Nitrophenol	1.67	1.52	L	,	168%	32 - 138	8013382	01/22/08 16:53
N-Nitrosodiphenylamine	1.67	1.69		mg/kg wet	91%	34 - 119	8013382	01/22/08 16:53
N-Nitrosodi-n-propylamine	1.67	2.20	,	mg/kg wet	101%	61 - 139	8013382	01/22/08 16:53
Pentachlorophenol	1.67	1.62	L	mg/kg wet	132%	44 - 117	8013382	01/22/08 16:53
Phenanthrene	1.67	1.51		mg/kg wet mg/kg wet	97%	38 - 141	8013382	01/22/08 16:53
Phenol	1.67	1.76			90%	53 - 108	8013382	01/22/08 16:53
Pyrene	1.67	1.57		mg/kg wet	106%	43 - 122	8013382	01/22/08 16:53
Pyridine	1.67	1.37		mg/kg wet	94%	54 - 113	8013382	01/22/08 16:53
1,2,4-Trichlorobenzene	1.67	1.27		mg/kg wet	82%	30 - 103	8013382	01/22/08 16:53
		1.4/		mg/kg wet	76%	35 - 102	8013382	01/22/08 16:53

2960. Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

٩

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

Work Order:NRA1896Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/19/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	 Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C	•••••••••••••••••••••••••••••••••••••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • •	
8013382-BS1								
I-Methylnophthalene	1.67	1.39		mg/kg wet	84%	36 - 100	8013382	01/22/08 16:53
2,4,6-Trichlorophenol	1.67	1.65		mg/kg wet	99%	50 - 122	8013382	01/22/08 16:53
2,4,5-Trichlorophenol	1.67	1.68		mg/kg wet	101%	45 - 122	8013382	01/22/08 16:53
Surrogate: Terphenyl-d14	1.67	1.43			86%	26 - 128	8013382	01/22/08 16:53
Surrogate: 2,4,6-Triliromophenol	1.67	1.24			74%	20 - 132	8013382	01/22/08 16:53
Surrogate: Phenol-di	1.67	1.70			102%	23 - 113	8013382	01/22/08 16:53
Surrogate: 2-Fluorohiphenyl	1.67	1.30			78%	19 - 109	8013382	01/22/08 16:53
Surrogate: 2-Fluorophenol	1.67	1.41			84%	19 - 105	8013382	01/22/08 16:53
Surrogate: Nitrobenzene-d5	1.67	1.57			94%	22 - 104	8013382	01/22/08 16:53
8014138-BS1								
Acenaphthene	1.67	1.33		mg/kg wet	80%	52 - 106	8014138	01/25/08 15:46
Acenaphthylene	1.67	1.39		mg/kg wet	83%	53 - 109	8014138	01/25/08 15:46
Anthracene	1.67	1.51		mg/kg wet	91%	54 - 124	8014138	01/25/08 15:46
Benzo (a) anthracene	1.67	1.49		mg/kg wet	89%	53 - 111	8014138	01/25/08 15:46
Benzo (a) pyrene	1.67	1.44		mg/kg wet	87%	52 - 122	8014138	01/25/08 15:46
Benzo (b) fluoranthene	1.67	1.35		mg/kg wet	81%	48 - 115	8014138	01/25/08 15:46
Benzo (g,h,i) perylene	1.67	1.42		mg/kg wet	85%	46 - 114	8014138	01/25/08 15:46
Benzo (k) iluoranthene	1.67	1.56		mg/kg wet	94%	41 - 121	8014138	01/25/08 15:46
4-Bromophenyl phenyl ether	1.67	1.30		mg/kg wet	78%	47 - 102	8014138	01/25/08 15:46
Butyl benzyl phthalate	1.67	1.68		mg/kg wet	101%	56 - 127	8014138	01/25/08 15:46
Carbazole	1.67	1.46		mg/kg wet	87%	53 - 113	8014138	01/25/08 15:46
4-Chloro-3-methylphenol	1.67	1.22		mg/kg wet	73%	42 - 121	8014138	01/25/08 15:46
4-Chloroaniline	1.67	1.16		mg/kg wet	70%	40 - 112	8014138	01/25/08 15:46
Bis(2-chloroethoxy)methane	1.67	1.19		mg/kg wet	72%	45 - 105	8014138	01/25/08 15:46
Bis(2-chloroethyl)ether	1.67	1.30		mg/kg wet	78%	45 - 106	8014138	01/25/08 15:46
Bis(2-chloroisopropyl)ether	1.67	1.33		mg/kg wet	80%	46 - 109	8014138	01/25/08 15:46
2-Chloronaphthalene	1.67	1.33		mg/kg wet	80%	49 - 105	8014138	01/25/08 15:46
2-Chlorophenol	1.67	1.32		mg/kg wet	79%	44 - 119	8014138	01/25/08 15:46
4-Chlorophenyl phenyl ether	1.67	1.36		mg/kg wet	81%	53 - 110	8014138	01/25/08 15:46
Chrysene	1.67	1.50		mg/kg wet	90%	49 - 113	8014138	01/25/08 15:46
Dibenz (a,h) unthracene	1.67	1.32		mg/kg wet	79%	47 - 117	8014138	01/25/08 15:46
Dibenzofuran	1.67	1.40		mg/kg wet	84%	55 - 111	8014138	01/25/08 15:46
Di-n-butyl phthalate	1.67	1.60		mg/kg wet	96%	54 - 150	8014138	01/25/08 15:46
1,4-Dichlorobenzeno	1,67	1,26		mg/kg wet	76%	35 - 109	8014138	01/25/08 15:46
1,2-Dichlorobenzene	1.68	1.26		mg/kg wet	75%	36 - 112	8014138	01/25/08 15:46
1,3-Dichlorobenzene	1.67	1.30		mg/kg wet	78%	36 - 110	8014138	01/25/08 15:46
3,3-Dichlorobenzidine	1,67	1.41		mg/kg wet	85%	42 - 111	8014138	01/25/08 15:46
2,4-Dichlorophenol	1,67	1.14		mg/kg wet	69%	40 - 118	8014138	01/25/08 15:46
Diethyl phthalate	1.67	1,45		mg/kg wet	87%	43 - 122	8014138	01/25/08 15:46
2,4-Dimethylphenol	1.67	1.29		mg/kg wet	77%	31 - 128	8014138	01/25/08 15:46
Dimethyl phthalate	1.67	1.43		mg/kg wet	86%	54 - 111	8014138	01/25/08 15:46

estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NRA1896Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/19/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C		•••••••	••••••		•••••	• • • • • • • • • • • • • •	•••••••••••••••
8014138-BS1	•							
4,6-Dinitro-2-methylphenol	1.67	1.32		mg/kg wet	79%	24 - 131	0014100	
2,4-Dinitrophenol	1.67	1.32		mg/kg wet	79%		8014138	01/25/08 15:46
2,6-Dinitrotoluene	1.67	1.46		mg/kg wet	88%	11 - 148	8014138	01/25/08 15:46
2,4-Dinitrotoluene	1,67	1.50			88% 90%	51 - 119	8014138	01/25/08 15:46
Di-n-octyl phthalate	1.67	1.65		mg/kg wet	90% 99%	54 - 113	8014138	01/25/08 15:46
Bis(2-ethylhexyl)phthalate	1.67	1.71	в	mg/kg wet mg/kg wet		45 - 134	8014138	01/25/08 15:46
Fluoranthene	1.67	1.50	в	2 8	103%	52 - 122	8014138	01/25/08 15:46
Fluorene	1.67	1.40		mg/kg wet	90%	52 - 113	8014138	01/25/08 15:46
Hexachlorobenzene	1.67	1.40		mg/kg wet	84%	54 - 107	8014138	01/25/08 15:46
Hexachlorobutadiene	1.67	1.19		mg/kg wet	88%	51 - 117	8014138	01/25/08 15:46
Hexachlorocyclopentadiene	1.67	1.19		mg/kg wet	72%	38 - 117	8014138	01/25/08 15:46
Hexachloroethane	1.67	1.20		mg/kg wet	72%	14 - 123	8014138	01/25/08 15:46
Indeno (1,2,3-cd) pyrene	1.67			mg/kg wet	76%	40 - 114	8014138	01/25/08 15:46
Isophorone	1.67	1.32		mg/kg wet	79%	47 - 115	8014138	01/25/08 15:46
2-Methylnaphthalene	1.67	1.25		mg/kg wet	75%	35 - 107	8014138	01/25/08 15:46
2-Methylphenol	1.67	1.15		mg/kg wet	69%	42 - 112	8014138	01/25/08 15:46
3/4-Methylphenol		1.40		mg/kg wet	84%	44 - 119	8014138	01/25/08 15:46
Naphthalene	1.67	1.54		mg/kg wet	93%	49 - 129	8014138	01/25/08 15:46
3-Nitroaniline	1.67	1.17		. mg/kg wet	70%	34 - 107	8014138	01/25/08 15:46
2-Nitroaniline	1.67	1.43		mg/kg wet	86%	50 - 123	8014138	01/25/08 15:46
4-Nitroaniline	1.67	1.40		mg/kg wet	84%	. 54 - 120	8014138	01/25/08 15:46
Nitrobenzene	1.67	1.42		mg/kg wet	85%	46 - 124	8014138	01/25/08 15:46
4-Nitrophenol	1.67	1.16		mg/kg wet	69%	35 - 102	8014138	01/25/08 15:46
2-Nitrophenol	1.67	1.41		mg/kg wet	84%	32 - 138	8014138	01/25/08 15:46
•	1.67	1.15		mg/kg wet	69%	34 - 119	8014138	01/25/08 15:46
N-Nitrosodiphenylamine	1.67	1.49		mg/kg wet	89%	61 - 139	8014138	01/25/08 15:46
N-Nitrosodi-n-propylamine	1.67	1.33		mg/kg wet	80%	44 - 117	8014138	01/25/08 15:46
Pentachlorophenol	1.67	1.68		mg/kg wet	101%	38 - 141	8014138	01/25/08 15:46
Phenanthrene	1.67	1.45		mg/kg wet	87%	53 - 108	8014138	01/25/08 15:46
Phenol	1.67	1.33		mg/kg wet	80%	43 - 122	8014138	01/25/08 15:46
Pyrene	1.67	1.55		mg/kg wet	93%	54 - 113	8014138	01/25/08 15:46
1,2,4-Trichlorobenzene	1.67	1.15		mg/kg wet	69%	35 - 102	8014138	01/25/08 15:46
1-Methylnaphthalene	1.67	1.14		mg/kg wet	69%	36 - 100	8014138	01/25/08 15:46
2,4,6-Trichlorophenol	1.67	1.47		mg/kg wet	88%	50 - 122	8014138	01/25/08 15:46
2,4,5-Trichlorophenol	1.67	1.37		mg/kg wet	82%	45 - 122	8014138	01/25/08 15:46
Surrogate: Terphenyl-d14	1.67	1.34			80%	26 - 128	8014138	01/25/08 15:46
Surrogate: 2,4,6-Tribromophenol	1.67	1.40			84%	20 - 132	8014138	01/25/08 15:46
Surrogate: Phenol-d5	1.67	1.22			73%	23 - 113	8014138	01/25/08 15:46
Surrogate: 2-Fluorobiphenyl	1.67	1.10			66%	19 - 109	8014138	01/25/08 15:46
Surrogate: 2-Fluorophenol	1.67	1.16			70%	19 - 105	8014138	01/25/08 15:46
Surrogate: Nitrobenzene-d5	1.67	0.997			60%	22 - 104	8014138	01/25/08 15:46

<u>TestAmerica</u>

THE LEAD(R IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

,

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

Work Order: Project Name:	NRA 1896 Atlanta Rush Project
Project Number: Received:	[none] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup

Analyte	Orig. Val.	Duplicate	Q Uni	Spike s Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	3260B	•••••		•••••	• • • • • • • • •	•••••	• • • • • •		•••••	
8013912-BSD1											
Acetone		229	ug/k	g 250	91%	49 - 150	3	45	8013912		01/24/08 12:04
Benzene		47.8	ug/k	g 50.0	96%	76 - 130	0.5	43	8013912		01/24/08 12:04
Bromobenzene		53.6	ug/k	-	107% [.]	80 - 128	2	50	8013912		01/24/08 12:04
Bromochloromethaue		46.8	ug/k		94%	70 - 135	2	32	8013912		01/24/08 12:04
Bromodichloromethane		56:6	ug/k	-	113%	78 - 135	3	37	8013912		01/24/08 12:04
Bromoform		52.8	ug/ł	-	106%	67 - 143	1	50	8013912		01/24/08 12:04
Bromomethane		53.0	ug/k	-	106%	58 - 150	0.08	50	8013912		01/24/08 12:04
2-Butanone		239	ug/l	•	96%	61 - 143	7	43	8013912		01/24/08 12:04
sec-Butylbenzene		53,3	ug/l	-	107%	80 - 134	0.5	50	8013912		01/24/08 12:04
n-Butylbenzene		56.2	ug/l	Ũ	112%	71 - 141	0.5	50	8013912		01/24/08 12:04
tert-Butylbenzene		55.1	-g- ug/l	-	110%	79 - 132	1	50	8013912		01/24/08 12:04
Carbon disulfide		37.0	ug/l	U	74%	70 - 134	0.5	47	8013912		01/24/08 12:04
Carbon Tetrachloride		57.6	ug/l	-	115%	75 - 137	0.8	44	8013912		01/24/08 12:04
Chlorobenzene		51.8	ug/l	-	104%	80 - 121	0.0	44	8013912		01/24/08 12:04
Chlorodibromomethane		52.5	ug/1	•	105%	77 - 130	1	45	8013912		01/24/08 12:04
Chloroethane		47.8	ug/l	-	96%	62 - 149	0.04		8013912		01/24/08 12:04
Chloroform		53.4	ug/l	0	107%	75 - 130	3	36	8013912		01/24/08 12:04
Chioromethane		30.6	ug/l	-	61%	35 - 130	2	50	8013912		01/24/08 12:04
2-Chlorotoluene		55.0	ug/l	0	110%	80 - 131	0.5	50	8013912		01/24/08 12:04
4-Chlorotoluene		57.0	ug/l	-	114%	80 - 129	0.1	50	8013912		01/24/08 12:04
1,2-Dibromo-3-chloropropane		47.9	ug/l	-	96%	62 - 142	3	50 50	8013912		
1,2-Dibromoethane (EDB)		52.1	ug/l	•	104%	81 - 130	0.04	50	8013912		01/24/08 12:04
Dibromomethane		51.3	ug/l		10478	77 - 133	2	30 45	8013912		01/24/08 12:04
1,4-Dichlorobenzene		54,4	ug/l	-	105%	75 - 128	0.8	43 50			
1,3-Dichlorobenzene	6 .,	53.9	ug/l	-	109%	79 - 128	2	50	8013912 8013912		01/24/08 12:04
1,2-Dichlorobenzene		52.8		-	108%			50 50			01/24/08 12:04
Dichlorodifluoromethane		26.2	ug/]	0	52%	80 - 130 11 - 129	3 5		8013912		01/24/08 12:04
1,1-Dichloroethane		48.9	ug/l	Ŷ				43	8013912		01/24/08 12:04
1,2-Dichloroethane		48.9 58.0	ug/l	-	98%	68 - 150	0.8	37	8013912		01/24/08 12:04
cis-1,2-Dichloroethene			ug/	-	116%	72 - 132	2	44	8013912		01/24/08 12:04
1,1-Dichloroethene		51.2	ug/	-	102%	77 - 132	2	35	8013912		01/24/08 12:04
trans-1,2-Dichloroethene		40.3	ug/	-	81%	75 - 133		41	8013912		01/24/08 12:04
1,3-Dichloropropane		49.8	ug/	-	100%	79 - 133	2	37	8013912		01/24/08 12:04
1,2-Dichloropropane		51.1	ug/	-	102%	80 - 125	0.7	44	8013912		01/24/08 12:04
		45.9	ug/	-	92%	75 - 124	3	35	8013912		01/24/08 12:04
2,2-Dichloropropane cis-1,3-Dichloropropene		54.5	ug/		109%	59 - 144		33	8013912		01/24/08 12:04
		60.1	ug/	-	120%	80 - 137		43	8013912		01/24/08 12:04
trans-1,3-Dichloropropene		55.6	ug/	-	111%			50	8013912		01/24/08 12:04
1,1-Dichloropropene		51.6	ug/		103%			41	8013912		01/24/08 12:04
Ethylbenzene Hannaklansfarta för		54.4	ug/	-	109%	80 - 128		48	8013912		01/24/08 12:04
Hexachlorobutadiene		65.1	ug/	kg 50.0	130%	60 - 150	0.3	50	8013912		01/24/08 12:04
2-Hexanone		251	ug/	kg 250	101%	63 - 149	2	50	8013912		01/24/08 12:04

i

Į

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

(

Work Order: NRA1896 Project Name: Atlanta Rush Project Project Number: [none] Received:

01/19/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val. Duplic	ate Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B	•••••		• • • • • • • • •	• • • • • • • •	• • • • • • • • • •	• • • • • •		•••••	• • • • • • • • • • • • • • • • •	
8013912-BSD1											
Isopropylbenzene	51.9	ı.	ug/kg	50.0	104%	74 - 131	I	50	8013912		01/24/08 12:04
p-Isopropyltoluene	53.5		ug/kg	50.0	107%	75 - 133	0.2	50	8013912		01/24/08 12:04
Methyl tert-Butyl Ether	48.0	ŀ	ug/kg	50.0	96%	67 - 130	3	45	8013912		01/24/08 12:04
Methylene Chloride	44.5		ug/kg	50.0	89%	65 - 144	2	39	8013912		01/24/08 12:04
4-Methyl-2-pentanone	225		ug/kg	250	90%	64 - 142	3	50	8013912		01/24/08 12:04
Naphthalene	52.8		ug/kg	50.0	106%	63 - 144	3	50	8013912		01/24/08 12:04
n-Propylbenzene	53.2		ug/kg	50.0	106%	80 - 131	0.4	50	8013912		01/24/08 12:04
Styrene	59.4		ug/kg	50.0	119%	80 - 144	0.4	50	8013912		01/24/08 12:04
1,1,1,2-Tetrachloroethane	. 57.1		ug/kg	50.0	114%	80 - 129	0.02	43	8013912		01/24/08 12:04
1,1,2,2-Tetrachloroethane	49.1		ug/kg	50.0	98%	73 - 139	0.4	50	8013912		01/24/08 12:04
Tetrachloroethene	54.5		ug/kg	50.0	109%	76 - 128	1	45	8013912		01/24/08 12:04
Toluene	51.1		ug/kg	50.0	102%	80 - 125	1	44	8013912		01/24/08 12:04
1,2,3-Trichlorobenzene	59.6		ug/kg	50.0	119%	64 - 136	3	50	8013912		01/24/08 12:04
1,2,4-Trichlorobenzene	62.0		ug/kg	50.0	125%	58 - 145	5	50	8013912		01/24/08 12:04
1,1,2-Trichloroethane	51.1		ug/kg	50.0	102%	80 - 127	0	41	8013912		01/24/08 12:04
1,1,1-Trichloroethane	56.7		ug/kg	50.0	113%	76 - 134	0.8	39	8013912		01/24/08 12:04
Trichloroethene	50.2		ug/kg	50.0	100%	75 - 131	2	40	8013912		01/24/08 12:04
Trichlorofluoromethane	47.0		ug/kg	50.0	95%	63 - 130	1	42	8013912		01/24/08 12:04
1,2,3-Trichloropropane	49.0		ug/kg	50.0	98%	66 - 129	3	50	8013912		01/24/08 12:04
1,3,5-Trimethylbenzene	56.8		ug/kg	50.0	114%	78 - 133	1	50	8013912		01/24/08 12:04
1,2,4-Trimethylbenzene	56.2		ug/kg	50,0	112%	76 - 135	0.2	50	8013912		01/24/08 12:04
Vinyl chloride	40.8		ug/kg	50,0	82%	58 - 134	2	'41	8013912		01/24/08 12:04
Xylenes, total	167		ug/kg	150	111%	79 - 130	1	48	8013912		01/24/08 12:04
Diisopropyl Ether	47.5		ug/kg	50.0	95%	69 - 132	0.3	39	8013912		01/24/08 12:04
1,2-Dichloroethene (total)	101		ug/kg	100	101%	78 - 132	0.06	35	8013912		01/24/08 12:04
Surrogate: 1,2-Dichloroethane-d4	58,4		ug/kg	50.0	117%	41 - 150			8013912		01/24/08 12:04
Surrogate: Dibromofluoromethane	51.3		ug/kg	50.0	103%	55 - 139			8013912		01/24/08 12:04
Surrogate: Toluene-d8	52.3		ug/kg	50.0	105%	57 - 148			8013912		01/24/08 12:04
Surrogate: 4-Bromofluorobenzene	54.8		ug/kg	50.0	110%	58 - 150			8013912		01/24/08 12:04
8013999-BSD1											
Acetone	240	MNR	1 ug/kg	250	96%	49 - 150	5	45	8013999		01/24/08 16:37
Benzene	51.7			50.0	103%	76 - 130	2	43	8013999		01/24/08 16:37
Bromobenzene	53.9			50.0	108%	80 - 128	4	50	8013999		01/24/08 16:37
Bromochloromethane	57.2			50.0	114%	70 - 135	3	32	8013999		01/24/08 16:3
Bromodichloromethane	53.3			50.0	107%	78 - 135	0.2	37	8013999		01/24/08 16:3
Bromoform	52.2		- +	50.0	104%		3	50	8013999		01/24/08 16:3
Bromomethane	45.0			50.0	91%	58 - 150	1	50	8013999	•	01/24/08 16:3
2-Butanone	274			250		61 - 143	3	43	8013999		01/24/08 16:3
sec-Butylbenzene	53.8			50.0	108%	80 - 134	13	43 50	8013999		01/24/08 16:3
n-Butylbenzene	55.1			50.0		71 - 141	13	50	8013999		01/24/08 16:3

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order:NRA1896Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/19/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile ()rganic Compounds by I	EPA Method 8	3260B									•••••••	
8013999-BSD1												
tert-Butylbenzene		55.8	MNR1	ug/kg	50.0	112%	79 - 132	9	50	8013999		01/24/08 16:37
Carbon disulfide		45.7	MNR1	ug/kg	50.0	91%	70 - 134	4	47	8013999		01/24/08 16:37
Carbon Tetrachloride		52.0	MNR1	ug/kg	50.0	104%	75 - 137	0.6	44	8013999		01/24/08 16:37
Chlorobenzene		54.2	MNRI	ug/kg	50.0	108%	80 - 121	3	44	8013999		01/24/08 16:37
Chlorodibromomethane		53.5	MNRI	ug/kg	50.0	107%	77 - 130	2	45	8013999		01/24/08 16:37
Chloroethanc		50.5	MNR1	ug/kg	50.0	101%	62 - 149	0.8	50	8013999		01/24/08 16:37
Chloroform		52.9	MNR1	ug/kg	50.0	106%	75 - 130	0.4	36	8013999		01/24/08 16:37
Chloromethane		51.1	MNR1	ug/kg	50.0	102%	35 - 130	6	50	8013999		01/24/08 16:37
2-Chlorotoluene		55.0	MNR.I	ug/kg	50.0	110%	80 - 131	0.6	50	8013999		01/24/08 16:37
4-Chlorotoluene		55.2	MNR1	ug/kg	50.0	110%	80 - 129	1	50	8013999		01/24/08 16:37
1,2-Dibromo-3-chloropropane		54.1	MNR1	ug/kg	50.0	108%	62 - 142	1	50	8013999		01/24/08 16:37
1,2-Dibromoethane (EDB)		53.8	MNR1	ug/kg	50.0	108%	81 - 130	2	50	8013999		01/24/08 16:37
Dibromomethane		53.2	MNR1	ug/kg	50.0	106%	77 - 133	1	45	8013999		01/24/08 16:37
1,4-Dichlorobenzene		56.3	MNR1	ug/kg	50.0	113%	75 - 128	0.6	50	8013999		01/24/08 16:37
1,3-Dichlorobenzene		55.5	MNR1	ug/kg	50.0	111%	79 - 128	I	50	8013999		01/24/08 16:37
1,2-Dichlorobenzene		56.6	MNR1	ug/kg	50.0	113%	80 - 130	2	50	8013999		01/24/08 16:37
Dichlorodifluoromethane		41.1	MNR!	ug/kg	50.0	82%	11 - 129	6	43	8013999		01/24/08 16:37
1,1-Dichloroethane		50.9	MNR1	ug/kg	50.0	102%	68 - 150	2	37	8013999		01/24/08 16:37
1,2-Dichloroethane		51.0	MNR1	ug/kg	50.0	102%	72 - 132	3	44	8013999		01/24/08 16:37
cis-1,2-Dichloroethene		50.9	MNR1	ug/kg	50.0	102%	77 - 132	0.9	35	8013999		01/24/08 16:37
1,1-Dichloroethene		45.4	MNR1	ug/kg	50.0	91%	75 - 133	2	41	8013999		01/24/08 16:37
trans-1,2-Dichloroethene		48.3	MINR1	ug/kg	50.0	97%	79 - 133	0.8	37	8013999		01/24/08 16:37
1,3-Dichloropropane		51.0	MNR1	ug/kg	50.0	102%	80 - 125	1	44	8013999		01/24/08 16:37
1,2-Dichloropropane		49.2	MNR1	ug/kg	50.0	98%	75 - 124	0.5	35	8013999		01/24/08 16:37
2,2-Dichloropropane		50.2	MNR1	ug/kg	50.0	100%	59 - 144	1	33	8013999		01/24/08 16:37
cis-1,3-Dichloropropene		52.2	MNR1	ug/kg	50,0	104%	80 - 137	2	43	8013999		01/24/08 16:37
trans-1,3-Dichloropropene		52.2	MNR1	ug/kg	50.0	104%	75 - 133	2	50	8013999		01/24/08 16:37
1,1-Dichloropropene		51.8	MNRI	ug/kg	50.0	104%	76 - 133	2	41	8013999		01/24/08 16:37
Ethylbenzene		54.7	MNR1	ug/kg	50.0	109%	80 - 128	2	48	8013999		01/24/08 16:37
Hexachlorobutadiene		51.9	MNR1	ug/kg	50.0	104%	60 - 150	17	50	8013999		01/24/08 16:37
2-Hexanone		282	MNR1	ug/kg	250	113%	63 - 149	0.3	50	8013999	· ·	01/24/08 16:37
Isopropylhenzene		51.7	MNR1	ug/kg	50.0	103%	74 - 131	3	50	8013999		01/24/08 16:37
p-Isopropyltoluene		54.2	MNRI	ug/kg	50.0	108%	75 - 133	14	50	8013999		01/24/08 16:37
Methyl tert-Butyl Ether		46.7	MNRI	ug/kg	50.0	93%	67 - 130	0	45	8013999		01/24/08 16:37
Methylene Chloride		51.2	MNR1	ug/kg	50.0	102%	65 - 144		39	8013999		01/24/08 16:37
4-Methyl-2-pentanone		277	MNR1	ug/kg	250	111%	64 - 142		50	8013999		01/24/08 16:37
Naphthalene		54.6	MNRI	ug/kg	50,0	109%	63 - 144		50	8013999		
n-Propylbunzene		53.3	MNRI	ug/kg	50.0	109%	80 - 131	4				01/24/08 16:37
Styrene		61.7		-	50.0	107%	80 - 144		50 50	8013999		01/24/08 16:37
1,1,1,2-Tetrachloroethane		54.7	MNR1	ug/kg	50.0	123%	80 - 144		50	8013999		01/24/08 16:37
1,1;2,2-Tetrachioroethane			MNR1	ug/kg					43	8013999		01/24/08 16:37
1,1,2,2-1 CH 201101054118115		57.3	MNR1	ug/kg	50.0	115%	73 - 139	2	50	8013999		01/24/08 16:37

TestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NRProject Name:AtlaProject Number:[notReceived:01/1

r: NRA1896 ne: Atlanta Rush Project nber: [none] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	3260B						• • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •
8013999-BSD1	•											
Tetrachloroethene		51.0	MNRI	ug/kg	50.0	102%	76 - 128	1	45	8013999		01/24/08 16:37
Toluene		51.1	MNRI	ug/kg	50.0	102%	80 - 125	4	44	8013999		01/24/08 16:37
1,2,3-Trichlorobenzene		58.7	MNR1	ug/kg	50.0	117%	64 - 136	10	50	8013999		01/24/08 16:37
1,2,4-Trichlorobenzene		61.5	MNR1	ug/kg	50.0	123%	58 - 145	10	50	8013999		01/24/08 16:37
1,1,2-Trichloroethane	•	49.8	MNRI	ug/kg	50.0	100%	80 - 127	0,9	41	8013999		01/24/08 16:37
1,1,1-Trichloroethane		51.8	MNRI	ug/kg	50.0	104%	76 - 134	0,6	39	8013999		01/24/08 16:37
Trichloroethene		54.6	MNR1	ug/kg	50.0	109%	75 - 131	0.8	40	8013999		01/24/08 16:37
Trichlorofluoromethane		53.5	MNR1	ug/kg	50.0	107%	63 - 130	0.5	42	8013999		01/24/08 16:37
1,2,3-Trichloropropane		51.3	MNR1	ug/kg	50.0	103%	66 - 129	4	50	8013999		01/24/08 16:37
1,3,5-Trimethylbenzene		53.5	MNR1	ug/kg	50.0	107%	78 - 133	5	50	8013999		01/24/08 16:37
1,2,4-Trimethylbenzene		54.0	MNR1	ug/kg	50.0	108%	76 - 135	3	50	8013999		01/24/08 16:37
Vinyl chloride		50.3	MNR1	ug/kg	50.0	101%	58 - 134	2	4l	8013999		
Xylenes, total		165	MNR1	ug/kg	150	110%	79 - 130	3	48	8013999		01/24/08 16:37 01/24/08 16:37
Surrogate: 1,2-Dichloroethane-d4		53.0	- Million - Mill	ug/kg	50.0	106%	41 - 150	5	40	8013999		
Surrogate: Dibromofluoromethane		51.5		ug/kg	50.0	103%	55 - 139			8013999		01/24/08 16:37
Surrogate: Toluene-d8		53.3		ug/kg	50.0	107%	57 - 148			8013999		01/24/08 16:37
Surrogate: 4-Bromofluorobenzene		53.0	,	ug/kg	50.0	106%	58 - 150			8013999		01/24/08 16:37 01/24/08 16:37

TestAmerica

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn

Carl Dawes

NRA1896 Work Order: Project Name: Atlanta Rush Project Project Number: [none] 01/19/08 08:00 Received:

	PROJECT QUALITY CONTROL DATA														
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time					
Semivolatile Organic Compo	ounds by EPA Method	8270C													
8013382-MS1		· .													
Acenaphthene	ND	1.24		mg/kg dry	1.81	68%	28 - 117	8013382	NRA1762-01	01/22/08 17:3					
Acenaphthylene	ND	1.24		mg/kg dry	1.81	68%	33 - 113	8013382	NRA1762-01	01/22/08 17:3					
Anthracenc	ND	1.37		mg/kg dry	1.81	76%	31 - 131	8013382	NRA1762-01	01/22/08 17:3					
Benzo (a) anthracene	ND	1.34		mg/kg dry	1.81	74%	29 - 124	8013382	NRA1762-01	01/22/08 17:3					
Panza (a) aurona	ND	1.42		malles d-	1.01	700/	20 127	0012202	ND 4 1763 01	01/00/08 17.0					

ricenaphinalle	T(D)	1,2.4	mg/kg ury	1.01	0070	20-117	0013302	11011/02-01	01122000 17.55
Acenaphthylene	ND	1.24	mg/kg dry	1.81	68%	33 - 113	8013382	NRA1762-01	01/22/08 17:35
Anthracenc	ND	1.37	mg/kg dry	1.81	76%	31 - 131	8013382	NRA1762-01	01/22/08 17:35
Benzo (a) anthracene	ND	1.34	mg/kg dry	1.81	74%	29 - 124	8013382	NRA1762-01	01/22/08 17:35
Benzo (a) pyrene	ND	1.42	mg/kg dry	1.81	78%	30 - 127	8013382	NRA1762-01	01/22/08 17:35
Benzo (b) fluoranthene	ND	1.25	mg/kg dry	1.81	69%	26 - 128	8013382	NRA1762-01	01/22/08 17:35
Benzo (g,h,i) perylene	ND	1.20	mg/kg dry	1.81	66%	21 - 122	8013382	NRA1762-01	01/22/08 17:35
Benzo (k) fluoranthene	ND	1.24	mg/kg dry	1.81	68%	20 - 130	8013382	NRA1762-01	01/22/08 17:35
4-Bromophenyl phenyl ether	ND	1.11	mg/kg dry	1.81	61%	30 - 106	8013382	NRA1762-01	01/22/08 17:35
Butyl benzyl phthalate	ND	1.54	mg/kg dry	1.81	85%	40 - 131	8013382	NRA1762-01	01/22/08 17:35
Carbazole	ND	1.38	mg/kg dry 🛛	1.81	76%	37 - 116	8013382	NRA1762-01	01/22/08 17:35
4-Chloro-3-inethylplienol	ND	1.38	mg/kg dry	1.81	76%	19 - 128	8013382	NRA1762-01	01/22/08 17;35
4-Chloroaniline	ND	1.10	mg/kg dry	1.81	61%	10 - 119	8013382	NRA1762-01	01/22/08 17:35
Bis(2-chlorocthoxy)methane	ND	1.18	mg/kg dry	1.81	65%	30 - 110	8013382	NRA1762-01	01/22/08 17:35
Bis(2-chloroethyl)ether	ND	1.24	mg/kg dry	1.81	69%	36 - 106	8013382	NRA1762-01	01/22/08 17:35
Bis(2-chloroisopropyl)ether	ND	1.24	mg/kg dry	1.81	68%	34 - 109	8013382	NRA1762-01	01/22/08 17:35
2-Chloronaphthalene	ND	1.16	mg/kg dry	1.81	64%	31 - 107	8013382	NRA1762-01	01/22/08 17:35
2-Chlorophenoi	ND	1.32	mg/kg dry	1.81	73%	32 - 119	8013382	NRA1762-01	01/22/08 17:35
4-Chlorophenyl phenyl ether	ND	1.18	mg/kg dry	1.81	65%	35 - 113	8013382	NRA1762-01	01/22/08 17:35
Chrysene	ND	1.20	mg/kg dry	1.81	66%	30 - 119	8013382	NRA1762-01	01/22/08 17:35
Dibenz (a,h) anthracene	ND	1.27	mg/kg dry	1,81	70%	27 - 122	8013382	NRA1762-01	01/22/08 17:35
Dibenzofuran	ND	L.25	mg/kg dry	1,81	69%	33 - 121	8013382	NRA1762-01	01/22/08 17:35
Di-n-butyl phthalate	ND	1.50	mg/kg dry	1.81	83%	38 - 123	8013382	NRA1762-01	01/22/08 17:35
1,4-Dichlorobenzene	ND	1.14	mg/kg dry	1.81	63%	26 - 109	8013382	NRA1762-01	01/22/08 17:35
1,2-Dichlorobenzene	ND	1.16	mg/kg dry	1,83	64%	26 - 112	8013382	NRA1762-01	01/22/08 17:35
1,3-Dichlorobenzene	ND	1.19	mg/kg dry	1.81	66%	26 - 110	8013382	NRA1762-01	01/22/08 17:35
3,3-Dichlorobenzidine	ND	1.26	mg/kg dry	1.81	69%	10 - 112	8013382	NRA1762-01	01/22/08 17:35
2,4-Dichlorophenol	ND	1.20	mg/kg dry	1.81	66%	28 - 118	8013382	NRA1762-01	01/22/08 17:35
Diethyl phthalate	ND	1.33	mg/kg dry	1.81	73%	29 - 122	8013382	NRA1762-01	01/22/08 17:35
2,4-Dimethylphenol	ND	1.40	mg/kg dry	1.81	77%	10 - 128	8013382	NRA1762-01	01/22/08 17:35
Dimethyl phthalate	ND	1.26	mg/kg dry	1.81	69%	31 - 118	8013382	NRA1762-01	01/22/08 17:35
4,6-Dinitro-2-methylphenol	ND	1.38	mg/kg dry	1.81	76%	10 - 136	8013382	NRA1762-01	01/22/08 17:35
2,4-Dinitrophenol	ND	1.34	mg/kg dry	1.81	74%	10 - 148	8013382	NRA1762-01	01/22/08 17:35
2,6-Dinitrotoluene	ND	1.52	mg/kg dry	1.81	84%	28 - 125	8013382	NRA1762-01	01/22/08 17:35
2,4-Dinitrotoluene	ND	1.39	mg/kg dry	1.81	77%	30 - 119	8013382	NRA1762-01	01/22/08 17:35
Di-n-octyl phthalate	ND	1.48	mg/kg dry	1.81	81%	31 - 137	8013382	NRA1762-01	01/22/08 17:35
Bis(2-ethylhexyi)phthalate	ND	1.62	mg/kg dry	1.81	89%	38 - 125	8013382	NRA1762-01	01/22/08 17:35

J

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

. 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NRAProject Name:AtlanProject Number:[noneReceived:01/19

NRA1896 Atlanta Rush Project [none] 01/19/08 08:00

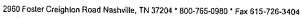
PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val,	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method	8270C			•••••			•••••	• • • • • • • • • • • • • • • • • • • •	
8013382-MS1						•				
Fluoranthene	ND	1.35		mg/kg dry	1.81	75%	23 - 132	8013382	NRA1762-01	01/22/08 17:35
Fluorene	ND	1.25		mg/kg dry	1.81	69%	38 - 110	8013382	NRA1762-01	01/22/08 17:35
Hexachlorobenzene	ND	1.12		mg/kg dry	1.81	62%	35 - 120	8013382	NRA1762-01	01/22/08 17:35
Hexachlorobutadiene	ND	1.12		mg/kg dry	1.81	62%	28 - 113	8013382	NRA1762-01	01/22/08 17:35
Hexachlorocyclopentadiene	ND	1.15		mg/kg dry	1.81	64%	10 - 123	8013382	NRA1762-01	01/22/08 17:35
Hexachloroethane	ND	1.23		mg/kg dry	1.81	68%	20 - 120	8013382	NRA1762-01	01/22/08 17:35
Indeno (1,2,3-cd) pyrene	ND	1.23		mg/kg dry	1.81	68%	24 - 122	8013382	NRA1762-01	01/22/08 17:35
Isophorone	ND	1.35		mg/kg dry	1.81	75%	23 - 108	8013382	NRA1762-01	01/22/08 [.] 17:35
2-Methylnaphthalene	ND	1.13		mg/kg dry	1.81	62%	26 - 116	8013382	NRA1762-01	01/22/08 17:35
2-Methylphenol	ND	1.37		mg/kg dry	1.81	75%	23 - 122	8013382	NRA1762-01	01/22/08 17:35
3/4-Methylphenol	ND	1.61		mg/kg dry	1.81	89%	23 - 138	8013382	NRA1762-01	01/22/08 17:35
Naphthalene	ND	1.04		mg/kg dry	1.81	57%	14 - 117	8013382	NRA1762-01	01/22/08 17:35
3-Nitroaniline	ND	1.47		mg/kg dry	1.81	81%	27 - 124	8013382	NRA1762-01	01/22/08 17:35
2-Nitroaniline	ND	1.43		mg/kg dry	1.81	79%	35 - 122	8013382	NRA1762-01	01/22/08 17:35
4-Nitroaniline	ND	1.43		mg/kg dry	1.81	79%	25 - 124	8013382	NRA1762-01	01/22/08 17:35
Nitrobenzene	ND	1.33		mg/kg dry	1.81	73%	19 - 105	80133B2	NRA1762-01	01/22/08 17:35
4-Nitrophenol	ND	2.27		mg/kg dry	1.81	125%	14 - 144	8013382	NRA1762-01	01/22/08 17:35
2-Nitrophenol	ND	1.26		mg/kg dry	1.81	69%	23 - 119	8013382	NRA1762-01	01/22/08 17:35
N-Nitrosodiphenylamine	ND	1.40		mg/kg dry	1.81	77%	37 - 144	8013382	NRA1762-01	01/22/08 17:35
N-Nitrosodi-n-propylamine	ND	1.58		mg/kg dry	1.81	87%	28 - 121	8013382	NRA1762-01	01/22/08 17:35
Pentachlorophenol	ND	1.22		mg/kg dry	1.81	67%	13 - 149	8013382	NRA1762-01	01/22/08 17:35
Phenanthrene	ND	1.23		mg/kg dry	1.81	68%	21 - 130	8013382	NRA1762-01	01/22/08 17:35
Phenol	ND	1.36		mg/kg dry	1.81	75%	31 - 116	8013382	NRA1762-01	01/22/08 17:35
Pyrene	ND	1,25		mg/kg dry	1.81	69%	24 - 133	8013382	NRA1762-01	01/22/08 17:35
Pyridine	ND	0.998		mg/kg dry	1.81	55%	10 - 103	8013382	NRA1762-01	01/22/08 17:35
1,2,4-Trichlorobenzene	ND	1.02		mg/kg dry	1.81	56%	27 - 102	8013382	NRA1762-01	01/22/08 17:35
1-Methylnaphthalene	ND	1.11		mg/kg dry	1.81	61%	10 - 121	8013382	NRA1762-01	01/22/08 17:35
2,4,6-Trichlorophenol	ND	1.39		mg/kg dry	1.81	77%	32 - 122 [.]	8013382	NRA1762-01	01/22/08 17:35
2,4,5-Trichlorophenol	ND	1.40		mg/kg dry	1.81	77%	30 - 122	8013382	NRA1762-01	01/22/08 17:35
Surrogate: Terphenyl-d14		1.19		mg/kg dry	1.81	65%	26 - 128	8013382	NRA1762-01	
Surrogate: 2,4,6-Tribromophenol		0.970		mg/kg dry	1.81	54%	20 - 132	8013382	NRA1762-01	01/22/08 17:35
Surrogate: Phenol-d5		1.31		mg/kg dry	1.81	72%	23 - 113	8013382	NRA1762-01	01/22/08 17:35
Surrogate: 2-Fluorobiphenyl		1.01		mg/kg dry	1.81	56%				01/22/08 17:35
Surrogate: 2-Fluorophenol		1.11		mg/kg dry	1.81	61%	19 - 109 19 - 105	8013382	NRA1762-01	01/22/08 17:35
Surrogate: Nitrobenzene-d5		1.21		mg/kg dry	1.81	67%	19 - 105 22 - 104	8013382 8013382	NRA1762-01 NRA1762-01	01/22/08 17:35
8014138-MS1									·	
Acenaphthene	ND	1.41		mg/kg dry	1.89	75%	<u>28 - 117</u>	8014138	NRA1896-02	01/26/08 09:32

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Fosler Creighlon Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404


Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes

Attn

Work Order:	NRA1896
Project Name:	Atlanta Rush Project
Project Number:	[none]
Received:	01/19/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.												
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time		
Semivolatile Organic Compour	nds by EPA Method	18270C				• • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	••••••		
8014138-MS1												
Acenaphthylene	ND	1.48	r	ng/kg dry	1.89	78%	33 - 113	8014138	NRA1896-02	01/26/08 09:32		
Anthracene	~ ND	1.62	т	ng/kg dry	1.89	86%	31 - 131	8014138	NRA1896-02	01/26/08 09:32		
Benzo (a) anthracene	0.0566	1.70	r	ng/kg ḍ̈́ry	1.89	87%	29 - 124	8014138	NRA1896-02	01/26/08 09:32		
Benzo (a) pyrene	0.0444	1.59	r	ng/kg dry	1.89	82%	30 - 127	8014138	NRA1896-02	01/26/08 09:32		
Benzo (b) fluoranthene	0.0463	1.53	r	ng/kg dry	1.89	79%	26 - 128	8014138	NRA1896-02	01/26/08 09:32		
Benzo (g,h,i) perylene	ND	1.60	r	ng/kg dry	1.89	84%	21 - 122	8014138	NRA1896-02	01/26/08 09:32		
Benzo (k) fluoranthene	0.0406	1.78	ſ	ng/kg dry	1.89	92%	20 - 130	8014138	NRA1896-02	01/26/08 09:32		
4-Bromophenyl phenyl ether	ND /	1.40	τ	ng/kg dry	1.89	74%	30 ~ 106	8014138	NRA1896-02	01/26/08 09:32		
Butyl benzyl phthalate	ND	1.81	r	ng/kg dry	1.89	96%	40 - 131	8014138	NRA1896-02	01/26/08 09:32		
Carbazole	ND	1.57	t	ng/kg dry	1,89	83%	37 - 116	8014138	NRA1896-02	01/26/08 09:32		
4-Chloro-3-methylphenol	ND	1.33	r	ng/kg dry	1.89	70%	19 - 128	8014138	NRA1896-02	01/26/08 09:32		
4-Chloroaniline	ND	1.24	ſ	ng/kg dry	1.89	66%	10 - 1 19	8014138	NRA1896-02	01/26/08 09:32		
Bis(2-chloroethoxy)methane	ND	1.23	r	ng/kg dry	1.89	65%	30 - 110	8014138	NRA1896-02	01/26/08 09:32		
Bis(2-chloroethyl)ether	ND	1.25	ſ	ng/kg dry	1.89	66%	36 - 106	8014138	NRA1896-02	01/26/08 09:32		
Bis(2-chloroisopropyl)ether	ND	1.24	1	mg/kg dry	1.89	66%	34 - 109	8014138	NRA1896-02	01/26/08 09:32		
2-Chloronaphthalene	ND	1.40	1	mg/kg dry	1.89	74%	31 - 107	8014138	NRA1896-02	01/26/08 09:32		
2-Chlorophenol	ND	1.25		mg/kg dry	1.89	6 6 %	32 - 119	8014138	NRA1896-02	01/26/08 09:32		
4-Chlorophenyl phenyl ether	ND	1.48	ı	mg/kg dry	1.89	78%	35 - 113	8014138	NRA1896-02	01/26/08 09:32		
Chrysene	0.0524	1.69	ı	mg/kg dry	1.89	86%	30 - 119	8014138	NRA1896-02	01/26/08 09:32		
Dibenz (a,h) anthracene	ND	1.48	.1	mg/kg dry	1.89	78%	27 - 122	8014138	NRA1896-02	01/26/08 09:32		
Dibenzofuran	· ND	1.47	1	mg/kg dry	1.89	78%	33 - 121	8014138	NRA1896-02	01/26/08 09:32		
Di-n-butyl phthalate	· ND	1.65		mg/kg dry	1.89	88%	38 - 123	8014138	NRA1896-02	01/26/08 09:32		
1,4-Dichlorobenzene	· ND	1.14	1	mg/kg dry	1.89	60%	26 - 109	8014138	NRA1896-02	01/26/08 09:32		
t,2-Dichlorobenzene	ND	1.16	1	mg/kg dry	1.91	61%	26 - 112	8014138	NRA1896-02	01/26/08 09:32		
1,3-Dichlorobenzene	ND	1.17	1	mg/kg dry	1.89	62%	26 - 110	8014138	NRA1896-02	01/26/08 09:32		
3,3-Dichlorobenzidine	ND	1.49	1	mġ/kg dry	1.89	79%	10 - 112	8014138	NRA1896-02	01/26/08 09:32		
2,4-Dichlorophenol	ND	1.19		mg/kg dry	1.89	63%	28 - 118	8014138	NRA1896-02	01/26/08 09:32		
Dicthyl phthalate	ND	1.53	1	mg/kg dry	t.89	81%	2 9 - 122	8014138	NRA1896-02	01/26/08 09:32		
2,4-Dimethylphenol	ŇD	1.31	1	mg/kg dry	1.89	69%	10 - 128	8014138	NRA1896-02	01/26/08 09:32		
Dimethyl phthalate	ND	1.52	1	mg/kg dry	1.89	80%	31 - 118	8014138	NRA1896-02	01/26/08 09:32		
4,6-Dinitro-2-methylphenol	ND	1.40		mg/kg dry	1.89	74%	10 - 136	8014138	NRA1896-02	01/26/08 09:32		
2,4-Dinitrophenol	ND	1.02	. 1	mg/kg dry	1.89	54%	10 - 148	8014138	NRA1896-02	01/26/08 09:32		
2,6-Dinitrotolueno	ND	1.56		mg/kg dry	1.89	82%	28 - 125	8014138	NRA1896-02	01/26/08 09:32		
2,4-Dinitrotoluene	ND	1.63		mg/kg dry	1.89	86%	30 - 119	8014138	NRA1896-02	01/26/08 09:32		
Di-n-octyl pbthalate	ND	1.78		mg/kg dry	1.89	94%	31 - 137	8014138	NRA1896-02	01/26/08 09:32		
Bis(2-ethylhexyl)phthalate	ND	1.83		mg/kg dry	1.89	97%	38 - 125	8014138	NRA1896-02	01/26/08 09:32		
Fluoranthene	0.109	1.71		mg/kg dry	1.89	85%	23 - 132	8014138	NRA1896-02	01/26/08 09:32		

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, 1L 60602 Attn Carl Dawes

ł

Work Order:NProject Name:AtProject Number:[nuReceived:01

NRA1896 e: Atlanta Rush Project ber: [none] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Semivolatile Organic Compounds by	EPA Method			Spike Conc	% Rec.	Range	Batch	Spiked	Date/Time
		8270C			• • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •	
8014138-MS1									•
Fluorene	ND -	1.52	mg/kg dry	1.89	81%	38 - 110	8014138	NRA1896-02	01/26/08 09:32
Hexachlorobenzene	ND	1.60	mg/kg dry	1.89	85%	35 - 120	8014138	NRA1896-02	01/26/08 09:32
Hexachlorobutadiene	ND	1.13	mg/kg dry	1.89	60%	28 - 113	8014138	NRA1896-02	01/26/08 09:32
Hexachlorocyclopentadiene	ND	1.21	mg/kg dry	1.89	64%	10 - 123	8014138	NRA1896-02	01/26/08 09:32
Hexachloroethane	ND	1.10	mg/kg dry	1.89	58%	20 - 120	8014138	NRA1896-02	01/26/08 09:32
Indeno (1,2,3-cd) pyrene	0.145	1.46	mg/kg dry	1.89	70%	24 - 122	8014138	NRA1896-02	01/26/08 09:32
Isophorone	ND	1.31	mg/kg dry	1.89	69%	23 - 108	8014138	NRA1896-02	01/26/08 09:32
2-Methylnaphthalene	ND	1.22	mg/kg dry	- 1.89	65%	26 - 116	8014138	NRA1896-02	01/26/08 09:32
2-Methylphenol	ND	1.34	mg/kg dry	1.89	71%	23 - 122	8014138	NRA1896-02	01/26/08 09:32
3/4-Methylphenol	ND	1.53	mg/kg dry	1.89	81%	23 - 138	8014138	NRA1896-02	01/26/08 09:32
Naphthalene	ND	1.19	mg/kg dry	1.89	63%	14 - 117	8014138	NRA1896-02	01/26/08 09:32
3-Nitroaniline	ND	1.55	mg/kg dry	1.89	82%	27 - 124	8014138	NRA1896-02	01/26/08 09:32
2-Nitroaniline	ND	1.48	mg/kg dry	1.89	78%	35 - 122	8014138	NRA1896-02	01/26/08 09:32
4-Nitroaniline	ND	1.53	mg/kg dry	1.89	81%	25 - 124	8014138	NRA1896-02	01/26/08 09:32
Nitrobenzene	ND	1.17	mg/kg dry	1.89	62%	19 - 105	8014138	NRA1896-02	01/26/08 09:32
4-Nitrophenol	ND	1.48	mg/kg dry	1.89	79%	14 - 144	8014138	NRA1896-02	01/26/08 09:32
2-Nitrophenol	ND	1.17	mg/kg dry	1.89	62%	23 - 119	8014138	NRA1896-02	01/26/08 09:32
N-Nitrosodiphenylamine	ND	1.64	mg/kg dry	1.89	87%	37 - 144	8014138	NRA1896-02	01/26/08 09;32
N-Nitrosodi-n-propylamine	ND	1.34	mg/kg dry	1.89	71%	28 - 121	8014138	NRA1896-02	01/26/08 09:32
Pentachlorophenol	ND	1.37	mg/kg dry	1.89	73%	13 - 149	8014138	NRA1896-02	01/26/08 09:32
Phenanthrene	0.0634	1.65	mg/kg dry	1.89	84%	21 - 130	8014138	NRA1896-02	01/26/08 09:32
Phenol	ND	1.21	mg/kg dry	1.89	64%	31 - 116	8014138	NRA1896-02	01/26/08 09:32
Pyrene	0.0965	1.82	mg/kg dry	1.89	91%	24 - 133	8014138	NRA1896-02	01/26/08 09:32
1,2,4-Trichlorobenzene	ND	1.11	mg/kg dry	1.89	59%	27 - 102	8014138	NRA1896-02	01/26/08 09:32
1-Methylnaphthalene	ND	1.22	mg/kg dry	1.89	64%	10 - 121	8014138	NRA1896-02	01/26/08 09:32
2,4,6-Trichlorophenol	ND	1.57	mg/kg dry	.1.89	83%	32 - 122	8014138	NRA1896-02	01/26/08 09:32
2,4,5-Trichlorophenol	ND	1.53	mg/kg dry	1.89	81%	30 - 122	8014138	NRA1896-02	01/26/08 09:32
Surrogate: Terphenyl-d14		1,50	mg/kg dry	1.89	79%	26 - 128	8014138	NRA1896-02	01/26/08 09:32
Surrogate: 2,4,6-Tribromophenol		1.55	mg/kg dry	1.89	82%	20 - 132	8014138	NRA1896-02	01/26/08 09:32
Surrogate: Phenol-dS		1.16	mg/kg dry	1.89	61%	23 - 113	8014138	NRA1896-02	01/26/08 09:32
Surrogate: 2-Fluorobiphenyl		1.20	mg/kg dry	1.89	64%	19 - 109	8014138	NRA1896-02	01/26/08 09:32
Surrogate: 2-Fluorophenol		1.08	mg/kg dry	1.89	57%	19 - 105	8014138	NRA1896-02	01/26/08 09:32
Surrogate: Nitrobenzene-dS		1.02	mg/kg dry	1.89	54%	22 - 104	8014138	NRA1896-02	01/26/08 09:32

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order: Project Name: Project Number:

Received:

NRA 1896 Atlanta Rush Project [none] 01/19/08 08:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compou	••••••••••	ad 9270C		••••	••••		• • • • • • • • •	••••				, . , . ,
	nus by ErA Men	100 82700										
8013382-MSD1 Acenaphthene	ND	1.06		mg/kg dry	1.81	58%	28 - 117	15	33	8013382	NRA1762-01	01/22/08 17:56
Aconaphthylone	ND	1.12		mg/kg dry	1.81	62%	33 - 113	10	38	8013382	NRA 1762-01	01/22/08 17:56
Anthracene	ND	1.21		mg/kg dry	1.81	67%	31 - 131	12	32	8013382	NRA1762-01	01/22/08 17:56
Benzo (a) anthracene	ND	1.14		mg/kg dry	1.81	63%	29 - 124	16	26	8013382	NRA1762-01	01/22/08 17:56
Benzo (a) pyrene	ND	1.22		mg/kg dry	1.81	67%	30 - 127	15	31	8013382	NRA1762-01	01/22/08 17:56
Benzo (b) fluoranthene	ND	1.25		mg/kg dry	1.81	69%	26 - 128	0.4	37	8013382	NRA1762-01	01/22/08 17:56
Benzo (g,h,i) perylene	ND	1.03		mg/kg dry	1.81	57%	21 - 122	15	28	8013382	NRA1762-01	01/22/08 17:56
Benzo (k) fluoranthene	ND	0.953		mg/kg dry	1.81	53%	20 - 130	26	35	8013382	NRA1762-01	01/22/08 17:56
4-Bromophenyl phenyl ether	ND	0.973		mg/kg dry	1.81	54%	30 - 106	13	38	8013382	NRA1762-01	01/22/08 17:56
Butyl benzyl phthalate	ND	1.40		mg/kg dry	1.81	78%	40 - 131	9	37	8013382	NRA1762-01	01/22/08 17:56
Carbazole	ND	1,19		mg/kg dry	1.81	66%	37 - 116	15	31	8013382	NRA1762-01	01/22/08 17:56
4-Chloro-3-methylphenol	ND	1.21		mg/kg dry	1.81	67%	19 - 128	13	38	8013382	NRA1762-01	01/22/08 17:56
4-Chloroaniline	· ND	0.919		mg/kg dry	1.81	51%	10 - 119	18	44	8013382	NRA1762-01	01/22/08 17:56
Bis(2-chloroethoxy)methane	ND	1.01		mg/kg dry	1.81	56%	30 - 110	15	34	8013382	NRA1762-01	01/22/08 17:56
Bis(2-chloroethyl)ether	ND	1.03		mg/kg dry	1.81	57%	36 - 106		38	8013382	NRA1762-01	01/22/08 17:56
Bis(2-chloroisopropyl)ether	ND	1.00		mg/kg dry	1.81	55%	34 - 109	21	40	8013382	NRA1762-01	01/22/08 17:56
2-Chloronaphthalene	ND	1.01		mg/kg dry	1.81	56%	31 - 107	13	38	8013382	NRA1762-01	01/22/08 17:56
2-Chlorophenol	ND	1.09		mg/kg dry	1.81	60%	32 - 119	19	40	8013382	NRA1762-01	01/22/08 17:56
4-Chlorophenyl phenyl ether	ND	1.08		mg/kg dry	1.81	60%	35 - 113	9	37	8013382	NRA1762-01	01/22/08 17:56
Chrysene	ND	1.12		mg/kg dry	1.81	62%	30 - 119	7	31	8013382	NRA1762-01	01/22/08 17:56
Dibenz (a,h) anthracene	ND	1.08		mg/kg dry	1.81	60%	27 - 122	16	32	8013382	NRA1762-01	01/22/08 17:56
Dibenzofuran	ND	1.12		mg/kg dry	1.81	62%	33 - 121	11	35	8013382	NRA1762-01	01/22/08 17:56
Di-n-butyl phthalate	ND	1.31		mg/kg dry	1.81	73%	38 - 123	13	31	8013382	NRA1762-01	01/22/08 17:56
1,4-Dichlorobenzene	ND	0.919		mg/kg dry	1.81	51%	26 - 109	21	41	8013382	NRA1762-01	01/22/08 17:56
1 2-Dichlorobenzene	ND	0.981		mg/kg dry	1.83	54%	26 - 112	17	40	8013382	NRA1762-01	01/22/08 17:56
1,3-Dichlorobenzene	ND	0.939		mg/kg dry	1.81	52%	26 - 110	23	41	8013382	NRA1762-01	01/22/08 17:56
3,3-Dichlorobenzidine	ND	1.08		mg/kg dry	1.81	60%	10 - 112	15	48	8013382	NRA1762-01	01/22/08 17:56
2,4-Dichlorophenol	ND	1.01		mg/kg dry	1.81	56%	28 - 118	17	32	8013382	NRA1762-01	01/22/08 17:56
Diethyl phthalate	ND	1.18		mg/kg dry	1.81	65%	29 - 122	2 12	37	8013382	NRA1762-01	01/22/08 17:56
2,4-Dimethylphenol	ND	1.16		mg/kg dry	1.81	64%	10 - 128	5 19	50	8013382	NRA1762-01	01/22/08 17:56
Dimethyl phthalate	ND	1.11		mg/kg dry	1.81	61%	31 - 118	3 12	39	8013382	NRA1762-01	01/22/08 17:56
4,6-Dinitro-2-methylphenol	ND	1.04		mg/kg dry	1.81	58%	10 - 136	5 28	45	8013382	NRA1762-01	01/22/08 17:56
2,4-Dinitrophenol	ND	. 1.10		mg/kg dry	1.81	61%	10 - 148	3 19	50	8013382	NRA1762-01	01/22/08 17:56
2,6-Dinitrotoluene	ND	1.28		mg/kg dry	1.81	71%	28 - 125	5 18	37	8013382	NRA1762-01	01/22/08 17:56
2,4-Dinitrotoluene	ND	1.24		mg/kg_dry	1.81	68%	30 - 119	9 12	41	8013382	NRA1762-01	01/22/08 17:56
Di-n-octyl phthalato	ND	1.28		mg/kg dry	1.81	71%	31 - 137	7 14	34	8013382	NRA1762-01	01/22/08 17:56
Bis(2-ethylhexyl)plithalate	ND	1.50		mg/kg dry	1.8	83%	38 - 12	5 8	38	8013382	NRA1762-01	01/22/08 17:56
Fluoranthene	ND	1.16		mg/kg dry	1.8	64%	23 - 132	2 15	36	8013382	NRA1762-01	01/22/08 17:56
Fluorene	ND	1.11		mg/kg dry	1.8	61%	38 - 110	0 12	35	8013382	NRA1762-01	01/22/08 17:50
Hexachloiobenzene	ND	1.01	•	mg/kg dry	1.8	56%	35 - 12	0 11	37	8013382	NRA1762-01	01/22/08 17:50
Hexachlorobutadicne	ND	0.994		mg/kg dry	1.8	55%	28 - 11	3 12	2 35	8013382	NRA1762-01	01/22/08 17:5

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Benzo (k) fluoranthene

0.0406

1.65

mg/kg.dry

1.91

84% 20 - 130

35

7

8014138

NRA1896-02

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: Project Name: Project Number; Received:

PROJECT QUALITY CONTROL DATA

NRA1896 Atlànta Rush Project [none] 01/19/08 08:00

Matrix Spike Dup - Cont.												
alyte	Orig. Val.	Duplicate	Q Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time	
mivolatile Organic Compound	s by EPA Meth	10d 8270C						• • • • • • • •		•••••••••••••••••••••••••••••••••••••••	••••••	
13382-MSD1											•	
exachlorocyclopentadiene	ND	0.936	mg/kg dry	1.81	52%	10 - 123	21	36	8013382	NRA 1762-01	01/22/08 17:	
exachloroethane	ND	1.03	mg/kg dry	1.81	57%	20 - 120	17	42	8013382	NRA1762-01	01/22/08 17:	
ideno (1,2,3-cd) pyrene	ND	1.03	mg/kg dry	1.81	57%	24 - 122	17	28	8013382	NRA1762-01	01/22/08 17:	
ophorone	ND	1.16	mg/kg dry	1.81	64%	23 - 108	15	33	8013382	NRA1762-01	01/22/08 17:	
-Methylnaphthalene	ND	0.970	mg/kg dry	1.81	54%	26 - 116	15	33	8013382	NRA 1762-01	01/22/08 17:	
Methylphenol	ND	1.19	mg/kg dry	1.81	66%	23 - 122	14	43	8013382	NRA1762-01	01/22/08 17:	
4-Methylphenol	ND	1.34	mg/kg dry	1.81	74%	23 - 138	18	47	8013382	NRA1762-01	01/22/08 17:	
aphthalene	ND	0.876	mg/kg dry	1.81	48%	14 - 117	17	34	8013382	NRA1762-01	01/22/08 17:	
Nitroaniline	ND	1.25	mg/kg dry	1.81	69%	27 - 124	16	41	8013382	NRA1762-01	01/22/08 17:	
Nitroaniline	ND	1.31	mg/kg dry	1.81	73%	35 - 122	9	33	8013382	NRA1762-01	01/22/08 17:	
Nitroaniline	NÐ	1.22	mg/kg dry	1.81	67%	25 - 124	16	35	8013382	NRA1762-01	01/22/08 17:	
itrobenzene	ND	1.11	mg/kg dry	1.81	61%	19 ~ 105	18	36	8013382	NRA1762-01	01/22/08 17:	
Nitrophenol	ND	1.97	mg/kg dry	1.81	109%	14 - 144	14	39	8013382	NRA1762-01	01/22/08 17:	
Nitrophenol	ND	1.00	mg/kg dry	1.81	55%	23 - 119	22	37	8013382	NRA1762-01	01/22/08 17:	
Nitrosodiphenylamine	ND	1.19	mg/kg dry	1.81	66%	37 - 144	16	32	8013382	NRA1762-01	01/22/08 17:	
-Nitrosodi-n-propylamine	ND	1.37	mg/kg dry	1.81	76%	28 - 121	14	41	8013382	NRA1762-01	01/22/08 17:	
entschlorophenol	ND	1.13	mg/kg dry	1.81	62%	13 - 149	8	41	8013382	NRA1762-01	01/22/08 17:	
henanthrene	· ND	1.06	mg/kg dry	1.81	59%	21 - 130	15	33	8013382	NRA1762-01	01/22/08 17:	
henol	ND	1.10	mg/kg dry	1.81	61%	31 - 116	21	40	8013382	NRA1762-01	01/22/08 17:	
yrene	ND	1.13	mg/kg dry	1.81	63%	24 - 133	10	36	8013382	NRA1762-01	01/22/08 17:	
yridine	ND	0.158 M	3, R2 mg/kg dry	1.81	9%	10 - 103	145	50	8013382	NRA1762-01	01/22/08 17:	
2,4-Trichlorobenzene	ND	0.815	mg/kg dry	1.81	45%	27 - 102	22	34	8013382	NRA1762-01	01/22/08 17:	
-Methylnaphthalene	ND	0.981	mg/kg dry	1.81	54%	10 - 121	12	34	8013382	NRA1762-01	01/22/08 17:	
4,6-Trichlorophenol	ND .	1.21	mg/kg dry	1.81	67%	32 - 122	14	41	8013382	NRA1762-01		
4,5-Trichlorophenol	ND	1.19	mg/kg dry	1.81	66%	30 - 122	17	39	8013382	NRA1762-01	01/22/08 17:	
rrogate: Terphenyl-d14		1.03	mg/kg dry	1.81	57%	26 - 128	17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8013382		01/22/08 17:	
rrogate: 2,4,6-Tribromophenol		0.901	mg/kg dry	1.81	50%	20 - 123			8013382	NRA1762-01	01/22/08 17:	
rrogate: Phenol-d5		1.08	mg/kg dry	1.81	59%	23 - 152			8013382	NRA1762-01	01/22/08 17:	
rrogate: 2-Fluorobiphenyl		0.881	mg/kg dry	1.81	49%	19 - 109				NRA1762-01	01/22/08 17:	
rrogate: 2-Fluorophenol		0.867	mg/kg dry	1.81	48%	19 - 109			8013382	NRA 1762-01	01/22/08 17:	
rrogate: Nitrobenzene-dS		0.993	mg∕kg dry ∖		55%	19 - 103 22 - 104			8013382	NRA1762-01	01/22/08 17:	
0		0.772		1.01	3376	22 - 104			8013382	NRA1762-01	01/22/08 17::	
)14138-MSD1												
cenaphthene	ND.	1.43	mg/kg dry	1.91	75%	28 - 117	1	33	8014138	ND & 1904 00	0100000	
cenaphthylene	ND	1.50	mg/kg dry	1.91	78%	33 - 113	.1	38	8014138	NRA1896-02	01/26/08 09:	
nthracene	ND	1.68	mg/kg dry	1.91	88%	31 - 131				NRA1896-02	01/26/08 09:	
enzo (a) anthracene	0.0566	1.70	mg/kg dry	1.91		29 - 124	3	32	8014138	NRA1896-02	01/26/08 09:	
enzo (a) pyrene	0.0444	1.61	•	1.91	86%		0.03	26	8014138.	NRA1896-02	01/26/08 09:	
enzo (b) fluoranthene	. 0.0463	1.70	mg/kg dry mg/kg dry		82%	30 - 127	2	31	8014138	NRA1896-02	01/26/08 09:	
enzo (g,h,i) perylene	ND ·	1.61	mg/kg dry	1.91	86%	26 - 128	10	37	8014138	NRA1896-02	01/26/08 09:	
erizo (k) fluoranthene	0.0406	1.01	mg/kg dry mg/kg dry	1.91 1.91	84% 84%	21 - 122	1	28	8014138	NRA1896-02	01/26/08 09:	

01/26/08 09:53

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRA1896

[none]

Atlanta Rush Project

01/19/08 08:00

Work Order:

Project Name:

Received:

Project Number:

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

		PRC		T QUALITY Iatrix Spike)			ата					
Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Comp	ounds by EPA Meth	10d 8270C					•••••					
8014138-MSD1												
4-Bromophenyl phenyl ether	ND	1.43		mg/kg dry	1.91	75%	30 - 106	2	38	8014138	NRA1896-02	01/26/08 09:53
Butyl benzyl phthalate	ND	1.86		mg/kg dry	1.91	97%	40 - 131	3	37	8014138	NRA1896-02	01/26/08 09:53
Carbazole	ND	1.60		mg/kg dry	1.91	84%	37 - 116	2	31	8014138	NRA1896-02	01/26/08 09:53
4-Chloro-3-methylphenol	ND	1.35		mg/kg dry	1.91	70%	19 - 128	1	38	8014138	NRA1896-02	01/26/08 09:53
4-Chloroaniline	ND	1.21		mg/kg dry	1.91	63%	10 - 119	3	44	8014138	NRA1896-02	01/26/08 09:53
Bis(2-chloroethoxy)methane	ND	1.19		mg/kg dry	1.91	62%	30 - 110	4	34	8014138	NRA1896-02	01/26/08 09:53
Bis(2-chloroethyl)ether	ND	1.26		mg/kg dry	1.91	66%	36 - 106	1	38	8014138	NRA1896-02	01/26/08 09:53
Bis(2-chloroisopropyl)ether	ND	1.21		mg/kg dry	1.91	63%	34 - 109	3	40	8014138	NRA1896-02	01/26/08 09:53
2-Chloronaphthalene	ND	1.37		mg/kg dry	1.91	72%	31 - 107	2	38	8014138	NRA1896-02	01/26/08 09:53
2-Chlorophenol	ND	1.23		mg/kg dry	1.91	64%	32 - 119	2	40	8014138	NRA1896-02	01/26/08 09:53
4-Chlorophenyl phenyl ether	ND	1.49		mg/kg dry	1.91	78%	35 - 113	1	37	8014138	NRA1896-02	01/26/08 09:53
Chrysene	0.0524	1.71		mg/kg dry	1.91	87%	30 - 119	2	31	8014138	NRA1896-02	01/26/08 09:53
Dibenz (a,h) anthracene	ND	1.49		mg/kg dry	1.91	78%	27 - 122	0.8	32	8014138	NRA1896-02	01/26/08 09:53
Dibenzofuran	ND	1.52		mg/kg dry	1.91	79%	33 - 121	3	35	8014138	NRA1896-02	01/26/08 09:53
Di-n-butyl phthalate	ND	1.71		mg/kg dry	1.91	89%	38 - 123	3	31	8014138	NRA1896-02	01/26/08 09:53
1,4-Dichlorobenzene	ND	1.16		mg/kg dry	1.91	61%	26 - 109	2	41	8014138	NRA1896-02	01/26/08 09:53
1,2-Dichlorobenzene	ND	1.17		mg/kg dry	1.93	60%	26 - 112	0.8	40	8014138	NRA1896-02	01/26/08 09:53
1,3-Dichlorobenzenc	ND	1.18		mg/kg dry	1.91	62%	26 - 112	0.8	40 41	8014138	NRA1896-02 NRA1896-02	01/26/08 09:53
3,3-Dichlorobenzidine	ND	1.50		mg/kg dry	1.91	78%	10 - 112	0.6	48	8014138	NRA1896-02	01/26/08 09:53
2,4-Dichlorophenol	ND	1.16		mg/kg dry	1.91	61%	28 - 118	3	32	8014138	NRA1896-02	
Diethyl phthalate	ND	1.58		•	1.91	82%	29 - 122					01/26/08 09:53
	ND	1,25		mg/kg dry	1.91			3	37	8014138	NRA1896-02	01/26/08 09:53
2,4-Dimethylphenol				mg/kg dry		66%	10 - 128	4	50	8014138	NRA1896-02	01/26/08 09:53
Dimethyl phthalate	ND	1.56		mg/kg dry	1.9i	81%	31 - 118	3	39	8014138	NRA1896-02	01/26/08 09:53
4,6-Dinitro-2-methylphenol	' ND	1.39		mg/kg dry	1.91	73%	10 - 136	1	45	8014138	NRA1896-02	01/26/08 09:53
2,4-Dinitrophenol	ND	0.912		mg/kg dry	1.91	48%	10 - 148	11	50	8014138	NRA1896-02	01/26/08 09:53
2,6-Dinitrotoluene	ND	1.64		mg/kg dry	1,91	86%	28 - 125	6	37	8014138	NRA1896-02	01/26/08 09:53
2,4-Dinitrotolucne	ND	1.65		mg/kg dry	1.91	86%	30 - 119	1	41	8014138	NRA1896-02	01/26/08 09:53
Di-n-octyl phthalate	ND	1.84	-	mg/kg dry	1.91	96%	31 - 137	4	34	8014138	NRA1896-02	01/26/08 09:53
Bis(2-ethylhexyl)phthalate	ND	1.88	В	mg/kg dry	1.91	98%	38 - 125	3	38	8014138	NRA1896-02	01/26/08 09:53
Fluoranthéne	0.109	1.72	•	mg/kg dry	1.91	84%	23 - 132	0.6	36	8014138	NRA1896-02	01/26/08 09:53
Fluorene	ND	1.55		mg/kg dry	1.91	81%	38 - 110	2	35	8014138	NRA1896-02	01/26/08 09:53
Hexachlorobenzene	ND	1.63		mg/kg dry	1.91	85%	35 - 120	2	37	8014138	NRA1896-02	01/26/08 09:53
Hexachlorobutadiene	ND .	1.09		mg/kg dry	1.91	57%		4	35	8014138	NRA1896-02	01/26/08 09:53
Hexachlorocyclopentadiene	ND	1.19		mg/kg dry	1.91	62%	10 - 123	2	36	8014138	NRA1896-02	01/26/08 09:53
Hexachloroethane	ND	1.14		mg/kg dry	1.91	60%		4	42	8014138	NRA1896-02	01/26/08 09:53
Indeno (1,2,3-cd) pyrene	0.145	1.47		mg/kg dry	1.91	69%			28	8014138	NRA1896-02	01/26/08 09:53
Isophorone	ND	1.28		mg/kg dry	1.91	67%			33	8014138	NRA1896-02	01/26/08 09:53
2-Methylunphthalene	ND	1.20		mg/kg dry	1.91	63%			33 ·	8014138	NRA1896-02	01/26/08 09:53
2-Methylphenol	ND	1.34		ring/kg dry	1.91	70%				8014138	NRA1896-02	01/26/08 09:53
3/4-Methylphenol	ND	1.48		mg/kg dry	1.91	77%			47	8014138	NRA 1896-02	01/26/08 09:53
Naphthalene	ND	1.15		mg/kg dry	1.91	60%	14 - 117	4	34	8014138	NRA1896-02	01/26/08 09:53

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes Attn

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: Project Name: Project Number: [none] Received:

NRA1896 Atlanta Rush Project 01/19/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q Unit	Spike s Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compoun	ds by EPA Metl	10d 8270C				•••••	••••	• • • • • • •	• • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	•••••••••••
8014138-MSD1	•										
3-Nitroaniline	ND	1.60	mg/kg	dry 1.91	84%	27 - 124	3	41	8014138	NRA1896-02	01/26/08 09:53
2-Nitroaniline	NĎ	1.54	mg/kg	dry 1.91	80%	35 - 122	4	33	8014138	NRA1896-02	01/26/08 09:53
4-Nitroaniline	ND	1.57	mg/kg	dry 1.91	82%	25 - 124	3	35	8014138	NRA1896-02	01/26/08 09:53
Nitrobenzene	ND	1.12	mg/kg		59%	19 - 105	4	36	8014138	NRA1896-02	01/26/08 09:53
4-Nitrophenol	ND	1.49	mg/kg	dry 1.91	78%	14 - 144	0.7	39	8014138	NRA1896-02	01/26/08 09:53
2-Nitrophenol	ND	1.13	mg/kg	-	59%	23 - 119	4	37	8014138	NRA1896-02	01/26/08 09:53
N-Nitrosodiphenylamine	ND	1.67	mg/kg	dry 1.91	88%	37 - 144	2	32	8014138	NRA1896-02	01/26/08 09:53
N-Nitrosodi-n-propylamine	ND	1.33	mg/kg	•	70%	28 - 121	0.8	41	8014138	NRA1896-02	01/26/08 09:53
Pentachlorophenol	ND	1.32	mg/kg	-	69%	13 - 149	4	41	8014138	NRA1896-02	01/26/08 09:53
Phenanthrene	0.0634	1.66	mg/kg	•	84%	21 - 130	0.8	33	8014138	NRA 1896-02	01/26/08 09:53
Phenoi	ND	1.22	mg/kg	•	64%	31 - 116	0.4	40	8014138	NRA1896-02	01/26/08 09:53
Pyrene	0.0965	1.85	mg/kg	•	92%	24 - 133	2	36	8014138	NRA1896-02	01/26/08 09:53
1,2,4-Trichlorobenzene	ND	1.08	mg/kg	-	57%	27 - 102	2	34	8014138	NRA1896-02	
1-Methylnaphthalene	, ND	1.18	mg/kg	-	62%	10 - 121	3	34	8014138	NRA1896-02	01/26/08 09:53
2,4,6-Trichlorophenol	ND	1.55	mg/kg	-	81%	32 - 122	1	41	8014138	NRA1896-02	01/26/08 09:53
2,4,5-Trichlorophenol	ND	1.53	mg/kg	•	80%	30 - 122	0.05	39	8014138	NRA1896-02	01/26/08 09:53
Surrogate: Terphenyl-d14		1.48	mg/kg	•	77%	26 - 128	0,05	57	8014138	NRA1896-02	01/26/08 09:53
Surrogate: 2,4,6-Tribromophenol		1.51	mg/kg	· ·	79%	20 - 132			8014138	NRA1896-02	01/26/08 09:53
Surrogate: Phenol-d5		1.12	mg/kg	-	58%	23 - 113			8014138	NRA1896-02	01/26/08 09:53
Surrogate: 2-Fluorobiphenyl		1.14	mg/kg	•	60%	19 - 109			8014138	NRA1896-02 NRA1896-02	01/26/08 09:53
Surrogate: 2-Fluorophenol		1.05	mg/kg	-	55%	19 - 105			8014138		01/26/08 09:53
Surrogate: Nitrobenzene-d5		0.961	mg/kg	•	50%	22 - 104	•		8014138 8014138	NRA 1896-02 NRA 1896-02	01/26/08 09:53 01/26/08 09:53

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)
	70 West Madison, Suite 4250
	Chicago,, IL 60602
Attn	Carl Dawes

Work Order:NRProject Name:AtlProject Number:[noReceived:01/

NRA1896 Atlanta Rush Project [none] 01/19/08 08:00

TestAmerica Nashville

CERTIFICATION SUMMARY

Method	Matrix	AIHA	Nelac	Georgia
SW846 8260B	Soil	N/A	х	
SW846 8270C	Soil	N/A	х	
SW-846	Soil			

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NRA1896Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/19/08 08:00

DATA QUALIFIERS AND DEFINITIONS

- B Analyte was detected in the associated Method Blank.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike.
- R2 The RPD exceeded the acceptance limit.
- ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

. 1

ND Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

TestAmerica			
Nashville, TN	COOLER RECEI		
Cooler Received/Opened On_01/19/08 @	0.08:00	NRA1896	
1. Tracking #	(last 4 digits, FedEx)		
Courier:FED-EX IR Gun ID			
2. Temperature of rep. sample or temp b	lank when opened: Degrees Celsius		
3. If Item #2 temperature is 0°C or less, w	as the representative sample or temp blank froz	à	
4. Were custody seals on outside of cool	er?	A -	
If yes, how many and where:	1-5	(YESNONA	
5. Were the seals intact, signed, and date		<u>cont</u>	
6. Were custody papers inside cooler?		ESNONA	
certify that I opened the cooler and answe		YESNONA	
7. Were custody seals on containers:			
Were these signed and dated correctly?		YESNO. NA	
	tic bag Peanuts Vermiculite Foam Insert Pa	YES NO NA	
9. Cooling process:	Clear Isanach I ru		
10. Did all containers arrive in good conditi	Cice (direct.contact) Dry i	ce Other None	
11. Were all container labels complete (#, d	ate. signed need state	YES. NONA	,
12. Did all container labels and tags agree v	vith Eustody denote 2	XES.NONA	the set of onthe work
13a. Were VOA vials received?	(-13.08	ES NONA	UNTRIUS .
b. Was there any observable headspace p	i'ésént in any VOA viala	TEST.NONA	unly recover
14. Was there a Trip Blank in this cooler?		YES NO NA	8 mil
I certify that I unloaded the cooler and answe	YES NO. NA If multiple coolers, sequer		the ether
15a. On presid bottles, did pft test strips sug	gest preservation reached the correct pH level?	HAR-	bot 11.5.
b. Did the bottle labels indicate that the so	prrect preservatives were used	TES.NONA	1
lf preservation in house was needed	I, record standard ID of preservative used here_	YES NO NA	- 19.00
16. Was residual chlorine present?		YESNO, (NA.	1
certify that I checked for chlorine and pH as	per SOP and answered questions 15-16 (initial)	TESNO, ENA.	
17. Were custody papers properly filled out (i	nk, signed, etc)?	ES. NONA	
18. Did you sign the custody papers in the ap	propriate place?	ESNONA	
19. Were correct containers used for the analy		GESNONA	
20, Was sufficient amount of sample sent in e		YES NONA	
I certify that I entered this project into LIMS an	d answered questions 17-20 (Intial)		
I certify that I allached a label with the unique I	IMS number to each container (initial)		
21, Were there Non-Conformance Issues at log	in? YESNO Was a PIPE generated? YES	10# 46772	

BIS = Broken in shipment Conter Receipt Form.doc

I

,

ds, poses:?			State:					dc Deliverables	(Batch DC)	Level 3 Level 4 Other:		KEMAKKS	<u>, n</u>								A N	
ER To assist us in using the proper analytical methods, is: this work being conducted for regulatory purposes? Compliance Monitoring	Moles Zun		St			đ					109			NRA1896	02/04/08 23 50				LABORATORY COMMENTS: Init Lab Temp:	Rec Lab Temp: D, Z	Custody Seals: Y N N/A Bottles Supplied by Test America:	
E CENTER To assist us in usi is: this work being complianc	Project Name:	Project #:	Site/Location ID:	Report To:	Invoice To:	Quote #:	Analyze For:												Lr Ir		the second s	T
ATLANTA SERVICE CENTER 17 19:88 14 (STUR 19:81			S I				liners			\sim	5) Jana 1	XXX								June Land	Date	1 1 10
Phone: 615-726-0177 Fax: 615-726-3404 Client#:				Fax	an Dursien		K Preservation & # of Containers		·····		Acue Menhanol H ³ 20 ⁴ MeOH HCI HCI									Received By LLA	Received By:	17 0
	×.	MILE 1 1/1	Veres	SP3 USA			Matrix			anpled by C = C by F by F by F by F by F by F by F by F	19 = 9 19 = 9	0201	5421						•	Date 197 1.422		
S = S	Address: 4513	ANY STRIPTCH COOR. // 4/0//11/0	Project Manager (Teleptione Number 630-2(3.0 PC)	(Print Name)	Sampler Signature:		(Adda Aeu		pojdure; z		118	-13.5 11/8	 						Les al	Roferon 60	
Test American Environmentic Amaline Company			้าน	Telept	Sampler Name: (Print Name)	Sami	TAT	Rush (surcharges may apply)	Date Needad:	*	B	B-1 (8-10)	12-1 CNS		ý	, ,		Questing Increased in 1925.			Belinger have by Fr	Definentiation Day

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

February 11, 2008 9:52:23AM

Client:	Weaver Boos Consultants LLC (1407793)
	70 West Madison, Suite 4250
	Chicago,, IL 60602
Attn:	Carl Dawes

Work Order: 1 Project Name: 4 Project Nbr: 1 P/O Nbr: Date Received: 0

NRA1762 Atlanta Rush Project [none]

d: 01/18/08

SAMPLE IDENTIFICATION

B-21 (8.5-10) B-24 (10-12) B-24 (18-20) LAB NUMBER NRA1762-01 NRA1762-02 NRA1762-03 COLLECTION DATE AND TIME

01/16/08 11:15 01/16/08 14:00 01/16/08 14:45

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments: **Revised Report 2/11/08**

Added dry weight correction to NRA1762-03. Replaces report dated 2/08/08 @ 15:07.

Revised Report 2/08/08

Added 8270 PAH to NRA1762-03 and Dry Weight corrected per client request. Replaces report dated 1/29/08 @ 09:54.

Georgia Certification Number: Florida cert E87358

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

Kozarne L. Connor

Roxanne Connor

Program Manager - Conventional Accounts

America

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Tes

Work Order:NRA1762Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/18/08 08:00

•••

	<u></u> .	ANALYTICAL REP	ORT				
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1762-01 (B-21	(8.5-10) - Soil) Sa	mpled: 01/16/08 11:15		· ,			
General Chemistry Parameters							
% Dry Solids	91.0	%	0.500	1	01/23/08 11:03	SW-846	8013559
Volatile Organic Compounds by EI	PA Method 8260B						
Acetone	ND	mg/kg dry	0.0507	1	01/25/08 20:45	SW846 8260B	8013117
Benzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Bromobenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Bromochloromethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SŴ846 8260B	8013117
Bromodichloromethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Bromoform	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Bromomethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
2-Butanone	ND	mg/kg dry	0.0507	1 -	01/25/08 20:45	SW846 8260B	8013117
sec-Butylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
n-Butylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
tert-Butylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Carbon disulfide	ND	mg/kg dry	0.00507	1	01/25/08 20:45	SW846 8260B	8013117
Carbon Tetrachloride	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Chlorobenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Chlorodibromomethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Chloroethane	ND	mg/kg dry	0.00507	1	01/25/08 20:45	SW846 8260B	8013117
Chloroform	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Chloromethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
2-Chlorotoluene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
4-Chlorotoluene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,2-Dibromo-3-chloropropane	ND	mg/kg dry	0.00507	1	01/25/08 20:45	SW846 8260B	8013117
1,2-Dibromoethane (EDB)	ND	mg/kg dry	0.00203	<u>ا</u>	01/25/08 20:45	SW846 8260B	8013117
Dibromomethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,4-Dichlorobenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,3-Dichlorobenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,2-Dichlorobenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Dichlorodifluoromethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,1-Dichloroethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,2-Dichloroethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
cis-1,2-Dichloroethene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,1-Dichloroethene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,3-Dichloropropane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,2-Dichloropropane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
2,2-Dichloropropane	ND	mg/kg dry	0.00203	i	01/25/08 20:45	SW846 8260B	8013117
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
trans-1,3-Dichloropropene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
1,1-Dichloropropene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Ethylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	8013117
Hexachlorobutadiene	ND	mg/kg dry	0.00507	1	01/25/08 20:45	SW846 8260B	,8013117
2-Hexanone	ND	mg/kg dry	0.0507	. 1	01/25/08 20:45	SW846 8260B	8013117

.

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Carl Dawes

Attn

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ì

Work Order: NRA1762 Atlanta Rush Project Project Name: Project Number: [none] Received: 01/18/08 08:00

· ·				Dilution	Analysis		
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Bate
Sample ID: NRA1762-01 (B-21 (8.5	5-10) - Soil) - cor	it. Sampled: 01/16/08 11:	15				
Volatile Organic Compounds by EPA N	Aethod 8260B - co	nt.					
sopropylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
-Isopropyltoluene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Aethylene Chloride	ND	mg/kg dry	0.0101	·	01/25/08 20:45	SW846 8260B	80131
I-Methyl-2-pentanone	ND	mg/kg dry	0.0507	1	01/25/08 20:45	SW846 8260B	80131
Naphthalene	ND	mg/kg dry	0.00507	- 1	01/25/08 20:45	SW846 8260B	80131
I-Propylbenzene	ND	mg/kg dry	0.00203	l	01/25/08 20:45	SW846 8260B	80131
Styrene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
,1,1,2-Tetrachloroethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00203	- 1	01/25/08 20:45	SW846 8260B	80131
Fetrachloroethene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Foluene	ND	mg/kg dry	0.00203	- 1	01/25/08 20:45	SW846 8260B	80131
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00203	- 1	01/25/08 20:45	SW846 8260B	80131
,2,4-Trichlorobenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
,1,2-Trichloroethane	ND	mg/kg dry	0.00507	1	01/25/08 20:45	SW846 8260B	80131
, I, I-Trichloroethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Frichloroethene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Trichlorofluoromethane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
1,2,3-Trichloropropane	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Vinyl chloride	NĎ	ing/kg dry	0.00203	1	01/25/08 20:45	SW846 8260B	80131
Xylenes, total	ND	mg/kg dry	0.00507	1	01/25/08 20:45	SW846 8260B	80131
Surr: 1,2-Dichlorvethane-d4 (41-150%)	123 %				01/25/08 20:45	SW846 8260B	8013
Surr: Dibromofluoromethane (55-139%)	119 %				01/25/08 20:45	SW846 8260B	80131
Surr: Tolucne-d8 (57-148%)	113 %	,			01/25/08 20:45	SW846 8260B	8013
Surr: 4-Bromofluorobenzene (58-150%)	128 %				01/25/08 20:45	SW846 8260B	8013.
Semivolatile Organic Compounds by E	PA Method 82700	2					
Acenaphthene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Acenaphthylene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Anthracene	ND	mg/kg dry	0.358		01/22/08 18:59	SW846 8270C	80133
Benzo (a) anthracene	NĎ	mg/kg đry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Benzo (a) pyrene	ND	mg/kg đry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Benzo (b) fluoranthene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Benzo (g,h,i) perylene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Benzo (k) fluoranthene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Butyl benzyl phthalate	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
Carbazole	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	80133
4-Chloro-3-methylphenol	ND	mg/kg dry	0.358	I	01/22/08 18:59	SW846 8270C	80133
4-Chloroaniline	ND	mg/kg dry	0.358	. 1	01/22/08 18:59	SW846 8270C	80133
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.358	. 1	01/22/08 18:59	SW846 8270C	80133
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.358	•	J.,	31101002/00	80133

lestAmeric 3

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order:NRA1762Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/18/08 08:00

				,	Dilution	A	,	
Analyte	Result	Flag	Units	MRL	Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1762-01 (B-2	1 (8.5-10) - Soil) - d	cont. Samp	oled: 01/16/08 11	:15			• • • • • • • • • • • • • • • • • • • •	
Semivolatile Organic Compounds	by EPA Method 827	0C - cont.						
Bis(2-chloroisopropyl)ether	ND		mg/kg dry	0.358	1	01/22/08 18:59	511046 92700	001220
2-Chloronaphthalene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C SW846 8270C	801338
2-Chlorophenol	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338 801338
4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.358	1	01/22/08 18:59		
Chrysene	ND	1	mg/kg dry	0.358	. 1	01/22/08 18:59	SW846 8270C SW846 8270C	801338
Dibenz (a,h) anthracene	ND		mg/kg dry	0.358	I.	01/22/08 18:59		8013382
Dibenzofuran	ND		mg/kg dry	0.358	l	01/22/08 18:59	SW846 8270C	8013382
Di-n-butyl phihalate	ND		mg/kg dry	0.358	. 1		SW846 8270C	8013382
1,4-Dichlorobenzene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
1,2-Dichlorobenzene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
1,3-Dichlorobenzene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
3,3-Dichlorobenzidine	ND		mg/kg dry	0.717	1	01/22/08 18:59	SW846 8270C	8013382
2,4-Dichlorophenol	ND		mg/kg dry	0.358		01/22/08 18:59 01/22/08 18:59	SW846 8270C	8013382
Diethyl phthalate	, ND		mg/kg dry	0.358	1.		SW846 8270C	8013382
2,4-Dimethylphenol	. ND	,	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Dimethyl phthalate	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
4,6-Dinitro-2-methylphenol	ND		mg/kg dry	0.338	1	01/22/08 18:59	SW846 8270C	8013382
2,4-Dinitrophenol	ND		mg/kg dry		1	01/22/08 18:59	SW846 8270C	8013382
2,6-Dinitrotoluene	ND		mg/kg dry	0.896	1	01/22/08 18:59	SW846 8270C	8013382
2,4-Dinitrotoluene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Di-n-octyl phthalate	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Bis(2-ethylhexyl)phthalate	ND		•	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Fluoranthene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Fluorene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Hexachlorobenzene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Hexachlorobutadiene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Hexachlorocyclopentadiene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Hexachloroethane	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Isophorone	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
2-Methylnaphthalene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
2-Methylphenol	ND	•	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
3/4-Methylphenol	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
Naphthalene	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
3-Nitroaniline	ND ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
2-Nitroaniline			mg/kg dry	0.896	1	01/22/08 18:59	SW846 8270C	8013382
4-Nitroaniline	ND	•	mg/kg dry	0.896	-1	01/22/08 18:59	SW846 8270C	8013382
Nitrobenzene	ND .		mg/kg dry	0.896	1	01/22/08 18:59	SW846 8270C	8013382
4-Nitrophenol	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
	ND	L	mg/kg dry	0,896	1	01/22/08 18:59	SW846 8270C	8013382
2-Nitrophenol	ND		mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
N-Nitrosodiphenylamine	ND	_	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
N-Nitrosodi-n-propylamine	ND	L	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	8013382
entachlorophenol	ND		mg/kg dry	0.896	1	01/22/08 18:59	SW846.8270C	8013382

<u>TestAmerica</u>

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

: .

Chicago,, IL 60602 Project Number: [none] Attn Carl Dawes Received: 01/18/08 08:00	Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRA1762 Atlanta Rush Project
Attn Carl Dawes Received: 01/18/08 08:00		• – –	5	5
	Attn	Carl Dawes	Received:	01/18/08 08:00

• <u>····································</u>		ANALYTICAL RE		· · · · · · · · · · · · · · · · · · ·		·····	
Analyte	Result F	lag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
	• • • • • • • • • • • • • • • • • • • •					•••••••••••••••••	
Sample ID: NRA1762-01 (B-21 (8.5		-	:15				
Semivolatile Organic Compounds by E	PA Method 8270C - c	ont.					
Phenanthrene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338
Phenol	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338
Pyrene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338
1-Methylnaphthalene	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338
2,4,6-Trichlorophenol	ND	mg/kg dry	0.358	1	01/22/08 18:59	SW846 8270C	801338
2,4,5-Trichlorophenol	ND	mg/kg dry	0.896	1	01/22/08 18:59	SW846 8270C	801338
Surr: Terphenyl-d14 (26-128%)	63 %				01/22/08 18:59	SW846 8270C	80133
Surr: 2,4,6-Tribromophenol (20-132%)	52 %				01/22/08 18:59	SW846 8270C	80133
Surr: Phenol-d5 (23-113%)	64 %				01/22/08 18:59	SW846 8270C	80133
Surr: 2-Fluorobiphenyl (19-109%)	52 %				01/22/08 18:59	SW846 8270C	80133
Surr: 2-Fluorophenol (19-105%)	50 %				01/22/08 18:59	SW846 8270C	80133
Surr: Nitrobenzenc-d5 (22-104%)	61 %				01/22/08 18:59	SW846 8270C	80133
Sample ID: NRA1762-02 (B-24 (10)-12) - Soil) Sample	d: 01/16/08 14:00	*				
General Chemistry Parameters	·						
% Dry Solids	88.0	%	0.500	1	01/23/08 11:03	SW-846	801355
5		70	0,500	1	01/25/08 11.05	5 11-040	00133.
Volatile Organic Compounds by EPA	Method 8260B						
Acetone	ND	mg/kg dry	0.0683	1	01/26/08 16:17	SW846 8260B	801452
Benzene	0.00359	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	801452
Bromobenzene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	801452
Bromochloromethane	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Bromodichloromethane	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Bromoform	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Bromomethane	ND .	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	801453
2-Butanone	ND	mg/kg dry	0.0683	· 1	01/26/08 16:17	SW846 8260B	801452
sec-Butylbenzene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
n-Butylbenzene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
tert-Butylbenzene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Carbon disulfide	ND	mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	80145
Carbon Tetrachloride	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Chlorobenzene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Chlorodibromomethane	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Chloroethane	ND	mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	80145
Chloroform	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Chloromethane	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
2-Chlorotoluene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	
4-Chlorotoluene	ND					•	80145
1,2-Dibromo-3-chloropropane		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
1,2-Dibromo-3-chioropropane	ND	mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	80145
,	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
Dibromométhiane	ND .	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	80145
1,4-Dichlorobenzene	ND	mg/kg dry	0.00273	1	01/26/08 16:17	SŴ846 8260B	80145
1,3-Dichlorobenzene	ND	mg/kg dry	0:00273	1	01/26/08 16:17	SW846 8260B	80145

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

ł

	•	
2960 Foster Creighton Road Nashville,	TN 37204	* 800-765-0980 * Fax 615-726-3404

Work Order:NProject Name:AProject Number:[...Received:0

NRA 1762 Atlanta Rush Project [none] 01/18/08 08:00

				······································	Dilution	Angl!-		<u> </u>
Analyte	Result	Flag	Units	MRL	Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1762-02 (B-24 (1()-12) - Soil) - cor	it. Samp	led: 01/16/08 14:	00				
Volatile Organic Compounds by EPA				•				
1,2-Dichlorobenzene	ND	. ·	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Dichlorodifluoromethane	ND		mg/kg dry	0,00273	1	01/26/08 16:17	SW846 8260B	8014529
1,1-Dichloroethane	ND	-	mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,2-Dichloroethane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
cis-1,2-Dichloroethene	ND		, mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,1-Dichloroethene ·	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
trans-1,2-Dichloroethene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,3-Dichloropropane	ND		mg/kg dry	0.00273	. .	01/26/08 16:17	SW846 8260B	8014529
1,2-Dichloropropane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
2,2-Dichloropropane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
cis-1,3-Dichloropropene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
trans-1,3-Dichloropropene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,1-Dichloropropene	ND		mg/kg dry	0.00273	l	01/26/08 16:17	SW846 8260B	8014529
Ethylbenzene	ND		mg/kg dry	0.00273		01/26/08 16:17	SW846 8260B	8014529
Hexachlorobutadiene	ND		mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	8014529
2-Hexanone	ND		mg/kg dry	0.0683	1	01/26/08 16:17	SW846 8260B	8014529
Isopropylbenzene	ND		mg/kg dry	0.00273	I I	01/26/08 16:17	SW846 8260B	8014529
p-Isopropyltoluene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Methyl tert-Butyl Ether	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Methylene Chloride	ND		mg/kg dry	0.0137	1	01/26/08 16:17	SW846 8260B	8014529
4-Methyl-2-pentanone	ND		mg/kg dry	0.0683	1	01/26/08 16:17	SW846 8260B	8014529
Naphthalene	ND		mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	8014529
n-Propylbenzene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Styrene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,1,1,2-Tetrachloroethane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,1,2,2-Tetrachloroethane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Tetrachloroethene	0.00960		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Toluene	0.00912		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,2,3-Trichlorobenzene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,1,2-Trichloroethane	· ND		mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	8014329
1, 1, 1-Trichloroethane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Trichloroethene	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	
Trichlorofluoromethane	ND		mg/kg dry	0.00273	·1	01/26/08 16:17	SW846 8260B	8014529
1,2,3-Trichloropropane	ND		mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
1,3,5-Trimethylbenzene	ND		mg/kg dry	0.00273	1	01/26/08 16:17		8014529
1,2,4-Trimethylbenzene	ND	•	mg/kg dry	0.00273		•	SW846 8260B	8014529
Vinyl chloride	ND				-1	01/26/08 16:17	SW846 8260B	8014529
Xylenes, total	0.0107		mg/kg dry mg/kg dry	0.00273	1	01/26/08 16:17	SW846 8260B	8014529
Surr: 1,2-Dichloroethane-d4 (41-150%)	128 %		mg/kg dry	0.00683	1	01/26/08 16:17	SW846 8260B	8014529
Surr: Dibromofluoromethane (55-139%)	125 %					01/26/08 16:17	SW846 8260B	801452
Surr: Toluene-d8 (57-148%)	125 %					01/26/08 16:17 01/26/08 16:17	SW846 8260B SW846 8260B	801452
Surr: 4-Bromofluorobenzene (58-150%)	137 %	•				01/26/08 16:17	SW846 8260B SW846 8260B	801452 801452

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)
	70 Wei,t Madison, Suite 4250

Chicago,, 1L 60602

Attn Carl Dawes

NRA1762 Work Order: Project Name: [none] Project Number: Received:

Atlanta Rush Project 01/18/08 08:00

					Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRA1762-02 (B-24	(10-12) - Soil) - c	ont. Sampled:	01/16/08 14:	00				
Semivolatile Organic Compounds						•		
Acenaphthene	ND		r/kg dry	0.371	I	01/22/08 19:20	SW846 8270C	801338
Acenaphthylene	ND	-	y/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Anthracene	0.817		y/kg dry	0.371	- I	01/22/08 19:20	SW846 8270C	801338
Benzo (a) anthracene	2.01		y⊷g =-y ¢/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Benzo (a) pyrene	2.13		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Benzo (b) fluoranthene	1.98		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Benzo (g,h,i) perylene	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Benzo (k) fluoranthene	1.17		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
4-Bromophenyl phenyl ether	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Butyl benzyl phthalate	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Carbazole	0.425		z/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
4-Chloro-3-methylphenol	ND		g/kg dry	0.371	- 1	01/22/08 19:20	SW846 8270C	801338
4-Chloroaniline	ND		g/kg dry	0.371	-	01/22/08 19:20	SW846 8270C	801338
Bis(2-chloroethoxy)methane	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Bis(2-chloroethyl)ether	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Bis(2-chloroisopropyl)ether	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
2-Chloronaphthalene	ND		g/kg dry	0,371	1	01/22/08 19:20	SW846 8270C	801338
2-Chlorophenol	ND		g/kg dry	0.371	- 1	01/22/08 19:20	SW846 8270C	801338
4-Chlorophenyl phenyl ether	ND	•	g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Chrysene	1.98		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Dibenz (a,h) anthracene	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Dibenzofuran	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846-8270C	801338
Di-n-butyl phthalate	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
1,4-Dichlorobenzene	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
1,2-Dichlorobenzene	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
1,3-Dichlorobenzene	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
3,3-Dichlorobenzidine	ND		g/kg dry	0.743	1	01/22/08 19:20	SW846 8270C	801338
2,4-Dichlorophenol	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
Diethyl phthalate	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
2,4-Dimethylphenol	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	80133
Dimethyl phthalate	ND		g/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	801338
4,6-Dinitro-2-methylphenol	ND		g/kg dry	0.928	1	01/22/08 19:20	SW846 8270C	801338
2,4-Dinitrophenol	ND		g/kg dry	0.928	1	01/22/08 19:20	SW846 8270C	80133
2,6-Dinitrotoluene	ND		ng/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	80133
2,4-Dinitrotoluene	ND		ng/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	80133
Di-n-octyl phthalate	ND		ng/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	80133
Bis(2-ethylhexyl)phthalate	ND		ng/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	80133
Fluoranthene	5.16		ng/kg dry	0.742	2	01/23/08 17:45	SW846 8270C	
Fluorene	ND		ng/kg dry	0.371	- 1	01/22/08 19:20	SW846 8270C	
Hexachlorobenzene	ND		ig/kg dry	0.371	- 1	01/22/08 19:20	SW846 8270C	80133
Hexachlorobutadiene	ND		ig/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	
Hexachlorocyclopentadiene	ND		ng/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	
Hexachloroethane	ND		ng/kg dry	0.371	1	01/22/08 19:20	SW846 8270C	

1

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Surr: 2-Fluorophenol (19-105%)

Surr: Nitrobenzene-d5 (22-104%)

56%

73 %

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: Project Name: Project Number: Received:

NRA1762 Atlanta Rush Project [none] 01/18/08 08:00

ANALYTICAL REPORT Dilution Analysis Analyte Flag MRL Factor Date/Time Method Result Units Batch Sample ID: NRA1762-02 (B-24 (10-12) - Soil) - cont. Sampled: 01/16/08 14:00 Semivolatile Organic Compounds by EPA Method 8270C - cont. Indeno (1,2,3-cd) pyrene 1.13 mg/kg dry 0.371 01/22/08 19:20 1 SW846 8270C 8013382 Isophorone ND mg/kg dry 0.371 01/22/08 19:20 1 SW846 8270C 8013382 2-Methylnaphthaiene 0.507 0.371 mg/kg dry 01/22/08 19:20 1 SW846 8270C 8013382 2-Methylphenol ND mg/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 3/4-Methylphenol ND mg/kg dry 0.371 01/22/08 19:20 1 SW846 8270C 8013382 Naphthalene 0.409 mg/kg dry 0.371 01/22/08 19:20 1 SW846 8270C 8013382 3-Nitroaniline ND mg/kg dry 0.928 1 01/22/08 19:20 SW846 8270C 8013382 2-Nitroaniline ND 0.928 mg/kg dry 1 01/22/08 19:20 SW846 8270C 8013382 4-Nitroaniline ND ing/kg dry 0.928 1 01/22/08 19:20 SW846 8270C 8013382 Nitrobenzene ND mg/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 4-Nitrophenol ND L mg/kg dry 0.928 1 01/22/08 19:20 SW846 8270C 8013382 2-Nitrophenol ND mg/kg dry 0.371 01/22/08 19:20 1 SW846 8270C 8013382 N-Nitrosodiphenylamine ND mg/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 N-Nitrosodi-n-propylamine ND L mg/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 Pentachlorophenol ND ing/kg dry 0.928 1 01/22/08 19:20 SW846 8270C 8013382 Phenanthrene 4.02 mg/kg dry 0.742 2 01/23/08 17:45 SW846 8270C 8013382 Phenol ND mg/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 Pyrene 5.11 mg/kg dry 0.742 2 01/23/08 17:45 SW846 8270C 8013382 1,2,4-Trichlorobenzene ND ing/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 1-Methylnaphthalene 0.405 01/22/08 19:20 mg/kg dry 0.371 1 SW846 8270C 8013382 2,4,6-Trichlorophenol ND mg/kg dry 0.371 1 01/22/08 19:20 SW846 8270C 8013382 2,4,5-Trichlorophenol ND mg/kg dry 0.928 1 01/22/08 19:20 SW846 8270C 8013382 Surr: Terphenyl-d14 (26-128%) 65 % 01/22/08 19:20 SW846 8270C 8013382 Surr: 2,4,6-Tribromophenol (20-132%) 39% 01/22/08 19:20 SW846 8270C 8013382 Surr: Phenol-d5 (23-113%) 64 % 01/22/08 19:20 SW846 8270C 8013382 Surr: 2-Fluorobiphenyl (19-109%) 55%

01/22/08 19:20

01/22/08 19:20

01/22/08 19:20

SW846 8270C

SW846 8270C

SW846 8270C

8013382

8013382

8013382

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Attn	Weaver Boos Consultants LLC (1407793) /0 West Madison, Suite 4250 (Chicago,, IL 60602 Carl Dawes	Work Order: Project Name: Project Number: Received:	NRA1762 Atlanta Rush Project [none] 01/18/08 08:00
----------------	---	--	---

		1	ANALYTICAL RE	PORT	•			
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRA1762-03 (B-24 ()	18-20) - Soil) Sa	umpled: 01	/16/08 14:45					
General Chemistry Parameters		•					•	
% Dry Solids	77.0	•	%	0.500 -	1	02/11/08 08:02	SW-846	8021441
Polyaromatic Hydrocarbons by EPA	8270C							
Acenaphthene	ND	H4	mg/kg dry	0.0863	I	02/07/08 12:29	SW846 8270C	8020938
Acenaphthylene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Anthracene	ND	H4	ing/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	.8020938
Benzo (a) anthracene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Benzo (a) pyrene	ND	H 4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Benzo (b) fluoranthene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Benzo (g,h,i) perylene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Benzo (k) fluoranthene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Chrysene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Dibenz (a,h) anthracene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Fluoranthene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Fluorene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Indeno (1,2,3-cd) pyrene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Naphthalene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Phenanthrene	ND	H4	mg/kg dry	0.0863	1	02/07/08 12:29	SW846 8270C	8020938
Pyrene	ND	H4	mg/kg dry	0.0863	ì	02/07/08 12:29	SW846 8270C	8020938
Surr: Terphenyl-d14 (26-128%)	74 %					02/07/08 12:29	SW846 8270C	802093
Surr: 2-Fluorobiphenyl (19-109%)	61 %					02/07/08 12:29	SW846 8270C	8020938
Surr: Nitrobenzene-d5 (22-104%)	56 %					02/07/08 12:29	SW846 8270C	8020938

TestAmericu

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, 1L 60602 Attn Carl Dawes 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:IProject Name:IProject Number:[Received:I

NRA 1762 Atlanta Rush Project [none] 01/18/08 08:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Polyaromatic Hydrocarbons by EPA	8270C						
SW846 8270C	8020938	NRA1762-03	30.25	1.00	02/06/08 16:30	BJM	EPA 3550B
Semivolatile Organic Compounds by	y EPA Method 8270	C .					
SW846 8270C	8013382	NRA1762-01	30.65	1.00	01/21/08 11:30	BAD	EPA 3550B
SW846 8270C	8013382	NRA1762-02	30.60	1.00	01/21/08 11:30	BAD	EPA 3550B
SW846 8270C	8013382	NRA1762-02RE1	30.60	1.00	01/21/08 11:30	BAD	EPA 3550B
Volatile Organic Compounds by EP.	A Method 8260B						
SW846 8260B	8013117	NRA1762-01	5.42	5.00	01/16/08 11:15	MXE	EPA 5035
SW846 8260B	8013117	NRA1762-02	3.81	5.00	01/16/08 14:00	MXE	EPA 5035
SW846 8260B	8014529	NRA 1762-02RE1	4.16	5.00	01/16/08 14:00	MXE	EPA 5035

TestAmerica

THE LEADIER IN ENVIRONMENTAL TESTING

2960 Fosler Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Work Order:	NRA1762
Project Name:	Atlanta Rush Project
Project Number:	[none]
Received:	01/18/08 08:00

PROJECT QUALITY CONTROL DATA

Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	_
Volatile Organic Compounds t	by EPA Method 8260B						
8013117-BLK1	,						
Acetone	<0.0250		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Benzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Bromobenzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Bromochloromethane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Bromodichloromethane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Bromoform	<0.000530		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Bromomethane	<0.00157		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
2-Butanone	<0.00500		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
sec-Butylbenzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
n-Butylbenzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
tert-Butylbenzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Carbon disulfide	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Carbon Tetrachloride	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Chlorobenzene	<0.000670		ing/kg wet	8013117	8013117-BLKI	01/25/08 15:38	
Chlorodibromomethane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Chloroethane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Chloroform	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Chloromethane	<0.000880		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
2-Chlorotoluene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
4-Chlorotoluene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,2-Dibromo-3-chloropropane	<0.00100		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,2-Dibromoethane (EDB)	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Dibromomethane	<0.000540		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,4-Dichlorobenzene	<0.000640		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,3-Dichlorobenzene	<0.000530		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,2-Dichlorobenzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Dichlorodifluoromethane	<0.000930		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,1-Dichloroethane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,2-Dichloroethane	<0.0008000		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
cis-1,2-Dichloroethene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,1-Dichloroethene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
trans-1,2-Dichloroethene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,3-Dichloropropane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,2-Dichloropropane	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
2,2-Dichloropropane	<0.000420		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
cis-1,3-Dichloropropene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
trans-1,3-Dichloropropene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
1,1-Dichloropropene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Ethylbenzene	<0.000670		mg/kg wet	8013117	8013117-BĽK1	01/25/08 15:38	
Hexachlorobutadiene	<0.000630		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
2-Hexanone	<0.00407		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	
Isopropylbenzene	<0.000670		mg/kg wet	8013117	8013117-BLK1	01/25/08 15:38	

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes ŧ

Work Order:NProject Name:AProject Number:[Received:0

NRA1762 Atlanta Rush Project [none] 01/18/08 08:00

Analyte	Blank Value	Q. Unit:	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by	y EPA Method 8260B					
8013117-BLK1						
p-Isopropyltoluene	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Methyl tert-Butyl Ether	<0.000670	. mg/kg	wet . 8013117	8013117-BLK1	01/25/08 15:38	
Methylene Chloride	<0.00348	mg/kg	wet 8013117	8013117-BLKI	01/25/08 15:38	
4-Methyl-2-pentanone	<0.00426	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Naphthalene	<0.00151	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
n-Propylbenzene	<0.000530	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Styrene	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,1,1,2-Tetrachloroethane	<0.000500	mg/kg	wet 8013117	8013117-BLKI	01/25/08 15:38	
1,1,2,2-Tetrachloroethane	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Tetrachloroethene	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Toluene	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,2,3-Trichlorobenzene	<0.000660	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,2,4-Trichlorobenzene	<0.000650	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,1,2-Trichloroethane	<0.00102	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,1,1-Trichloroethane	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Trichloroethene	<0.000280	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Trichlorofluoromethane	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,2,3-Trichloropropane	<0.000550	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,3,5-Trimethylbenzene	<0.000670	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
1,2,4-Trimethylbenzene	<0.00127	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	·
Vinyl chloride	<0.000710	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Xylenes, total	<0.00172	mg/kg	wet 8013117	8013117-BLK1	01/25/08 15:38	
Surrogate: 1,2-Dichloroethane-d4	124%		8013117	8013117-BLK1	01/25/08 15:38	
Surrogate: Dibromofluoromethane	120%		8013117	8013117-BLK1	01/25/08 15:38	
Surrogate: Toluene-d8	113%		8013117	8013117-BLK1	01/25/08 15:38	
Surrogate: 4-Bromofluorobenzene	120%		8013117	8013117-BLK1	01/25/08 15:38	
8014529-BLK1						
Acetone	<0.0250	mg/kg	wet 8014529	8014529-BLK1	01/26/08 15:46	
Benzene	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
Bromobenzene	<0.000670	mg/kg		8014529-BLK1		
Bromochloromethane	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
Bromodichloromethane	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
Bromoform	<0.000530	mg/kg		8014529-BLK1	01/26/08 15:46	
Bromomethane	<0.00157	mg/kg		8014529-BLK1	01/26/08 15:46	
2-Butanone	<0.00500	mg/kg		8014529-BLK1	01/26/08 15:46	
sec-Butylbenzene	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
n-Butylbenzene	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
tert-Butylbenzene	<0.000670	mg/kg		8014529-BLK1	•.	
Carbon disulfide	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
Carbon Tetrachloride	<0.000670	mg/kg		8014529-BLK1	01/26/08 15:46	
Chlorobenzene	<0.000670	mg/kg	•	8014529-BLK1		

es *meric*

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes

Attn

THE LEADER IN ENVIRONMENTAL TESTING

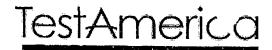
2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:	
Project Name:	
Project Number:	
Received:	

NRA1762 Atlanta Rush Project [none]

01/18/08 08:00

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by E	CPA Method 8260B			• • • • • • • • • • • • • • • • •		
8014529-BLK1						
Chlorodibromomethane	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Chloroethane	<0.000670		mg/kg wet	8014529	8014529-BLKI	01/26/08 15:46
Chloroform	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Chloromethane	<0.000880		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
2-Chlorotoluene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
4-Chlorotoluene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2-Dibromo-3-chloropropane	<0.00100		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2-Dibromoethane (EDB)	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Dibromomethane	<0.000540		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,4-Dichlorobenzene	<0.000640		mg/kg wet	8014529	8014529-BLKI	01/26/08 15:46
1,3-Dichlorobenzene	<0.000530		ing/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2-Dichlorobenzene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Dichlorodifluoromethane	<0.000930		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,1-Dichloroethane	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2-Dichloroethane	<0.000800		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
cis-1,2-Dichloroethene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,1-Dichloroethene	<0.000670		mg/kg wet	8014529	8014529-BLKI	01/26/08 15:46
trans-1,2-Dichloroethene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,3-Dichloropropane	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2-Dichloropropane	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
2,2-Dichloropropane	<0.000420		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
cis-1,3-Dichloropropene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
trans-1,3-Dichloropropene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,1-Dichloropropene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Ethylbenzene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Hexachlorobutadiene	<0.000630		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
2-Hexanone	0.0166		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Isopropylbenzene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
p-Isopropyitoluene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Methyl tert-Butyl Ether	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Methylene Chloride	<0.00348		mg/kg wet	8014529	8014529-BLKI	01/26/08 15:46
4-Methyl-2-pentanone	<0.00426		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Naphthalene	<0.00151		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
n-Propylbenzene	<0.000530		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Styrene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,1,1,2-Tetrachloroethane	<0.000500		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,1,2,2-Tetrachloroethane	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Tetrachloroethene	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
Tolueñe	<0.000670		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2,3-Trichlorobenzene	<0.000660		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
1,2,4-Trichlorobenzene	<0.000650		mg/kg wet	8014529	8014529-BLK	01/26/08 15:46
1,1,2-Trichloroethane	<0.00102		mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46
					pont	0



2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order:NRAProject Name:AtlanProject Number:[noneReceived:01/18

NRA 1762 Atlanta Rush Project per: [none] 01/18/08 08:00

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by	EPA Method 8260B			• • • • • • • • • • • • • • • • • • • •		
8014529-BLK1						
1,1,1-Trichloroethane	<0.000670	ing/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
Trichloroethene	<0.000280	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
Trichlorofluoromethane	<0.000670	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
1,2,3-Trichloropropane	<0.000550	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
1,3,5-Trimethylbenzene	<0.000670	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
1,2,4-Trimethylbenzene	<0.00127	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
Vinyl chloride	<0.000710	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
Xylenes, total	<0.00172	mg/kg wet	8014529	8014529-BLK1	01/26/08 15:46	
Surrogate: 1,2-Dichloroethane-d4	126%		8014529	8014529-BLK1	01/26/08 15:46	
Surrogate: Dibromofluoromethane	121%		8014529	8014529-BLK1	01/26/08 15:46	
Surrogate: Toluene-d8	117%		8014529	8014529-BLK1	01/26/08 15:46	
Surrogate: 4-Bromofluorobenzene	129%		8014529	8014529-BLK1	01/26/08 15:46	
Polyaromatic Hydrocarbons by I	EPA 8270C					
8020938-BLK1						
Acenaphthene	<0.0310	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	-
Acenaphthylene	<0.0320	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Anthracene	<0.0330	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Benzo (a) anthracene	<0.0380	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Benzo (a) pyrene	<0.0290	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Benzo (b) fluoranthene	<0.0320	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Benzo (g,h,i) perylene	<0:0290	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Benzo (k) fluoranthene	<0.0290	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Chrysene	<0.0390	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Dibenz (a,h) anthracene	<0.0310	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Fluoranthene	<0.0340	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Fluorene	<0.0390	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	***
Indeno (1,2,3-cd) pyrene	<0.0310	mg/kg wet	8020938	8020938-BLK1	02/07/08 10:30	
Naphthalene	<0.0410	mg/kg wet	8020938	8020938-BLK1		
Phenanthrene	<0.0340	mg/kg wet	8020938	8020938-BLKI	02/07/08 10:30	
Pyrene	<0.0410	mg/kg wet	8020938	8020938-BLK	02/07/08 10:30 02/07/08 10:30	
Surrogate: Terphenyl-d14	90%		8020938	8020938-BLK1		
Surrogate: 2-Fluorobiphenyl	72%		8020938	8020938-BLKI	02/07/08 10:30	
Surrogate: Nitrobenzene-d5	68%	· ·	8020938	8020938-BLK1 8020938-BLK1	02/07/08 10:30 02/07/08 10:30	
Semivolatile Organic Compound	e by FDA Mathad 92700					
8013382-BLK1	5 by 15t A MICHINU 02/UC			•		
Acenaphthene	<0.0310	· · · · · · · · · · · ·		001005		
Acenaphthylene	<0.0320	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Anthracene		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (a) anthracene	<0.0330	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Solizo (a) allutacelle	<0.0380	mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

Work Order:NHProject Name:AtProject Number:[nc]Received:01.

NRA1762 Atlanta Rush Project [none] 01/18/08 08:00

PROJECT QUALITY CONTROL DATA

Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	· .
Semivolatile Organic Compo	unds by EPA Method 8270C					•••••••	
8013382-BLK1							
Benzo (a) pyrene	<0.0290		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (b) fluoranthene	<0.0320		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (g,h,i) perylene	<0.0290		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Benzo (k) fluoranthene	<0.0290		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Bromophenyl phenyl ether	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Butyl benzyl phthalate	<0.0890		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Carbazole	<0.165		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Chloro-3-methylphenol	<0.100		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Chloroaniline	<0.289		mg/kg wet	8013382	8013382-BLK1	01/22/Q8 16:31	
Bis(2-chloroethoxy)methane	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Bis(2-chloroethyl)ether	<0.135		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Bis(2-chloroisopropyl)ether	<0.102		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2-Chloronaphthalene	<0.0680		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2-Chlorophenol	<0.109		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4-Chlorophenyl phenyl ether	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Chrysene	<0.0390		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Dibenz (a,h) anthracene	<0.0310		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Dibenzofuran	<0.0890		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Di-n-butyl phthalate	<0.0860		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
1,4-Dichlorobenzene	<0.115		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
1,2-Dichlorobenzene	<0.0880		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
1,3-Dichlorobenzene	<0.0800		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
3,3-Dichlorobenzidine	<0.270		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dichlorophenol	<0.0870		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Diethyl phthalate	<0.0500		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dimethylphenol	<0.281		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Dimethyl phthalate	<0.0880		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
4,6-Dinitro-2-methylphenol	<0.0910		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dinitrophenol	<0.135		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,6-Dinitrotoluene	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
2,4-Dinitrotoluene	<0.0880		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Di-n-octyl phthalate	<0.132		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Bis(2-ethylhexyl)phthalate	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Fluoranthene	<0.0340		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Fluorene	<0.0390		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachlorobenzene	<0.0830		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachlorobutadiene	<0.108		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachlorocyclopentadiene	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Hexachloroethane	<0.105		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Indeno (1,2,3-cd) pyrene	<0.0310		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	
Isophorone	<0.100		mg/kg wet	8013382	8013382-BLKI	01/22/08 16:31	
2-Methyinaphthalene	<0.0330		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31	

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order:NRAProject Name:AtlanProject Number:[nonReceived:01/12

NRA 1762 Atlanta Rush Project er: [none] 01/18/08 08:00

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method 827	0C	····	• • • • • • • • • • • • • • • • • • • •		••••••
8013382-BLK1	•					
2-Methylphenol	<0.0990		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
3/4-Methylphenol	<0.145		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Naphthalene	< 0.0410		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
3-Nitroaniline	<0.110		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
2-Nitroaniline	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
4-Nitroaniline	<0.275		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Nitrobenzene	<0.106		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
4-Nitrophenol	<0.276		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
2-Nitrophenol	<0.197		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
N-Nitrosodiphenylamine	<0.109		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
N-Nitrosodi-n-propylamine	<0.122		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Pentachlorophenol	<0.0740		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Phenanthrene	<0.0340		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Phenol	<0.0690		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Pyrene	<0.0410		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Pyridine	<0.0940		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
1,2,4-Trichlorobenzene	<0.111		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
i-Methylnaphthalene	<0.0320		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
2,4,6-Trichlorophenol	<0.0870		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
2,4,5-Trichlorophenol	<0.0680		mg/kg wet	8013382	8013382-BLK1	01/22/08 16:31
Surrogate: Terphenyl-d14	75%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: 2,4,6-Tribromophenol	41%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: Phenol-d5	73%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: 2-Fluorobiphenyl	63%			8013382	8013382-BLK1	01/22/08 16:31
Surrogate: 2-Fluorophenol	63%		•	8013382	8013382-BLK1	01/22/08 16:31
Surrogate: Nitrobenzene-d5	85%			8013382	8013382-BLK1	01/22/08 16:31

Client Weaver Boos Consultants LLC (1407793) 70 We:.t Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: NRA Project Name: Atlan Project Number: [none Received: 01/18

NRA1762
 c: Atlanta Rush Project
 ber: [none]
 01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by EPA	A Method 8260B	*****		••••				•••••
• 8013117-BS1								
Acetone	250	246		ug/kg	99%	49 - 150	8013117	01/25/08 13:21
Benzene	50.0	54.6		ug/kg	109%	76 - 130	8013117	01/25/08 13:21
Bromobenzene	50.0	53,4		ug/kg	107%	80 - 128	8013117	01/25/08 13:21
Bromochloromethane	50.0	56.4		ug/kg	113%	70 - 13 5	8013117	01/25/08 13:21
Bromodichloromethane	50.0	59.0		ug/kg	118%	78 - 135	8013117	01/25/08 13:21
Bromoform	50.0	63.0	•	ug/kg	126%	67 - 143	8013117	01/25/08 13:21
Bromomethane	50.0	64.2		ug/kg	128%	58 - 150	8013117	01/25/08 13:21
2-Butanone	250	259		ug/kg	104%	61 - 143	8013117	01/25/08 13:21
sec-Butylbenzene	50.0	56.8		ug/kg	114%	80 - 134	8013117	01/25/08 13:21
n-Butylbenzene	50.0	61.3		ug/kg	123%	71 - 141	8013117	01/25/08 13:21
tert-Butylbenzene	50.0	56.8		ug/kg	114%	79 - 132	8013117	01/25/08 13:21
Carbon disulfide	50.0	54.1		ug/kg	108%	70 - 134	8013117	01/25/08 13:21
Carbon Tetrachloride	50.0	60.6		ug/kg	121%	75 - 137	8013117	01/25/08 13:21
Chlorobenzene	50.0	57.8		ug/kg	116%	80 - 121	8013117	01/25/08 13:21
Chlorodibromomethane	50,0	60.5		ug/kg	121%	77 - 130	8013117	01/25/08 13:21
Chloroethane	50.0	51.6		ug/kg	103%	62 - 149	8013117	01/25/08 13:21
Chloroform	50.0	57.1		ug/kg	114%	75 - 130	8013117	01/25/08 13:21
Chloromethane	50.0	43.2		ug/kg	86%	35 - 130	8013117	01/25/08 13:21
2-Chlorotoluene	50.0	58.4		ug/kg	117%	80 - 131	8013117	01/25/08 13:21
4-Chlorotoluene	50.0	58.8		ug/kg	118%	80 - 129	8013117	01/25/08 13:21
1,2-Dibromo-3-chloropropane	50.0	53.2		ug/kg	106%	62 - 142	8013117	01/25/08 13:21
1,2-Dibromoethane (EDB)	50.0	59.2		ug/kg	118%	81 - 130	8013117	01/25/08 13:21
Dibromomethane	50.0	57.1		ug/kg	114%	77 - 133	8013117	01/25/08 13:21
1,4-Dichlorobenzene	50.0	60.6		ug/kg	121%	75 - 128	8013117	01/25/08 13:21
1,3-Dichlorobenzene	50.0	60.1		ug/kg	120%	79 - 128	8013117	01/25/08 13:21
1,2-Dichlorobenzene	50.0	62.7		ug/kg	125%	80 - 130	8013117	01/25/08 13:21
Dichlorodifluoromethane	. 50,0	47.5		ug/kg	95%	11 - 129	8013117	01/25/08 13:21
1,1-Dichloroethane	50.0	53.5		ug/kg	107%	68 - 150	8013117	01/25/08 13:21
1,2-Dichloroethane	50.0	56.2		uġ/kg	1 12%	72 - 132	8013117	01/25/08 13:21
cis-1,2-Dichloroethene	50.0	56.4		ug/kg	113%	77 - 132	8013117	01/25/08 13:21
1,1-Dichloroethene	50.0	57.7		ug/kg	115%	75 - 133	8013117	01/25/08 13:21
trans-1,2-Dichloroethene	50.0	56.2		ug/kg	112%	79 - 133	8013117	01/25/08 13:21
1,3-Dichloropropane	50.0	56.7		ug/kg	113%	80 - 125	8013117	01/25/08 13:21
1,2-Dichloropropane	50.0	51,1		ug/kg	102%	75 - 124	8013117	01/25/08 13:21
2,2-Dichloropropane	50.0	57.5		ug/kg	115%	59 - 144	8013117	01/25/08 13:21
cis-1,3-Dichloropropene	50.0	53.2		ug/kg	106%	80 - 137	8013117	01/25/08 13:21
trans-1,3-Dichloropropene	50.0	53.9		ug/kg	108%	75 - 133	8013117	01/25/08 13:21
1,1-Dichloropropene	50.0	57.4		ug/kg	115%	76 - 133	8013117	01/25/08 13:21
Ethylbenzene	50.0	55:5		ug/kg	111%	80 - 128	8013117	01/25/08 13:21
Hexachlorobutadiene	50.0	60.4		ug/kg	121%	60 - 150	8013117	01/25/08 13:21
2-Hexanone	250	265		ug/kg	106%	63 - 149	8013117	01/25/08 13:21

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602 Carl Dawes

Attn

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: Project Name: Project Number: Received:

NRA1762 Atlanta Rush Project [none] 01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by EF	A Method 8260B					· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • •
3013117-BS1								
Isopropylbenzene	50.0	50.9		ug/kg	102%	74 - 131	8013117	01/25/08 13:21
p-Isopropyltoluene	50,0	57.2		ug/kg	114%	75 - 133	8013117	01/25/08 13:21
Methyl tert-Butyl Ether	50.0	55,1		ug/kg	110%	67 - 130	8013117	01/25/08 13:21
Methylene Chloride	50.0	53.6		ug/kg.	107%	65 - 144	8013117	01/25/08 13:21
4-Methyl-2-pentanone	250	275	•	ug/kg	110%	64 - 142	8013117	01/25/08 13:21
Naphthalene	50.0	58.6		ug/kg	117%	63 - 144	8013117	01/25/08 13:21
n-Propylbenzene	50.0	57.8		ug/kg	116%	80 - 131	8013117	01/25/08 13:21
Styrene	50.0	63.6		ug/kg	127%	80 - 144	8013117	01/25/08 13:21
1,1,1,2-Tetrachloroethane	50.0	59.6		ug/kg	119%	80 - 129	8013117	01/25/08 13:21
1,1,2,2-Tetrachloroethane	50.0	55,9		ug/kg	112%	73 - 139	8013117	01/25/08 13:21
Tetrachloroethene	50.0	60.6		ug/kg	121%	76 - 128	8013117	01/25/08 13:21
Toluene	. 50.0	57.4		ug/kg	115%	80 - 125	8013117	01/25/08 13:21
1,2,3-Trichlorobenzene	50.0	63.2	•	ug/kg	126%	64 - 136	8013117	01/25/08 13:21
1,2,4-Trichlorobenzene	50.0	65.8		ug/kg	132%	58 - 145	8013117	01/25/08 13:21
1,1,2-Trichloroethane	50.0	55,6		ug/kg	111%	80 - 127	8013117	01/25/08 13:21
1,1,1-Trichloroethane	50.0	59.5		ug/kg	119%	76 - 134	8013117	01/25/08 13:21
Trichloroethene	50.0	59.8		ug/kg	120%	75 - 131	8013117	01/25/08 13:21
Trichlorofluoromethane	50.0	.54.8		ug/kg	110%	63 - 130	8013117	01/25/08 13:21
1,2,3-Trichloropropane	50.0	51.0		ug/kg	102%	66 - 129	8013117	01/25/08 13:21
1,3,5-Trimethylbenzene	50.0	58.5		ug/kg	117%	78 - 133	8013117	01/25/08 13:21
1,2,4-Trimethylbenzene	50.0	59.4		ug/kg	119%	76 - 135	8013117	01/25/08 13:21
Vinyl chloride	50,0	53.7		ug/kg	107%	58 - 134	8013117	01/25/08 13:21
Xylenes, total	150	183		ug/kg	122%	79 - 130	8013117	01/25/08 13:21
Surrogate: 1,2-Dichloroethane-d4	50,0	59.7			119%	41 - 150	8013117	01/25/08 13:21
Surrogate: Dibromofluoromethane	50.0	59.9			120%	55 - 139	8013117	01/25/08 13:21
Surrogate: Toluene-d8	50.0	55,6			111%	57 - 148	8013117	01/25/08 13:21
Surrogate: 4-Bromofluorobenzene	50.0	53.2			106%	58 - 150	8013117	01/25/08 13:21
8014529-BS1								
Acetone	250	231	•	ug/kg	93%	49 - 150	8014529	01/26/08 13:10
Benzene	50.0	49.7		ug/kg	99%	76 - 130	8014529	01/26/08 13:10
Bromobenzene	50.0	54.6		ug/kg	109%	80 - 128	8014529	01/26/08 13:10
Bromochloromethane	50.0	53.0		ug/kg	106%	70 - 135	8014529	01/26/08 13:10
Bromodichloromethane	50.0	55.7		ug/kg	111%	78 - 135	8014529	01/26/08 13:10
Bromoform	50.0	63.0		ug/kg	126%	67 - 143	8014529	01/26/08 13:10
Bromomethane	50,0	48.5		ug/kg	97%	58 - 150		•
2-Butanone	250	246		ug/kg	98%	58 - 150 61 - 143 [.]	8014529	01/26/08 13:10
sec-Butylbenzene	50.0	56.8					8014529	01/26/08 13:10
n-Butylbengene	50.0	60.4		ug/kg	114%	80 - 134	8014529	01/26/08 13:10
tert-Butylbenzene	50.0	55.9		ug/kg	121%	71 - 141	8014529	01/26/08 13:10
Carbon disulfide	50.0	48.9		ug/kg	112%	79 - 132	8014529	01/26/08 13:1
Carbon Tetrachloride	50.0	48.9 59.6		ug/kg ug/kg	98%	70 - 134	8014529	01/26/08 13:1

THE LEADER IN	ENVIRONMENTAL	TESTING
---------------	---------------	---------

296D Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

.

Client	Weaver Boos Consultants LLC (1407793)
	70 West Madison, Suite 4250
	Chicago,, IL 60602

Carl Dawes Attn

NRA1762 Work Order: Atlanta Rush Project Project Name: Project Number: [none] Received:

01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B	•••••••				•••••		
8014529-BS1								
Chlorobenzene	50.0	55.9		ug/kg	112%	80 - 121	8014529	01/26/08 13:10
Chlorodibromomethane	50,0	59.9		ug/kg	120%	77 - 130	8014529	01/26/08 13:10
Chloroethane	50.0	45,3		ug/kg	91%	62 - 149	8014529	01/26/08 13:10
Chloroform	50.0	. 55.7		ug/kg	111%	75 - 130	8014529	01/26/08 13:10
Chloromethane	50.0	37.6		ug/kg	75%	35 - 130	8014529	01/26/08 13:10
2-Chlorotoluene	50.0	58.9		`ug/kg	118%	80 - 131	8014529	01/26/08 13:10
4-Chlorotoluene	50.0	60,5		ug/kg	121%	80 - 129	8014529	01/26/08 13:10
1,2-Dibromo-3-chloropropane	50.0	49.4		ug/kg	99%	62 - 142	8014529	01/26/08 13:10
1,2-Dibromoethane (EDB)	50.0	57.5		ug/kg	115%	81 - 130	8014529	01/26/08 13:10
Dibromomethane	50.0	54.6		ug/kg	109%	77 - 133	8014529	01/26/08 13:10
1,4-Dichlorobenzene	50.0	61.0		ug/kg	122%	75 - 128	8014529	01/26/08 13:10
1,3-Dichlorobenzene	50.0	60.9		ug/kg	122%	79 - 128	8014529	01/26/08 13:10
1,2-Dichlorobenzene	50.0	61.1		ug/kg	122%	80 - 130	8014529	01/26/08 13:10
Dichlorodifluoromethane	50.0	43.6		ug/kg	87%	11 - 129	8014529	01/26/08 13:10
1,1-Dichloroethane	50.0	50.7		ug/kg	101%	68 - 150	8014529	01/26/08 13:10
1,2-Dichloroethane	50.0	57.0		ug/kg	114%	72 - 132	8014529	01/26/08 13:10
cis-1,2-Dichloroethene	50.0	53.2		ug/kg	106%	77 - 132	8014529	01/26/08 13:10
1,1-Dichloroethene	50.0	51.2		ug/kg	102%	75 - 133	8014529	01/26/08 13:10
trans-1,2-Dichloroethene	50.0	53.2		ug/kg	106%	79 - 133	8014529	01/26/08 13:10
1,3-Dichloropropane	50.0	53.4		ug/kg	107%	80 - 125	8014529	01/26/08 13:10
1,2-Dichloropropane	50.0	46.6		ug/kg	93%	75 - 124	8014529	01/26/08 13:10
2,2-Dichloropropane	50.0	55.0		ug/kg	110%	59 - 144	8014529	01/26/08 13:10
cis-1,3-Dichloropropene	50.0	50,1		ug/kg	100%	80 - 137	8014529	01/26/08 13:10
trans-1,3-Dichloropropene	50.0	52.0		ug/kg	104%	75 - 133	8014529	01/26/08 13:10
1,1-Dichloropropene	50.0	53.6		ug/kg	107%	76 - 133	8014529	01/26/08 13:10
Ethylbenzene	50.0	53.9		ug/kg	108%	80 - 128	8014529	01/26/08 13:10
Hexachlorobutadiene	50.0	61.6		ug/kg	123%	60 - 150	8014529	01/26/08 13:10
2-Hexanone	250	247		ug/kg	99%	63 - 149	8014529	01/26/08 13:10
Isopropylbenzene	50,0	51.8		ug/kg	104%	74 - 131	8014529	01/26/08 13:10
p-Isopropyltoluene	50.0	57.8		ug/kg	116%	75 - 133	8014529	01/26/08 13:10
Methyl tert-Butyl Ether	50.0	52.Ż		ug/kg	104%	67 - 130	8014529	01/26/08 13:10
Methylene Chloride	50.0	51.4		ug/kg	103%	65 - 144	8014529	01/26/08 13:10
4-Methyl-2-pentanone	250	255		ug/kg	102%	64 - 142	8014529	01/26/08 13:10
Naphthalene	50.0	55.8		ug/kg	112%	63 - 144	8014529	01/26/08 13:10
n-Propylbenzene	50.0	58.0		ug/kg	116%	80 - 131	8014529	01/26/08 13:10
Styrene	50.0	62.1		ug/kg	124%	80 - 144	8014529	01/26/08 13:10
1,1,1,2-Tetrachloroethane	50.0	58.2		ug/kg	116%	80 - 129	8014529	01/26/08 13:10
1,1,2,2-Tetrachloroethane	50.0	56.0		ug/kg	112%	73 - 139	8014529	01/26/08 13:10
Tetrachloroethene	50.0	59.0		ug/kg	118%	76 - 128	8014529	01/26/08 13:10
Toluene	50.0	55.0		ug/kg	110%	80 - 125	8014529	01/26/08 13:10
1,2,3-Trichlorobenzene	50.0	60.5		ug/kg	121%	64 - 136	8014529	01/26/08 13:10

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

3

Acenaphthylene

1.67

1.58

mg/kg wet

95%

53 - 109

8013382

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: M Project Name: A Project Number: [r Received: 0

NRA1762 Atlanta Rush Project per: [none] 01/18/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 8260B	••••••••••••••••••••••	••••••••	••••••		•••••		•••••
8014529-BS1								
1,2,4-Trichlorobenzene	50.0	62,3			10.68/	60 146	001 (200	
1,1,2-Trichloroethane	50.0	54.0		ug/kg	125%	58 - 145	8014529	01/26/08 13:
1,1,1-Trichloroethane	50,0	58.2		ug/kg	108%	80 - 127	8014529	01/26/08 13:
Trichloroethene	50,0	56. <u>6</u>		ug/kg	116%	76 - 134	8014529	01/26/08 13:
Trichlorofluoromethane	50.0			ug/kg	113%	75 - 131	8014529	01/26/08 13:
1,2,3-Trichloropropane	50.0	52.1		ug/kg	104%	63 - 130	8014529	01/26/08 13:
1,3,5-Trimethylbenzene	50.0	51.0		ug/kg	102%	66 - 129	8014529	01/26/08 13:
1,2,4-Trimethylbenzene		59,2		ug/kg	118%	78 - 133	8014529	01/26/08 13:
Vinyl chloride	50.0	60.0		ug/kg	120%	76 - 135	8014529 -	01/26/08 13:
Xylenes, total	50,0	46.8		ug/kg	94%	58 - 134	8014529	01/26/08 13:
Surrogate: 1,2-Dichloroethane-d4	150	180		ug/kg	120%	7 9 - 1 30	8014529	01/26/08 13;
	50.0	62.2			124%	41 - 150	8014529	01/26/08 13:
Surrogate: Dibromofluoromethane	50.0	59.2	·		118%	\$5 - 139	8014529	01/26/08 13:
Surrogate: Toluene-d8	50.0	55.7			111%	57 - 148	8014529	01/26/08 13:
Surrogate: 4-Bromofluorobenzene	50,0	56,1			112%	58 - 150	8014529	01/26/08 13;
olyaromatic Hydrocarbons by EP	A 8270C							
020938-BS1								
Acenaphthene	1.67	1.19		mg/kg wet	71%	52 - 106	8020938	02/07/08 11:
Acenaphthylene	1.67	1.18		mg/kg wet	71%	53 - 109	8020938	02/07/08 11:
Anthracene	1.67	1.24		mg/kg wet	74%	54 - 124	8020938	02/07/08 11:
Benzo (a) anthracene	1.67	1.31		mg/kg wet	79%	53 - 111	8020938	02/07/08 11:
Benzo (a) pyrene	1.67	1.31		mg/kg wet	78%	52 - 122	8020938	02/07/08 11:
Benzo (b) fluoranthene	1.67	1.35		mg/kg wet	81%	48 - 115	8020938	02/07/08 11:
Benzo (g,h,i) perylene	1.67	1.20		mg/kg wet	72%	46 - 114	8020938	02/07/08 11:
Benzo (k) fluoranthene	1.67	1.32		mg/kg wet	79%	41 - 121	8020938	02/07/08 11:
Chrysene	1.67	1.31		mg/kg wet	79%	49 - 113	8020938	02/07/08 11:
Dibenz (a,h) anthracene	1.67	1.18		mg/kg wet	71%	47 - 117	8020938	02/07/08 11:
Fluoranthene	1.67	1.24		mg/kg wet	74%	52 - 113	8020938	
Fluorene	1.67	1.23		mg/kg wet	74%	52 - 115 54 - 107	8020938	02/07/08 11:
Indeno (1,2,3-cd) pyrene	1.67	1.19		mg/kg wet	71%	47 - 115	8020938	
Naphthalene	1.67	0.908		mg/kg wet	54%	34 - 107	8020938	02/07/08 11:
Phenanthrene	1.67	1.25		mg/kg wet	75%	54 - 107 53 - 108	8020938	
yrene	1.67	1.40		mg/kg wet	84%		-	02/07/08 11:
Surrogate: Terphenyl-d14	1.67	1.27		ing/kg wor	84% 76%	54 - 113	8020938	02/07/08 11:
Surrogate: 2-Fluorobiphenyl	1.67	1.01				26 - 128	8020938	02/07/08 11:
Surrogate: Nitrobenzene-d5	1.67	0.788			61% 47%	19 - 109 22 - 104	8020938 8020938	02/07/08 11: 02/07/08 11:
Semivolatile Organic Compounds b	WEPA Mathad 9370C							
013382-BS1	y at A method 8270C							
Acenaphthene	1.67	1.53		mg/kg wet	92%	Ś2 - 106	0010200	01 100 /00 11
Acenaphthylene	1.67	1.55		mer wer	7470	54 ~ 100	8013382	01/22/08 16:

01/22/08 16:53

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes Attn

Work Order: NRA1762 Project Name: Project Number: [none] Received:

Atlanta Rush Project 01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C							
8013382-BS1								
Anthracenė	1.67	1.68		mg/kg wet	100%	54 - 124	8013382	01/22/08 16:53
Benzo (a) anthracene	1.67	1.61		mg/kg wet	97%	53 - 111	8013382	01/22/08 16:53
Benzo (a) pyrene	1.67	1.74		mg/kg wet	105%	52 - 122	8013382	01/22/08 16:53
Benzo (b) fluoranthene	1.67	1.65		mg/kg wet	99%	48 - 115	8013382	01/22/08 16:53
Benzo (g,h,i) perylene	1.67	1.54		mg/kg wet	92%	46 - 114	8013382	01/22/08 16:53
Benzo (k) fluoranthene	1.67	1.43		mg/kg wet	86%	41 - 121	8013382	01/22/08 16:53
4-Bromophenyl phenyl ether	1.67	1.37		mg/kg wet	82%	47 - 102	8013382	01/22/08 16:53
Butyl benzyl phthalate	1.67	1.88		mg/kg wet	113%	56 - 127	8013382	01/22/08 16:53
Carbazole	1.67	1.70		mg/kg wet	102%	53 - 113	8013382	01/22/08 16:53
4-Chioro-3-methyiphenol	1.67	1.63		mg/kg wet	98%	42 - 121	8013382	01/22/08 16:53
4-Chloroaniline	1.67	1.41		mg/kg wet	84%	40 - 112	8013382	01/22/08 16:53
Bis(2-chloroethoxy)methane	1.67	1.52		mg/kg wet	91%	45 - 105	8013382	01/22/08 16:53
Bis(2-chloroethyl)ether	1.67	1.66		mg/kg wet	99%	45 - 106	8013382	01/22/08 16:53
Bis(2-chloroisopropy!)ether	1.67	1.64		mg/kg wet	98%	46 - 109	8013382	01/22/08 16:53
2-Chloronaphthalene	1.67	1.44		mg/kg wet	86%	49 - 105	8013382	01/22/08 16:53
2-Chlorophenol	1.67	1.68		mg/kg wet	101%	44 - 119	8013382	01/22/08 16:53
4-Chlorophenyl phenyl ether	1.67	1.51		mg/kg wet	91%	53 - 110	8013382	01/22/08 16:53
Chrysene	1.67	1.47		mg/kg wet	88%	49 - 113	8013382	01/22/08 16:53
Dibenz (a,h) anthracene	1.67	1,60		mg/kg wet	96%	47 - 117	8013382	01/22/08 16:53
Dibenzofuran	1.67	1.58		mg/kg wet	95%	55 - 111	8013382	01/22/08 16:53
Di-n-butyl phthalate	1.67	1.85		mg/kg wet	111%	54 - 150	. 8013382	01/22/08 16:53
1,4-Dichlorobenzene	1.67	1.48		mg/kg wet	89%	35 - 109	8013382	01/22/08 16:53
1,2-Dichlorobenzene	1.68	1.54		mg/kg wet	91%	36 - 112	8013382	01/22/08 16:53
1,3-Dichlorobenzene	1,67	1.57		mg/kg wet	94%	36 - 110	8013382	01/22/08 16:53
3,3-Dichlorobenzidine	1.67	1.69		mg/kg wet	101%	42 - 111	8013382	01/22/08 16:53
2,4-Dichlorophenol	1.67	1.46		mg/kg wet	88%	40 - 118	8013382	01/22/08 16:53
Diethyl phthalate	1.67	1.65		mg/kg wet	99%	43 - 122	8013382	01/22/08 16:53
2,4-Dimethylphenol	1.67	1.72		mg/kg wet	103%	31 - 128	8013382	01/22/08 16:53
Dimethyl phthalate	1.67	1.54		mg/kg wet	93%	54 - 111	8013382	01/22/08 16:5
4,6-Dinitro-2-methylphenol	1.67	1.73		mg/kg wet	104%	24 - 131	8013382	01/22/08 16:5
2,4-Dinitrophenol	. 1.67	1.47		mg/kg wet	88%	11 - 148	8013382	01/22/08 16:5
2,6-Dinitrotoluene	1.67	1.86		mg/kg wet	112%	51 - 119	8013382	01/22/08 16:5
2,4-Dinitrotoluene	1.67	1.79		mg/kg wet	107%	54 - 113	8013382	01/22/08 16:5
Di-n-octyl phthalate	1.67	1.84		mg/kg wet	110%	45 - 134	8013382	01/22/08 16:5
Bis(2-ethylhexyl)phthalate	1.67	1.90		mg/kg wet	114%	52 - 122	8013382	01/22/08 16:5
Fluoranthene	1.67	1.70		mg/kg wet	102%	52 - 113	8013382	01/22/08 16:5
Fluorene	1.67	1.48		mg/kg wet	89%	54 - 107	8013382	01/22/08 16:5
Hexachlorobenzene	1.67	1.44		mg/kg wet	87%	51 - 117	8013382	01/22/08 16:5
Hexachlorubutadiene	1.67	1.45		mg/kg wet	87%	38 - 117	8013382	01/22/08 16:5
Hexachlorocyclopentadiene	1.67	1.69		mg/kg wet	101%	14 - 123	8013382	01/22/08 16:5
Hexachloroethane	İ.67	1,71		mg/kg wet	103%	40 - 114	8013382	01/22/08 16:5

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order: 2 Project Name: 2 Project Number: 2 Received: 6

NRA1762 · Atlanta Rush Project [none] 01/18/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds I	ov EPA Method 8270C		• • • • • • • • • • • •			••••••	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •
8013382-BS1	•							
Indeno (1,2,3-cd) pyrene	1.67	1.53		mg/kg wet	92%	47 - 115	8013382	01/22/08 16:53
Isophorone	1.67	1.76		mg/kg wet	106%	35 - 107	8013382	01/22/08 16:53
2-Methylnaphthalene	1.67	1.41		mg/kg wet	85%	42 - 112	8013382	01/22/08 16:53
2-Methylphenoi	1.67	1.75		mg/kg wet	105%	44 - 119	8013382	01/22/08 16:53
3/4-Methylphenol	1.67	1.98		mg/kg wet	119%	49 - 129	8013382	01/22/08 16:53
Naphthalene	1.67	1.32		mg/kg wet	79%	34 - 107	8013382	01/22/08 16:53
3-Nitroaniline	1.67	1.82		mg/kg wet	109%	50 - 123	8013382	01/22/08 16:53
2-Nitroaniline	1.67	1.77		mg/kg wet	106%	54 - 120	8013382	01/22/08 16:53
4-Nitroaniline	1.67	1.81		mg/kg wet	109%	46 - 124	8013382	01/22/08 16:53
Nitrobenzene	1.67	1.69		mg/kg wet	101%	35 - 102	8013382	01/22/08 16:53
4-Nitrophenol	1.67	2.80	L	mg/kg wet	168%	32 - 138	8013382	01/22/08 16:53
2-Nitrophenol	1.67	1.52	•	ing/kg wet	91%	34 - 119	8013382	01/22/08 16:53
N-Nitrosodiphenylamine	1.67	1.69		mg/kg wet	101%	61 - 139	8013382	01/22/08 16:53
N-Nitrosodi-n-propylamine	1.67	2.20	L	mg/kg wet	132%	44 - 117	8013382	01/22/08 16:53
Pentachlorophenol	1.67	1.62	-	mg/kg wet	97%	38 - 141	8013382	01/22/08 16:53
Phenanthrene	1.67	1.51		mg/kg wet	90%	53 - 108	8013382	01/22/08 16:53
Phenol	1.67	1.76		mg/kg wet	106%	43 - 122	8013382	01/22/08 16:53
Pyrene	1.67	1.57	:	mg/kg wet	94%	54 - 113	8013382	01/22/08 16:53
Pyridine	1.67	1.37		mg/kg wet	82%	30 - 103	8013382	01/22/08 16:53
1,2,4-Trichlorobenzene	1.67	1.27		mg/kg wet	76%	35 - 102	8013382	01/22/08 16:53
1-Methylnaphthalene	1,67	1.39		mg/kg wet	84%	36 - 100	8013382	01/22/08 16:53
2,4,6-Trichlorophenol	1.67	1.65		mg/kg wet	99%	50 - 122	8013382	01/22/08 16:53
2,4,5-Trichlorophenol	1.67	1.68		mg/kg wet	101%	45 - 122	8013382	01/22/08 16:53
Surrogate: Terphenyl-d14	1.67	1.43			86%	26 - 128	8013382	01/22/08 16:53
Surrogate: 2,4,6-Tribromophenol	1.67	1.24			74%	20 - 132	8013382	01/22/08 16:53
Surrogate: Phenol-d5	1.67	1.70			102%	23 - 113	8013382	01/22/08 16:53
Surrogate: 2-Fluorobiphenyl	1.67	1.30			78%	19 - 109	8013382	01/22/08 16:53
Surrogate: 2-Fluorophenol	1.67	1.41			84%	19 - 105	8013382	01/22/08 16:53
Surrogate: Nitrobenzene-d5	1.67	1.57			94%	22 - 104	8013382	01/22/08 16:53

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

÷

Client Weaver Boos Consultants LLC (1407793) /0 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

Work Order:NRA1762Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	260B										
8013117-BSD1												
Acetone		215	MNR1	ug/kg	250	86%	49 - 150	14	45	8013117		01/25/08 14:03
Benzene		52.5	MNRI	ug/kg	50.0	105%	76 - 130	4	43	8013117		01/25/08 14:03
Bromobenzene		52.8	MNRI	ug/kg	50.0	106%	80 - 128	1	50	8013117		01/25/08 14:03
Bromochloromethane		53.6	MNRI	ug/kg	50.0	107%	70 - 135	5	32	8013117		01/25/08 14:03
Bromodichloromethane		56.6	MNR1	ug/kg	50.0	113%	78 - 135	4	37	8013117		01/25/08 14:03
Bromoform		59.5	MNRI	ug/kg	50.0	119%	67 - 143	6	50	8013117		01/25/08 14:03
Bromomethane		62.0	MNR1	ug/kg	50.0	124%	58 - 150	3	50	8013117		01/25/08 14:03
2-Butanone		247	MNRI	ug/kg	250	99%	61 - 143	5	43	8013117		01/25/08 14:03
sec-Butylbenzene		56.1	MNRI	ug/kg	50.0	112%	80 - 134	1	50	8013117		01/25/08 14:03
n-Butylbenzene		60.4	MNR1	ug/kg	\$0.0	121%	71 - 141	2	50	8013117		01/25/08 14:03
tert-Butylbenzene		56.4	MNR1	ug/kg	50.0	113%	79 - 132	0.7	50	8013117		01/25/08 14:03
Carbon disulfide		49.9	MNR1	ug/kg	50.0	100%	70 - 134	8	47	8013117		01/25/08 14:03
Carbon Tetrachloride		59.5	MNR1	ug/kg	\$0.0	119%	75 - 137	2	44	8013117		01/25/08 14:03
Chlorobenzene		58.9	MNR1	ug/kg	50.0	118%	80 - 121	2	44	8013117		01/25/08 14:03
Chlorodibromomethane		60.0	MNRI	ug/kg	50.0	120%	77 - 130	0.8	45	8013117		01/25/08 14:03
Chloroethane		49.4	MNR1	ug/kg	50.0	99%	62 - 149	4	50	8013117		01/25/08 14:03
Chloroform		56.5	MNR1	ug/kg	50.0	113%	75 - 130	1	36	8013117		01/25/08 14:03
Chloromethane		42.6	MNR1	ug/kg	50.0	85%	35 - 130	ı	50	8013117		01/25/08 14:03
2-Chlorotoluene		57.0	MNR1	ug/kg	50.0	114%	80 - 131	2	50	8013117		01/25/08 14:03
4-Chlorotoluene		57.7	MNR1	ug/kg	50.0	115%	80 - 129	2	50	8013117		01/25/08 14:03
1,2-Dibromo-3-chloropropane		54.4	MNRI	ug/kg	50.0	109%	62 - 142	2	50	8013117		01/25/08 14:03
1,2-Dibromoethane (EDB)		59.2	MNR1	ug/kg	50.0	118%	81 - 130	0.05	50	8013117		01/25/08 14:03
Dibromomethane		55.1	MNR1	ug/kg	50.0	110%	77 - 133	4	45	8013117		01/25/08 14:03
1,4-Dichlorobenzene		59.3	MNR1	ug/kg	50.0	119%	75 - 128	2	50	8013117		01/25/08 14:03
1,3-Dichlorobenzene		59.7	MNR1	ug/kg	50.0	119%	79 - 128	0.7	50	8013117		01/25/08 14:03
1,2-Dichlorobenzene		61.3	MNR1	ug/kġ	50.0	123%	80 - 130	2	50	8013117		01/25/08 14:03
Dichlorodifluoromethane		45.1	MNR1	ug/kg	50.0	90%	11 - 129	5	43	8013117		01/25/08 14:03
1, 1-Dichloroethane		51.3	MNR1	ug/kg	50.0	103%	68 - 150	4	37	8013117		01/25/08 14:03
1,2-Dichloroethane		55.8	MNRI	ug/kg	50.0	112%	72 - 13 2	0.8	44	8013117		01/25/08 14:03
cis-1,2-Dichloroethene		54.1	MNR1	ug/kg	50.0	108%	77 - 132	4	35	8013117		01/25/08 14:03
1,1-Dichloroethene		53.2	MNRI	ug/kg	50,0	106%	75 - 133	8	41	8013117		01/25/08 14:03
trans-1,2-Dichloroethene		52.8	MNR1	ug/kg	50.0	106%	79 - 133	6	37	8013117		01/25/08 14:03
1,3-Dichloropropane		56.8	MNR1	ug/kg	50.0	114%	80 - 125	0.3	44	8013117		01/25/08 14:03
1,2-Dichloropropane		48.8	MNRI	ug/kg	50.0	98%	75 - 124	5	35	8013117		01/25/08 14:03
2,2-Dichloropropane		56.1	MNRI	ug/kg	50.0	112%	59 - 144	2	33	8013117		01/25/08 14:03
cis-1,3-Dichloropropene		53.2	MNR1	ug/kg	50.0	106%	80 - 137	0.02		8013117		01/25/08 14:03
trans-1,3-Dichloropropene		54.0	MNRI	ug/kg	50.0	108%		0.09		8013117		01/25/08 14:03
1,1-Dichloropropene		55,3	MNR1	ug/kg	50,0	•	76 - 133	4	41	8013117		01/25/08 14:03
Ethylbenzene		57.0	MNRI	ug/kg	50,0	114%	80 - 128	3	48	8013117		01/25/08 14:03
Hexachlorobutadiene		59.4	MNRI	ug/kg	50.0	119%		2	50	8013117		01/25/08 14:03
2-Hexanono		280	MNR1	ug/kg	250	112%		5.		8013117		01/25/08 14:03
-			**** 11/1	- <i>b</i> / "b		11270	UJ - 177	5		0013117		01/25/00 14.03

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes Work Order: Project Name: Project Number; Received:

NRA1762 Atlanta Rush Project r: [none] 01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD I	Limit	Batch	Sample · Duplicated	Analyzed Date/Time
volatile Organic Compounds by El	PA Method 8	8260B		••••••••••	•••••		· · · · · · · · · · ·	• - •		* * * * * * * * * * * *		••••••
3013117-BSD1												
Isopropylbenzene		50.9	MNRI	ug/kg	\$0.0	102%	74 - 131	0.1	50	8013117	•	01/25/08 14:03
p-Isopropyltoluene		56.8	MNRI	ug/kg	50.0	114%	75 - 133	0.7	50	8013117		01/25/08 14:03
Methyl tert-Butyl Ether		51.4	MNRI	ug/kg	50.0	103%	67 - 130	7	45	8013117		01/25/08 14:03
Methylene Chloride		49.6	MNR1	ug/kg	50.0	99%	65 - 144	8	39	8013117		01/25/08 14:02
4-Methyl-2-pentanone		280	MNRI	ug/kg	250	112%	64 - 142	. 2	50	8013117		01/25/08 14:03
Naphthalene		57.1	MNRI	ug/kg	50.0	114%	63 - 144		50	8013117		01/25/08 14:03
n-Propylbenzene		56,5	MNR1	ug/kg	50.0	113%	80 - 131	2	50	8013117		01/25/08 14:03
Styrene		64.1	MNRI	ug/kg	50.0	.128%	80 - 144	0.8	50	8013117		01/25/08 14:03
1,1,1,2-Tetrachloroethane		60.3	MNRI	ug/kg	50.0	121%	80 - 129	1	43	8013117		01/25/08 14:03
1,1,2,2-Tetrachloroethane		55.2	MNR1	ug/kg	50.0	110%	73 - 139	1	50	8013117		01/25/08 14:03
Petrachloroethene		61.8	MNRI	ug/kg	\$0.0	124%	76 - 128	2	45	8013117		01/25/08 14:03
Foluéne		. 58.3	MNRI	ug/kg	50.0	117%	80 - 125	2	44	8013117		•
1,2,3-Trichlorobenzene		61.0	MNRI	ug/kg	50.0	122%	64 - 136	4	50	8013117		01/25/08 14:03
,2,4-Trichlorobenzene		61.4	MNRI	ug/kg	50.0	123%	58 - 145	7	50	8013117		
1,1,2-Trichloroethane		54.8	MNR1	ug/kg	50.0	110%	80 - 127	.'	41	8013117		01/25/08 14:03
,1,1-Trichloroethane		57.3	MNRI	ug/kg	50. 0	115%	76 - 134	4	39	8013117		01/25/08 14:03
richloroethene		58.8	MNRI	ug/kg	50.0	118%	75 - 131	2	40	8013117		
richlorofluoromethane		53.0	MNRI	ug/kg	50.0	106%	63 - 130	3	42	8013117		01/25/08 14:03
,2,3-Trichloropropane		50.0	MNRI	ug/kg	50,0	100%	66 - 129	2	50	8013117		01/25/08 14:03
,3,5-Trimethylbenzene		57.7	MNR1	ug/kg	50.0	115%	78 - 133	1	50	8013117		01/25/08 14:03
,2,4-Trimethylbenzene		58.4	MNR1	ug/kg	50.0	117%	76 - 135	2	50	8013117		01/25/08 14:03
/inyl chloride		51.3	MNRI	ug/kg	50.0	103%	58 - 134	5	41	8013117		01/25/08 14:03
Cylenes, total		184	MNR1	ug/kg	150	122%	79 - 1 30	0.3	48	8013117		01/25/08 14:03
rrogate: 1,2-Dichloroethane-d4		58.9		ug/kg	50.0	118%	41 - 150	0,5	40	8013117		01/25/08 14:03
urrogate: Dibromofluoromethane		59.6		ug/kg	50,0	119%				8013117		01/25/08 14:03
urrogate: Toluene-d8		57.6		ug/kg	50.0	115%	57 - 148			8013117		01/25/08 14:03
urrogate: 4-Bromofluorobenzene		53.1		ug/kg	50.0	106%				8013117		01/25/08 14:03
	•			-8-18		10070	50 - 150			6013117		01/25/08 14:03
014529-BSD1												
Acetone		216		ug/kg	2 50	86%	49 - 150	7	45	8014529		01/26/08 13:43
Benzene		51.4		ug/kg	50.0	103%	76 - 130	3	43	8014529		01/26/08 13:43
Bromobenzene		54.6		ug/kg	50.0	109%	80 - 128	0.09	50	8014529		01/26/08 13:43
Bromochloromethane		55.1		ug/kg	50.0	110%	70 - 135	4	32	8014529		01/26/08 13:43
Bromodichloromethane		57.5		ug/kg	50.0	115%	78 - 135	3	37	8014529		01/26/08 13:43
romoform		60.4		ug/kg	50.0	121%	67 - 143	4	50 ·	8014529		01/26/08 13:43
romomethane		49.8		ug/kg	50.0	100%	58 - 150	3	50	8014529		01/26/08 13:43
-Buțanone		241		ug/kg	250	97%	61 - 143	2	43	8014529		01/26/08 13:43
ec-Butylbenzene		57.0		ug/kg	50,0	114%	80 - 134	0.4	50	8014529		01/26/08 13:43
-Butylbenzene		59.4		uģ/kg	50.0	119%	71 - 141	2	50	8014529		01/26/08 13:43
rt-Butylbenzene		56.0		ug/kg.	50.0	112%	79 - 132	0.3	50	8014529		01/26/08 13:4:
arbon disulfide	· ·	47.9		ug/kg	50.0		70 - 134			301.347		01120/00 13:43

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ŧ.

Client	Weaver Boos Consultants LLC (1407793)
--------	---------------------------------------

70 West Madison, Suite 4250

Chicago,, IL 60602

Attn Carl Dawes

Work Order:NRA1762Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/18/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val. Duplicate	Q Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds t	by EPA Method 8260B									
8014529-BSD1										
Carbon Tetrachloride	61.2	ug/kg	50.0	122%	75 - 137	3	44	8014529		01/26/08 13:43
Chlorobenzene	57.3	ug/kg	50.0	115%	80 - 121	3	44	8014529		01/26/08 13:43
Chlorodibromomethane	61.3	ug/kg	50.0	123%	77 - 130	2	45	8014529		01/26/08 13:43
Chloroethane	46.3	ug/kg	50.0	93%	62 - 149	2	50	8014529		01/26/08 13:43
Chloroform	56.8	ug/kg	50.0	114%	75 - 130	2	36	8014529		01/26/08 13:43
Chloromethane	38.5	ug/kg	50.0	77%	35 - 130	2	50	8014529		01/26/08 13:43
2-Chlorotoluene	59.8	ug/kg	50.0	120%	80 - 131	1	50	8014529		01/26/08 13:43
4-Chlorotoluene	58.9	ug/kg	50.0	118%	80 - 129	3	50	8014529		01/26/08 13:43
1,2-Dibromo-3-chloropropane	53,2	ug/kg	50.0	106%	62 - 142	7	50 [°]	8014529		01/26/08 13:43
1,2-Dibromoethane (EDB)	58.3	ug/kg	50.0	117%	81 - 130	1	50	8014529		01/26/08 13:43
Dibromomethane	56.5	ug/kg	50.0	113%	77 - 133	3	45	8014529		01/26/08 13:43
1,4-Dichlorobenzene	59.1	ug/kg	50.0	118%	75 - 128	3	50	8014529		01/26/08 13:43
1,3-Dichlorobenzene	59.9	ug/kg	50.0	120%	79 - 128	2	50	8014529		01/26/08 13:43
1,2-Dichlorobenzene	60.8	ug/kg	50.0	122%	80 - 130	-0,4	50	8014529	•	01/26/08 13:43
Dichlorodifluoromethane	43.8	ug/kg	50,0	88%	11 - 129	0.4	43	8014529		01/26/08 13:43
1,1-Dichloroethane	50.5	ug/kg	50,0	101%	68 - 150	0.5	37	8014529		01/26/08 13:43
1,2-Dichloroethane	57.0	ug/kg	50,0	114%	72 - 132	0.04	44	8014529		01/26/08 13:43
cis-1,2-Dichloroethene	54.4	ug/kg	50.0	109%	77 - 132	2	35	8014529		01/26/08 13:43
1,1-Dichloroethene	51.3	ug/kg	50.0	103%	75 - 133	0.3	41	8014529		01/26/08 13:43
trans-1,2-Dichloroethene	53.2	ug/kg	50.0	106%	79 - 133	0.1	37	8014529		01/26/08 13:43
1,3-Dichloropropane	55.8	ug/kg	50.0	112%	80 - 125	4	44	8014529		01/26/08 13:43
1,2-Dichloropropane	47.4	ug/kg	50.0	95%	75 - 124	2	35	8014529		01/26/08 13:43
2,2-Dichloropropane	56,4	ug/kg	50.0	113%	59 - 144	3	33	8014529		01/26/08 13:43
cis-1,3-Dichloropropene	51.3	ug/kg	50.0	103%	80 - 137	2	43	8014529		01/26/08 13:43
trans-1,3-Dichloropropene	53.3	ug/kg	50.0	107%	75 - 133	2	50	8014529		01/26/08 13:43
1,1-Dichloropropene	54,5	ug/kg	50.0	109%	76 - 133	2	41	8014529		01/26/08 13:43
Ethylbenzene	54.9	ug/kg	50.0	110%	80 - 128	2	·48	8014529		01/26/08 13:43
Hexachlorobutadiene	60.3	ug/kg	50.0	121%	60 - 150	2	50	8014529		01/26/08 13:43
2-Hexanone	268	ug/kg	250	107%	63 - 149	8	50	8014529		01/26/08 13:43
Isopropylbenżene	49.2	ug/kg	50.0	98%	74 - 131	° 5	50	8014529		
p-Isopropyltoluene	56.8	ug/kg ug/kg	50.0	114%	75 - 133	2	50			01/26/08 13:43
Methyl tert-Butyl Ether	52.3		50.0	105%	67 - 130		30 45	8014529		01/26/08 13:43
Methylene Chloride	49.5	ug/kg	50.0	99%	65 - 144	0.08	45 39	8014529		01/26/08 13:43
4-Methyl-2-pentanone	. 265	ug/kg	250	106%	64 - 142	4		8014529		01/26/08 13:43
Naphthalene		ug/kg				4	50	8014529		01/26/08 13:43
n-Propylbenzene	57.0	ug/kg	50.0	114%	63 - 144		50 60	8014529		01/26/08 13:43
n-Propyloenzene Styrene	57.4	ug/kg	50.0	115%	80 - 131		50	8014529		01/26/08 13:43
•	62.2	ug/kg	50.0	124%	80 - 144		50	8014529		01/26/08 13:43
1,1,1,2-Tetrachloroothane	59.1	ug/kg	50.0	118%	80 - 129		43	8014529		01/26/08 13:43
1,1,2,2-Tetrachloroethane	56.6	ug/kg	50.0	113%	73 - 139		50	8014529		01/26/08 13:43
Tetrachloroethene	59.4	ug/kg	50.0	119%	76 - 128		45	8014529		01/26/08 13:43
Toluene	. 56.0	ug/kg	50.0	112%	80 - 125	2	44	8014529		01/26/08 13:43

1

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ł

NRA1762 Work Order: Project Name: Project Number: [none] Received:

Atlanta Rush Project 01/18/08 08:00

PROJECT QUALITY CONTROL DATA LCS Dup - Cont.

Analyte	Orig, Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 8	3260B		• • • • • • • • • • • • •					•••••	••••••	• • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
8014529-BSD1												
1,2,3-Trichlorobenzene		58.3		ug/kg	50.0	117%	64 - 136	4	50	8014529		01/26/08 13:43
1,2,4-Trichlorobenzene		61.2		ug/kg	50.0 ·	122%	58 - 145	2	50	8014529		01/26/08 13:43
1,1,2-Trichloroethane		54.8		ug/kg	50.0	110%	80 - 127	2	41	8014529		01/26/08 13:43
1,1,1-Trichloroethane		58.8		ug/kg	50.0	118%	76 - 134	1	39	8014529		01/26/08 13:43
Trichloroethene		56.2		ug/kg	50.0	112%	75 - 131	0.7	40	8014529		01/26/08 13:43
Trichlorofluoromethane		52.3 ·		ug/kg	50.0	105%	63 - 130	0.5	42	8014529		01/26/08 13:43
1,2,3-Trichloropropane		51.6		ug/kg	50.0	103%	66 - 129	1	50	8014529		01/26/08 13:43
1,3,5-Trimethylbenzene		59.0		ug/kg	50.0	118%	78 - 133	0.4	50	8014529		01/26/08 13:43
1,2,4-Trimethylbenzene		59.2		ug/kg	50.0	118%	76 - 135	1	50	8014529		01/26/08 13:43
Vinyl chloride		48.3		ug/kg	50.0	97%	58 - 134	3.	41	8014529		01/26/08 13:43
Xylenes, total		181		ug/kg	150	121%	79 - 130	0.7	48	8014529		01/26/08 13:43
Surrogate: 1,2-Dichloroethane-d4		62.2		ug/kg	50.0	124%				8014529		01/26/08 13:43
Surrogate: Dibromofluoromethane		60.8		ug/kg	50.0	122%	55 - 139			8014529		01/26/08 13:43
Surrogate: Toluene-d8		56.6		ug/kg	50.0	113%	57 - 148			8014529		01/26/08 13:43
Surrogate: 4-Bromofluorobenzene		55.9		ug/kg	50.0	112%	58 - 150			8014529		01/26/08 13:43

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

-

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name;	NRA 1762 Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	01/18/08 08:00

			• •					•	_	
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Polyaromatic Hydrocarbons by	EPA 8270C		••••		••••••••	••••	• • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •
3020938-MS1										
Acenaphthene	ND	1.47		mg/kg dry	1.78	82%	28 - 117	8020938	NRB0484-03	02/07/08 11:2
Acenaphthylene	ND	1.42		mg/kg dry	1.78	79%	33 - 113	8020938	NRB0484-03	02/07/08 11:2
Anthracene	ND	1.44		mg/kg dry	1,78	81%	31 - 131	8020938	NRB0484-03	02/07/08 11:2
Benzo (a) anthracene	ND	1.51		mg/kg dry	1.78	85%	29 - 124	8020938	NRB0484-03	02/07/08 11:2
Benzo (a) pyrene	ND	1.51		mg/kg dry	1.78	85%	30 - 127	8020938	NRB0484-03	02/07/08 11:2
Benzo (b) fluoranthene	ND	1.69		mg/kg dry	1.78	95%	26 - 128	8020938	NRB0484-03	02/07/08 11:2
Benzo (g,h,i) perylene	ND	1.27		mg/kg dry	1.78	71%	21 - 122	8020938	NRB0484-03	02/07/08 11:2
Benzo (k) fluoranthene	ND	1.40		mg/kg dry	1.78	79%	20 - 130	8020938	NRB0484-03	02/07/08 11:2
Chrysene	ND	1.49		mg/kg dry	1.78	84%	30 - 119	8020938	NRB0484-03	02/07/08 11:
Dibenz (a,h) anthracene	· ND	1.27		mg/kg dry	1.78	71%	27 - 122	8020938	NRB0484-03	02/07/08 11:
Fluoranthenc	ND	1.43		mg/kg dry	1.78	80%	23 - 132	8020938	NRB0484-03	02/07/08 11:
Fluorene	ND	1.48	•	mg/kg dry	1.78	83%	38 - 110	8020938	NRB0484-03	02/07/08 11:
Indeno (1,2,3-cd) pyrene	ND	1.28		mg/kg dry	1.78	72%	24 - 122	8020938	NRB0484-03	02/07/08 11:
Naphthalene	ND	1.27		mg/kg dry	1.78	71%	14 - 117	8020938	NRB0484-03	02/07/08 11:
Phenanthrene	ND	1.45		mg/kg dry	1.78	81%	21 - 130	8020938	NRB0484-03	02/07/08 11
Pyrene	ND	1.59		mg/kg dry	1.78	89%	24 - 133	8020938	NRB0484-03	02/07/08 11
Surrogate: Terphenyl-d14		1.43		mg/kg dry	1.78	80%	26 - 128	8020938	NRB0484-03	02/07/08 11:
Surrogate: 2-Fluorobiphenyl		1.23		mg/kg dry	1.78	69%	19 - 109	80209,38	NRB0484-03	02/07/08 11:
Surrogate: Nitrobenzene-d5		1.04		mg/kg dry	1.78	58%	22 - 104	8020938	NRB0484-03	02/07/08 11
Semivolatile Organic Compour	ids by EPA Metho	1 8270C								
8013382-MS1						•				
Acenaphthene	ND	1.24		mg/kg dry	1.81	68%	28 - 117	8013382	NRA1762-01	01/22/08 17:
Acenaphthylene	ND	1,24		mg∕kg dry	1.81	68%	33 - 113	8013382	NRA1762-01	01/22/08 17
Anthracene	ND	1.37		mg/kg dry	1.81	76%	31 - 131	8013382	NRA1762-01	01/22/08 17
Benzo (a) anthraceno	ND	1.34		mg/kg dry	1.81	74%	29 - 124	8013382	NRA1762-01	01/22/08 17
Benzo (a) pyrene	. ND	1.42		mg/kg dry	1.81	78%	30 - 127	8013382	NRA1762-01	01/22/08 17
Benzo (b) fluoranthene	ND	1.25		mg/kg dry	1.81	69%	26 - 128	8013382	NRA1762-01	01/22/08 17
Benzo (g,h,i) perylene	ND	1.20		mg/kg dry	1.81	66%	21 - 122	8013382	NRA1762-01	01/22/08 17
Benzo (k) fluoranthene	ND	1.24		mg/kg dry	1.81	68%	20 - 130	8013382	NRA1762-01	01/22/08 17
4-Bromophenyl phenyl ether	ND	1.11		mg/kg dry	1.81	61%	30 - 106	8013382	NRA1762-01	01/22/08 1
Butyl benzyl phthalate	ND	1.54		mg/kg dry	1.81	85%	40 - 131	8013382	NRA1762-01	01/22/08 1
Carbazole	ND	1.38		mg/kg dry	1.81	76%	37 - 116	8013382	NRA1762-01	01/22/08 1
4-Chloro-3-methylphenol	ND	1,38		mg/kg dry	1.81	76%	19 - 128	8013382	NRA1762-01	01/22/08 1
4-Chloroaniline	ND	1.10		mg/kg dry	1.81	61%	10 - 119	8013382	NRA1762-01	01/22/08 1
Bis(2-chloroethoxy)methane	ND	1.18		mg/kg dry	1.81	65%	30 - 110	8013382	NRA1762-01	01/22/08 1
Bis(2-chloroethyl)ether	ND	1.24		mg/kg dry	1.81	69%	36 - 106	8013382	NRA1762-01	01/22/08 1

TestAmericu

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Work Order: NRA Project Name: Atla Project Number: [nom Received: 01/1

NRA1762 Atlanta Rush Project : [none] 01/18/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compoun	ds by EPA Method	8270C	• • • • • • • •			••••				• • • • • • • • • • • • • • • • • •
8013382-MS1										
2-Chloronaphthalene	ND	1.16		mg/kg dry	1.81	64%	31 - 107	8013382	NRA1762-01	01/22/08 17:35
2-Chlorophenol	ND	1.32		mg/kg dry	1.81	73%	32 - 119	8013382	NRA1762-01	01/22/08 17:35
4-Chlorophenyl phenyl ether	ND	1.18		mg/kg dry	1.81	65%	35 - 113 _.	8013382	NRA1762-01	01/22/08 17:35
Chrysene	ND	1.20		mg/kg dry	1.81	66%	30 - 119	8013382	NRA1762-01	01/22/08 17:35
Dibenz (a,h) anthracene	ND	1.27		mg/kg dry	1.81	70%	27 - 122	8013382	NRA1762-01	01/22/08 17:35
Dibenzofuran	ND	1.25		mg/kg dry	1.81	69%	33 - 121	8013382	NRA1762-01	01/22/08 17:35
Di-n-butyl phthalate	ND	1.50		mg/kg dry	1.81	83%	38 - 123	8013382	NRA1762-01	01/22/08 17:35
1,4-Dichlorobenzene	ND	1.14		mg/kg dry	1.81	63%	26 - 109	8013382	NRA1762-01	01/22/08 17:35
1,2-Dichlorobenzene	ND	1.16		mg/kg dry	1.83	64%	26 - 112	8013382	NRA1762-01	01/22/08 17:35
1,3-Dichlorobenzene	ND	1.19		mg/kg dry	1.81	66%	26 - 110	8013382	NRA1762-01	01/22/08 17:35
3,3-Dichlorobenzidine	ND	1.26		mg/kg dry	1.81	69%	10 - 112	8013382	NRA1762-01	01/22/08 17:35
2,4-Dichlorophenol	ND	1.20 .		mg/kg dry	1.81	66%	28 - 118	8013382	NRA1762-01	01/22/08 17:35
Diethyl phthalate	ND	1.33		mg/kg dry	1.81	73%	29 - 122	8013382	NRA1762-01	01/22/08 17:35
2,4-Dimethylphenol	. ND	1.40		mg/kg dry	1.81	77%	10 - 128	8013382	NRA1762-01	01/22/08 17:35
Dimethyl phthalate	· ND	1.26		mg/kg dry	1.81	69%	31 - 118	8013382	NRA1762-01	01/22/08 17:35
4,6-Dinitro-2-methylphenol	ND	1.38		mg/kg dry	1.81	76%	10 - 136	8013382	NRA1762-01	01/22/08 17:35
2,4-Dinitrophenol	ND	1.34		mg/kg dry	1.81	74%	10 - 148	8013382	NRA1762-01	01/22/08 17:35
2,6-Dinitrotoluene	ND	1.52		mg/kg dry	1.81	84%	28 - 125	8013382	NRA1762-01	01/22/08 17:35
2,4-Dinitrotoluene	ND	1.39		mg/kg dry	1.81	77%	30 - 119	8013382	NRA1762-01	01/22/08 17:35
Di-n-octyl phthalate	ND	1.48		mg/kg dry	1.81	81%	31 - 137	8013382	NRA1762-01	01/22/08 17:35
Bis(2-ethylhexyl)phthalate	ND	1.62		mg/kg dry	1.81	89%	38 - 125	8013382	NRA1762-01	01/22/08 17:35
Fluoranthene	ND	1.35		mg/kg dry	1.81	75%	23 - 132	8013382	NRA1762-01	01/22/08 17:35
Fluorene	ND	1.25		mg/kg dry	1.81	69%	38 - 110	8013382	NRA1762-01	01/22/08 17:35
Hexachlorobenzene	ND	1.12		mg/kg dry	1.81	62%	35 - 120	8013382	NRA1762-01	01/22/08 17:35
Hexachlorobutadiene	ND	1.12		mg/kg dry	1.81	62%	28 - 113	8013382	NRA1762-01	01/22/08 17:35
Hexachlorocyclopentadiene	ND	1.15		mg/kg dry	1.81	64%	10 - 123	8013382	NRA1762-01	01/22/08 17:35
Hexachloroethane	ND	1.23		mg/kg dry	1.81	68%	20 - 120	8013382	NRA1762-01	01/22/08 17:35
Indeno (1,2,3-cd) pyrene	ND	1.23		mg/kg dry	1.81	68%	24 - 122	8013382	NRA1762-01	01/22/08 17:35
Isophorone	ND	1.35		mg/kg dry	1.81	75%	23 - 108	8013382	NRA1762-01	01/22/08 17:35
2-Methylnaphthalene	ND	1.13		mg/kg dry	1.81	62%	26 - 116	8013382	NRA1762-01	01/22/08 17:35
2-Methylphenol	ND	1.37		mg/kg dry	1.81	75%	23 - 122	8013382	NRA1762-01	01/22/08 17:35
3/4-Methylphenol	ND	1.61		mg/kg dry	1.81	89%	23 - 138	8013382	NRA1762-01	01/22/08 17:35
Naphthalene	ND	1.04		mg/kg dry	1.81	57%	14 - 117	8013382	NRA1762-01	01/22/08 17:35
3-Nitroaniline	ND	1.47		mg/kg dry	1.81	81%	27 - 124	8013382	NRA1762-01	01/22/08 17:35
2-Nitroaniline	ND	1.43		mg/kg dry	1.81	79%	.35 - 122	8013382		
4-Nitroaniline	ND	1.43		mg/kg dry	1.81		25 - 122	8013382	NRA1762-01 NRA1762-01	01/22/08 17:35
Nitrobenzene	ND	1.43		mg/kg dry mg/kg dry	1.81	79% 73%	25 - 124 19 - 105	8013382 8013382	NRA1762-01 NRA1762-01	01/22/08 17:35

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 Wei:t Madison, Suite 4250 Chicago,, IL 60602

lestAme

Attn Carl Duwes

Work Order:NRA1762Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/18/08 08:00

		PROJE	CT QUALITY CO Matrix Spike -		ATA				
Analyic	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compounds	s by EPA Method	8270C							
8013382-MS1									
4-Nitrophenol	ND	2.27	mg/kg dry	1.81	125%	14 - 144	8013382	NRA1762-01	01/22/08 17:35
2-Nitrophenol	ND	1.26	mg/kg dry	1.81	69%	23 - 119	8013382	NRA1762-01	01/22/08 17:35
N-Nitrosodiphenylamine	ND	1.40	mg/kg dry	1.81	77%	37 - 144	8013382	NRA1762-01	01/22/08 17:35
N-Nitrosodi-n-propylamine	ND	1.58	mg/kg dry	1.81	87%	28 - 121	8013382	NRA1762-01	01/22/08 17:35
Pentachlorophenol	ND	1.22	mg/kg dry	1.81	67%	13 - 149	8013382	NRA1762-01	01/22/08 17:35
Phenanthrene	ND	1.23	mg/kg dry	1.81	68%	21 - 130	8013382	NRA1762-01	01/22/08 17:35
Phenol	ND	1.36	mg/kg dry	1.81	75%	31 - 116	8013382	NRA1762-01	01/22/08 17:35
Pyrene	ND	1.25	mg/kg dry	1.81	69%	24 - 133	8013382	NRA1762-01	01/22/08 17:35
Pyridine	ND	0.998	mg/kg dry	1.81	55%	10 - 103	8013382	NRA1762-01	01/22/08 17:35
1,2,4-Trichlorobenzene	ND	1.02	mg/kg dry	1.81	56%	27 - 102	8013382	NRA1762-01	01/22/08 17:35
I-MethyInaphthalene	ND	1.11	mg/kg dry	1.81	61%	10 - 121	8013382	NRA1762-01	01/22/08 17:35
2,4,6-Trichlorophenol	ND	1.39	mg/kg dry	1.81	77%	32 - 122	8013382	NRA1762-01	01/22/08 17:35
2,4,5-Trichlorophenol	ND	1.40	mg/kg dry	1.81	77%	30 - 122	8013382	NRA1762-01	01/22/08 17:35
Surrogate: Terphenyl-d14		1.19	mg/kg dry	1.81	65%	26 - 128	8013382	NRA1762-01	01/22/08 17:3:
Surrogate: 2,4,6-Tribromophenol		0.970	mg/kg dry	1.81	54%	20 - 132	8013382	NRA1762-01	01/22/08 17:3:
Surrogate: Phenol-d5		1.31	mg/kg dry	1.81	72%	23 - 113	8013382	NRA1762-01	01/22/08 17:3
Surrogate: 2-Fluorobiphenyl		1.01	mg/kg dry	1.81	56%	19 - 109	8013382	NRA1762-01	01/22/08 17:3:
Surrogate: 2-Fluoruphenol		1.11	mg/kg dry	1.81	61%	19 - 105	8013382	NRA1762-01	. 01/22/08 17:3:
Surrogote: Nitrobenzene-dS		1.21	mg/kg dry	1.81	67%	22 - 104	8013382	NRA1762-01	01/22/08 17:3:

1

mg/kg dry

1.81

60%

35 - 113

9 37 8013382

NRA1762-01

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes Attn

Work Order: Project Name: Project Number: Received:

NRA1762 Atlanta Rush Project [none] 01/18/08 08:00

		PROJECT QUALITY CONTROL DATA Matrix Spike Dup									
Analyte	Orig. Val.	Duplicate Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Polyaromatic Hydrocarbons b	OY EPA 8270C					•••••	,	• • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •
8020938-MSD1											
Acenaphthene	ND	1.37	mg/kg dry	1.77	77%	28 - 117	7	22	8020020		
Acenaphthylene	ND	1.35	mg/kg dry	1.77	76%	33 - 113		33	8020938	NRB0484-03	02/07/08 11:5
Anthracene	ND	1.38	ing/kg dry	1.77	78%	31 - 131	5	38	8020938	NRB0484-03	02/07/08 11:5
Benzo (a) anthracene	ND	1.43	mg/kg dry	1.77	81%	29 - 124	4 6	32	8020938	NRB0484-03	02/07/08 11:5
Benzo (a) pyrene	ND	1.39	mg/kg dry	1.77	78%			26	8020938	NRB0484-03	02/07/08 11:5
Benzo (b) fluoranthene	ND	1.52	mg/kg dry	. 1.77	86%	30 - 127	8	31	8020938	NRB0484-03	02/07/08 11:5
Benzo (g,h,i) perylene	ND	1.16	mg/kg dry	1.77	66%	26 - 128	10	37	8020938	NRB0484-03	02/07/08 11:5
Benzo (k) fluoranthene	ND	1.27	mg/kg dry	1.77	00% 72%	21 - 122	9	28	8020938	NRB0484-03	02/07/08 11:5
Chrysene	ND	1.43	mg/kg dry	1.77	81%	20 - 130	10	35	8020938	·NRB0484-03	02/07/08 11:5
Dibenz (a,h) anthracene	ND	1.17	mg/kg dry	1.77		30 - 119	4	31	8020938	NRB0484-03	02/07/08 11:5
Fluoranthene	ND	1.32	mg/kg dry	1.77	66%	27 - 122	8	32	8020938	NRB0484-03	02/07/08 11:5
Fluorene	ND	1.37		1.77	75%	23 - 132	8	36	8020938	NRB0484-03	02/07/08 11:5
Indeno (1,2,3-cd) pyrene	ND	1.20	mg/kg dry		78%	38 - 110	7	35	8020938	NRB0484-03	02/07/08 11:59
Naphthalene	ND	1.17	mg/kg dry	1.77	68%	24 - 122	6	28	8020938	NRB0484-03	02/07/08 11:59
Phenanthrene	ND	1.37	mg/kg dry	1.77	66%	14 - 117-	8	34	8020938	NRB0484-03	02/07/08 11:5
Pyrene	ND	1.57	mg/kg dry	1.77	77%	21 - 130	6	33	8020938	NRB0484-03	02/07/08 11:5
urrogate: Terphenyl-d14	112	1.38	mg/kg dry	1.77	87%	24 - 133	4	36	8020938	NRB0484-03	02/07/08 11:5
urrogate: 2-Fluorobiphenyl		1.16	mg/kg dry	1.77	78%	26 - 128			8020938	NRB0484-03	02/07/08 11:5
Surrogate: Nitrobenzene-d5		0.993	mg/kg dry	1.77	66%	19 - 109			8020938	NRB0484-03	02/07/08 11:5
	,		mg/kg dry	1.77	56%	22 - 104			8020938	NRB0484-03	02/07/08 11:59
emivolatile Organic Compour	nds by EPA Meth	od 8270C									
013382-MSD1											
Acenaphthene	ND	1.06	mg/kg dry	1.81	58%	28 - 117	15	33	8013382	NRA1762-01	01/22/08 17:56
Acenaphthylene	ND	1.12	mg/kg dry	1.81	62%	33 - 113	10	38	8013382	NRA1762-01	01/22/08 17:56
Anthracene	ND	1.21	mg/kg dry	1.81	67%	31 - 131	12	32	8013382	NRA1762-01	01/22/08 17:56
Benzo (a) anthracene	ND	1.14	mg/kg dry	1.81	63%	29 - 124	16	26	8013382	NRA1762-01	01/22/08 17:56
Benzo (a) pyrene	ND	1.22	mg/kg dry	1.81	67%	30 - 127	15	31	8013382	NRA1762-01	01/22/08 17:56
Benzo (b) fluoranthene	ND	1.25	mg/kg dry	1.81	69%	26 - 128	0.4	37	8013382	NRA1762-01	01/22/08 17:56
Benzo (g,h,i) perylene	ND	1.03	mg/kg dry	1.81	57%	21 - 122	15	28	8013382	NRA1762-01	01/22/08 17:56
Benzo (k) fluoranthene	ND	0,953	mg/kg dry	1.81	53%	20 - 130	26	35	8013382	NRA1762-01	01/22/08 17:56
-Bromophenyl phenyl ether	ND	0.973	mg/kg dry	1.81	54%	30 - 106	13	38	8013382	NRA1762-01	01/22/08 17:56
lutyl benzyl phthalate	ND	1.40	mg/kg dry	1.81	78%	40 - 131	9	37	8013382	NRA1762-01	01/22/08 17:56
Carbazole	ND	1.19	mg/kg dry	1.81	66%	37 - 116	15	31	8013382	NRA1762-01	
-Chloro-3-methylphenol	ND	1.21	mg/kg dry	1.81	67%	19 - 128	13	38	8013382	NRA1762-01	01/22/08 17:56
-Chloroaniline	ND	0.919	mg/kg dry	1.81	51%	10 - 119	18	44	8013382		01/22/08 17:56
is(2-chloroethoxy)methane	ND.	1.01	mg/kg dry	1.81	56%	30 - 110	15	34	8013382	NRA1762-01	01/22/08 17:56
is(2-chloroethyl)ether	ND	1.03	mg/kg dry	1.81	57%	36 - 106	19	38		NRA1762-01	01/22/08 17:56
is(2-chloroisopropyl)ether	ND	1.00	mg/kg dry	1.81	55%	34 - 109	21		8013382	NRA1762-01	01/22/08 17:56
-Chloronaphthalene	ND	1.01	mg/kg dry	1.81	55% 56%			40 29	8013382	NRA1762-01	01/22/08 17:56
Chlorophenol	ND	1.09	mg/kg dry	1.81	50% 60%	31 - 107 32 - 119	13	38	8013382	NRA1762-01	01/22/08 17:56
Chlorophenyl phényl ether	ND	1.08	mg/kg dry	1.81		32 - 119	19 0	40 37	8013382 8013382	NRA1762-01	01/22/08 17:56
										10 41760 01	

01/22/08 17:56

TestAmeric

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRA1762

Atlanta Rush Project

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn

Analyte

Chrysene

Dibenzofuran

Fluoranthene

[none] Project Number: 01/18/08 08:00 Carl Dawes Received: PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont. Spike Target Sample Analyzed Date/Time **RPD** Limit Batch Duplicated Conc % Rec. Range Orig. Val. Duplicate 0 Units Semivolatile Organic Compounds by EPA Method 8270C 8013382-MSD1 NRA1762-01 01/22/08 17:56 8013382 ND 1.12 mg/kg dry 1.81 62% 30 - 119 7 31 Dibenz (a,h) anthracene ND 1.08 mg/kg dry 1.81 60% 27 - 122 16 32 8013382 NRA1762-01 01/22/08 17:56 8013382 NRA1762-01 01/22/08 17:56 ND 1.12 mg/kg dry 1.81 62% 33 - 121 11 35 38 - 123 13 31 8013382 NRA1762-01 01/22/08 17:56 Di-n-butyl ohthalate ND 1.31 mg/kg dry 1.81 73% 1.4-Dichlorobenzenc ND 0.919 mg/kg dry 1.81 51% 26 - 109 21 41 8013382 NRA1762-01 01/22/08 17:56 1,2-Dichlorobenzenc ND 0.981 mg/kg dry 1.83 54% 26 - 112 17 40 8013382 NRA1762-01 01/22/08 17:56 1.3-Dichlorobenzene ND 0.939 mg/kg dry 1.81 52% 26 - 110 23 41 8013382 NRA1762-01 01/22/08 17:56 48 8013382 NRA1762-01 01/22/08 17:56 3,3-Dichlorobenzidine ND 1.08 mg/kg dry 1.81 60% 10-112 15 2,4-Dichlorophenol ND 1.01 mg/kg dry 1.81 56% 28 - 118 17 32 8013382 NRA1762-01 01/22/08 17:56 01/22/08 17:56 ND 1.18 1.81 65% 29 - 122 12 37 8013382 NRA1762-01 Diethyl phthalate mg/kg dry NRA1762-01 1.81 10 - 12819 50 8013382 01/22/08 17:56 2,4-Dimethylphenol ND 1.16 mg/kg dry 64% 1.81 31 - 118 12 39 8013382 NRA1762-01 01/22/08 17:56 Dimethyl phthalate ND 1.11 mg/kg dry 61% 1,81 58% 10 - 136 28 45 8013382 NRA1762-01 01/22/08 17:56 1.04 4,6-Dinitro-2-methylphenol ND mg/kg dry 19 50 8013382 NRA1762-01 01/22/08 17:56 1.81 61% 10 - 148 2,4-Dinitrophenol ND 1.10 mg/kg dry 1.81 71% 28 - 125 18 37 8013382 NRA1762-01 01/22/08 17:56 2,6-Dinitrotoluene ND 1.28 mg/kg dry 41 8013382 NRA1762-01 01/22/08 17:56 ND 1.81 68% 30 - 119 12 2.4-Dinitrotoluene 1.24 mg/kg dry 34 8013382 NRA1762-01 01/22/08 17:56 1.81 31 - 137 14 Di-n-octyl phthalate mg/kg dry 71% ND 1.28 38 8013382 NRA1762-01 01/22/08 17:56 1.81 Bis(2-ethylhexyl)phthalate ND 1.50 mg/kg dry 83% 38 - 125 8 1.81 64% 23 - 132 15 36 8013382 NRA1762-01 01/22/08 17:56 ND 1.16 mg/kg dry NRA1762-01 01/22/08 17:56 1.81 61% 38 - 110 12 35 8013382 ND 1.11 mg/kg dry 1.81 11 37 NRA1762-01 01/22/08 17:56 56% 35 - 120 8013382 ND 1.01 mg/kg dry NRA1762-01 01/22/08 17:56 1.81 55% 28 - 113 12 35 8013382

Work Order:

Project Name:

Fluorene Hexachlorobenzene Hexachlorobutadiene ND 0.994 mg/kg dry NRA1762-01 Hexachlorocyclopentadiene ND 0.936 1.81 52% 10 - 123 21 36 8013382 01/22/08 17:56 mg/kg dry 1.81 17 42 8013382 NRA1762-01 01/22/08 17:56 57% 20 - 120 ND 1.03 Hexachloroethane mg/kg dry NRA1762-01 01/22/08 17:56 1.81 17 28 8013382 Indeno (1,2,3-cd) pyrene ND 1.03 mg/kg dry 57% 24 - 122 1.81 23 - 108 15 33 8013382 NRA1762-01 01/22/08 17:56 Isophorone ND 1.16 mg/kg dry 64% 1.81 15 33 8013382 NRA1762-01 01/22/08 17:56 54% 26 - 116 ND 0.970 2-Methyinaphthalene mg/kg dry 1.81 66% 23 - 122 14 43 8013382 NRA1762-01 01/22/08 17:56 2-Methylphenol ND 1.19 mg/kg dry 18 47 8013382 NRA1762-01 01/22/08 17:56 ND 1.34 1.81 74% 23 - 138 3/4-Methylphenol mg/kg dry 1.81 14 - 117 17 34 8013382 NRA1762-01 01/22/08 17:56 48% Naphthalene ND 0.876 mg/kg dry 8013382 41 NRA1762-01 01/22/08 . 17:56 3-Nitroaniline ND 1.25 mg/kg dry 1.81 69% 27 - 124 16 35 - 122 9 33 8013382 NRA1762-01 01/22/08 17:56 2-Nitroaniline ND 1.31 mg/kg dry 1.81 73% 1.81 67% 25 - 124 16 35 8013382 NRA1762-01 01/22/08 17:56 4-Nitroaniline ND 1.22 mg/kg dry NRA1762-01 Nitrobenzene ND 1.11 mg/kg dry 1.81 61% 19 - 105 18 36 8013382 01/22/08 17:56 4-Nitrophenol ND 1.97 mg/kg dry 1.81 109% 14 - 144 14 39 8013382 NRA1762-01 01/22/08 17:56 ND 1.00 1.81 55% 23 - 119 22 37 8013382 NRA1762-01 01/22/08 17:56 2-Nitrophenol mg/kg dry NRA1762-01 01/22/08 17:56 N-Nitrosodiphenylamine ND 1.19 mg/kg dry 1.81 66% 37 - 144 16 32 8013382 N-Nitrosodi-n-propylamine ND 1.37 mg/kg dry 1.81 76% 28 - 121 14 41 8013382 NRA1762-01 01/22/08 17:56 1.81 62% 13 - 149 8 4Í 8013382 NRA1762-01 01/22/08 17:56 Pentachlorophenol ND 1.13 mg/kg dry 15 33 8013382 NRA1762-01 01/22/08 17:56 Phenanthrene ND 1.06 mg/kg dry 1.81 59% 21 - 130 1.81 31 - 116 21 40 8013382 NRA1762-01 01/22/08 17:56 Phenol ND 1.10 mg/kg dry 61%

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes Attn

.

Work Order: NRA1762 Project Name: Project Number: [none] Received:

Atlanta Rush Project 01/18/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compound	is by EPA Mett	od 8270C	2					• • • • •	• • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
8013382-MSD1	-											•
Pyrene	ND	1.13		mg/kg dry	1.81	63%	24 - 133	10	36	8013382	NRA1762-01	01/22/08 17:56
Pyridine	ND	0.158	M8, R2	mg/kg dry	1.81	9%	10 - 103	145	50	8013382	NRA1762-01	01/22/08 17:56
1,2,4-Trichlorobenzene	סא	0.815		mg/kg dry	1.81	45%	27 - 102	22	34	8013382	NRA1762-01	01/22/08 17:56
1-Methylnaphthalene	ND	0.981		mg/kg dry	1.81	54%	10 - 121	12	34	8013382	NRA1762-01	01/22/08 17:56
2,4,6-Trichlorophenol	ND	1.21		mg/kg dry	1.81	67%	32 - 122	14	41	8013382	NRA1762-01	01/22/08 17:56
2,4,5-Trichlorophenol	ND	1.19		mg/kg dry	1.81	66%	30 - 122	17	39	8013382	NRA1762-01	01/22/08 17:56
Surrogate: Terphenyl-d14		1.03		mg/kg dry	1.81	57%	26 - 128			8013382	NRA1762-01	01/22/08 17:56
Surrogate: 2,4,6-Tribromophenol		0.901		mg/kg dry	1.81	50%	20 - 132			8013382	NRA1762-01	01/22/08 17:56
Surrogate: Phenol-d5		1.08		mg/kg dry	1.81	59%	23 - 113			8013382	NRA1762-01	01/22/08 17:56
Surrogate: 2-Fluorobiphenyl		0.881		mg/kg dry	1.81	49%	19 - 109			8013382	NRA1762-01	
Surrogate: 2-Fluorophenol		0.867		ing/kg dry	1.81	48%	19 - 105			8013382	NRA1762-01	01/22/08 17:56
Surrogate: Nitrobenzene-d5	·	0.993		mg/kg dry	1.81	55%	22 - 104			8013382	NRA1762-01 NRA1762-01	01/22/08 17:56 01/22/08 17:56

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes Attn

TestAmerica Nashville

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRA1762 Work Order: Project Name: Project Number: [none] Received:

Atlanta Rush Project 01/18/08 08:00

CERTIFICATION SUMMARY

Method	Matrix	AIHA	Nelac	Georgia
SW846 826013	Soil	N/A	х	
SW846 8270C	Soil	N/A	х	
SW-846	Soil			

TestAmerics

THE LEADER IN ENVIRONMENTAL TESTING

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes 2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

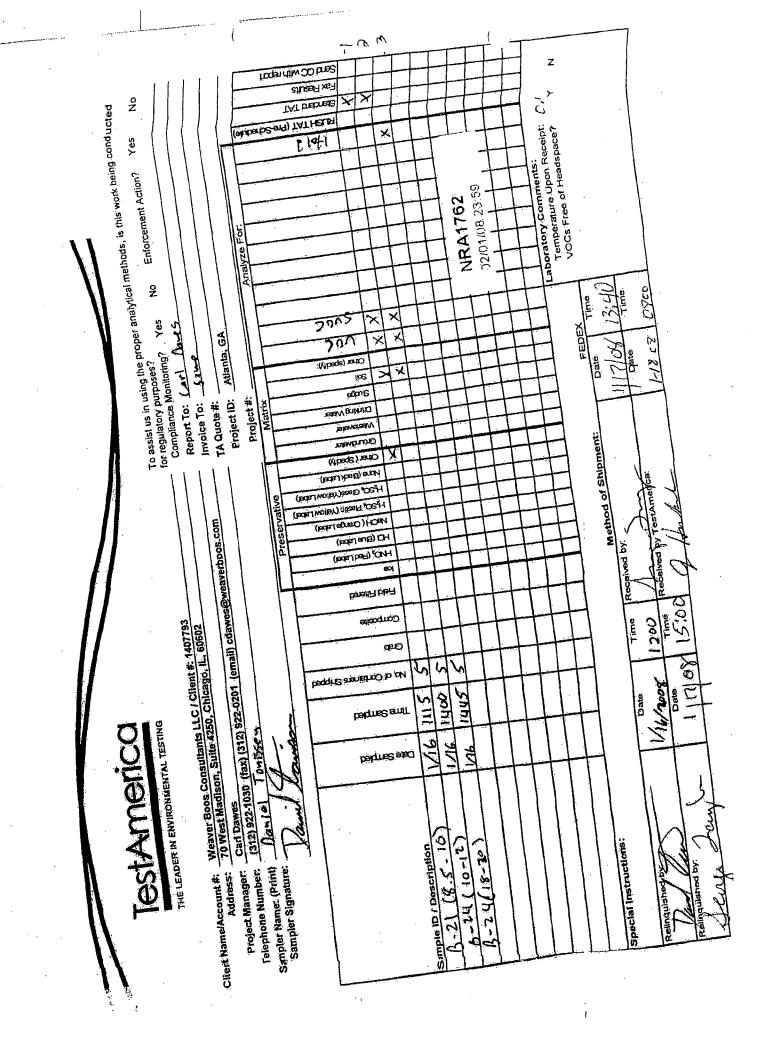
Work Order:NRA1762Project Name:Atlanta Rush ProjectProject Number:[none]Received:01/18/08 08:00

DATA QUALIFIERS AND DEFINITIONS

H4 Sample was extracted past holding time, but analyzed within analysis holding time.
 L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
 M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
 MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike.
 R2 The RPD exceeded the acceptance limit.
 ND Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

COOLER RECEIL		
Nashville, TN Cooler Received/Opened On 1/18/2008 @ 0800 1. Tracking #		
5. Were the seals intact, signed, and dated concurying 6. Were custody papers inside cooler? <u>I certify that I opened the cooler and answered questions 1-6 (intial)</u> 7. Were custody seals on containers: YES NO. and Intact YES		
11. Were all container labels complete (#, date, signed, pres., etc)? TES., NONA 12. Did all container labels and tags agree with custody papers? YESNONA	cuur. Plante Solt	in lahdel bes
I certify that I unloaded the cooler and answered questions 7-14 (initial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNO. (R b. Did the bottle labels indicate that the correct preservatives were used YESNONA If preservation in-house was needed, record standard ID of preservative used here YESNONA 16. Was residual chlorine present? YESNONA I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial) YESNONA		
17. Were custody papers properly filled out (ink, signed, etc)? VESNONA 18. Did you sign the custody papers in the appropriate place? VESNONA 19. Were correct containers used for the analysis requested? VESNONA 20. Was sufficient amount of sample sent in each container? VESNONA I certify that I entered this project into LIMS and answered questions 17-20 (initial) VESNONA 19. Leertify that I attached a label with the unique LIMS number to each container (initial) VESNONA 21. Were there Non-Conformance issues at login? YESNO VESNO		


B1S = Broken in shipment Center Receipt Form.dog

÷

يعددوه الدحاومهم

.....

.

TestAmeric J

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

March 12, 2008	4:29:46PM
----------------	-----------

Client: Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn: Carl Dawes

SAMPLE IDENTIFICATION

EB-2(10-12) EB-3(10-12) EB-4(10-12) LAB NUMBER NRC0298-01

Work Order:

Project Name:

Project Nbr:

P/O Nbr: Date Received:

NRC0298-06 NRC0298-09 NRC0298 Atlanta Rush Project 1782-308-03

03/05/08

COLLECTION DATE AND TIME

03/03/08 12:15 03/03/08 13:40 03/03/08 14:45

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Georgia Certification Number: Florida cert E87358

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

ia Kunnels

Andrea Runnels

Analyst

TestAmericu

THE LEADER IN ENVIRONMENTAL TESTING

Hexachlorobutadiene

ND

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LI 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes	•		Work Order: Project Name: Project Number: Received:	NRC0298 Atlanta Rush Pro 1782-308-03 03/05/08 08:00	oject		
	······································	ANALYTICA	L REPORT				
Analyte	Result Flag	y Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batcl
Sample ID: NRC0298-01 (EB-2							
General Chemistry Parameters	(10 12),p						
% Dry Solids	85.4	%	0.500	1	03/07/08 09:40	SW-846	803065
•		70	0.500	-	05/01/00 02/10	511 010	000000
Volatile Organic Compounds by E	PA Method 8260B			•			
Acetone	ND	mg/kg dry	0.0512		03/12/08 01:02	SW846 8260B	803065
Benzene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	803065
Bromobenzene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	803065
Bromochloromethane	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	803065
Bromodichloromethane	. ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	803065
Bromoform	ND	mg/kg dry	0.0020	5 1	03/12/08 01:02	SW846 8260B	803065
Bromomethane	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	803065
2-Butanone	ND	mg/kg dry	0.051	2 1	03/12/08 01:02	SW846 8260B	803065
ec-Butylbenzene	ND	mg/kg dry	0.0020)5 1	03/12/08 01:02	SW846 8260B	803065
1-Butylbenzene	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	803065
ert-Butylbenzene	ND	mg/kg dry	0.0020)5· 1	03/12/08 01:02	SW846 8260B	803065
Carbon disulfide	ND	mg/kg dry	0.0051	12 1	03/12/08 01:02	SW846 8260B	803065
Carbon Tetrachloride	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	803065
Chlorobenzene	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	803065
Chlorodibromomethane	ND	mg/kg dry	0.0020)5 L	03/12/08 01:02	SW846 8260B	803065
Chloroethane	ND	mg/kg dry	0.005	12 1	03/12/08 01:02	SW846 8260B	80306
Chloroform	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	80306
Chloromethane	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	803065
2-Chlorotoluene	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	80306
4-Chlorotoluene	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	80306
1,2-Dibromo-3-chloropropane	ND	mg/kg dry	0.005	12 1	03/12/08 01:02	SW846 8260B	80306
1,2-Dibromoethane (EDB)	ND	mg/kg dry	0.0020	05 1	03/12/08 01:02	SW846 8260B	80306
Dibromomethane	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,4-Dichlorobenzene	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,3-Dichlorobenzene	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,2-Dichlorobenzene	ND	mg/kg dry	. 0.002	05 1	03/12/08 01:02	SW846 8260B	80306
Dichlorodifluoromethane	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,1-Dichloroethane	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,2-Dichloroethane	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
cis-1,2-Dichloroethene	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,1-Dichloroethene	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
trans-1,2-Dichloroethene	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,3-Dichloropropane	ND	mg/kg dry	0.002	05 1	03/12/08 01:02	SW846 8260B	80306
1,2-Dichloropropane	ND	mg/kg dry	0.002		03/12/08 01:02	SW846 8260B	80306
2,2-Dichloropropane	ND	mg/kg dry	0.002		03/12/08 01:02	SW846 8260B	80306
cis-1,3-Dichloropropene	ND	mg/kg dry	0.002		03/12/08 01:02	SW846 8260B	
trans-1,3-Dichloropropene	ND	mg/kg dry	0.002		03/12/08 01:02	SW846 8260B	
1,1-Dichloropropene	ND	mg/kg dry	0.002		03/12/08 01:02	SW846 8260B	
Ethylbenzene	ND	mg/kg dry	0.002		03/12/08 01:02	SW846 8260B	
· · · · ·			0.000	10	02/10/00 01:00	GW046 0060D	00200

mg/kg dry

0.00512

l

03/12/08 01:02

SW846 8260B 8030653

Bis(2-chloroethoxy)methane

ND

TestAmericu

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

(

Client Weaver Boos Consultants LLC (70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes	1407793)		Work Order: Project Name: Project Number: Received:	NRC0298 Atlanta Rush Pr 1782-308-03 03/05/08 08:00	oject		
·		ANALYTICA	L REPORT				
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0298-01 (EB-2(10)-12) - Soil) - co	nt. Sampled: 03/03/08	12:15				
Volatile Organic Compounds by EPA			, 12.13				
2-Hexanone	ND	mg/kg dry	0.051	2 1	03/12/08 01:02	SW046 0060D	8030653
Isopropylbenzene	ND	mg/kg dry	0.0020		•	SW846 8260B	8030653
p-Isopropyltoluene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	
Methyl tert-Butyl Ether	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
Methylene Chloride	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
4-Methyl-2-pentanone	ND	mg/kg dry	0.051		03/12/08 01:02	SW846 8260B	8030653
Naphthalene	ND				03/12/08 01:02	SW846 8260B	8030653
n-Propylbenzene	ND	mg/kg dry mg/kg dry	0.0051		03/12/08 01:02	SW846 8260B	8030653
Styrene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,1,1,2-Tetrachloroethane	ND		0.0020		03/12/08 01:02	SW846 8260B	8030653
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.0020		· 03/12/08 01:02	SW846 8260B	8030653
Tetrachloroethene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
Toluene	ND	mg/kg dry	0.0020		03/12/08/01:02	SW846 8260B	8030653
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,2,4-Trichlorobenzene	ND ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,1,2-Trichloroethane	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,1,1-Trichloroethane		mg/kg dry	0.0051		03/12/08 01:02	SW846 8260B	8030653
Trichloroethene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
Trichlorofluoromethane	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,2,3-Trichloropropane	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
Vinyl chloride	ND	mg/kg dry	0.0020		03/12/08 01:02	SW846 8260B	8030653
Xylenes, total	ND	mg/kg dry	0.0051	2 1	03/12/08 01:02	SW846 8260B	8030653
Surr: 1,2-Dichloroethane-d4 (41-150%)	108 %				03/12/08 01:02	SW846 8260B	8030653
Surr: Dibromofluoromethane (55-139%) Surr: Toluene-d8 (57-148%)	108 %				03/12/08 01:02	SW846 8260B	8030653
Surr: 1-Divene-ub (37-148%) Surr: 4-Bromofluorobenzene (58-150%)	114 % 116 %				03/12/08 01:02	SW846 8260B	8030653
Semivolatile Organic Compounds by E		0			03/12/08-01:02	SW846 8260B	8030653
Acenaphthene							
•	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Acenaphthylene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Anthracene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Benzo (a) anthracene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Benzo (a) pyrene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Benzo (b) fluoranthene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Benzo (g,h,i) perylene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
Benzo (k) fluoranthene	ND	mg/kg dry	0.389		03/09/08 13:48	SW846 8270C	8030673
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.389) 1	03/09/08 13:48	SW846 8270C	8030673
Butyl benzyl phthalate	ND	mg/kg dry	0.389) 1	03/09/08 13:48	SW846 8270C	8030673
Carbazole	ND	mg/kg dry	0.389	0. 1	03/09/08 13:48	SW846 8270C	8030673
4-Chloro-3-methylphenol	ND	mg/kg dry	0.389) 1	03/09/08 13:48	SW846 8270C	8030673
4-Chloroaniline	ND	mg/kg dry	0.389	0 1	03/09/08 13:48	SW846 8270C	8030673
Bis(2-chloroethoxy)methane	ND	ma/ka dru	0.290		02/00/00 12.40	011/046 00700	9020672

mg/kg dry

0.389

SW846 8270C 8030673

03/09/08 13:48

1

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

		,			Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method .	Batch
Sample ID: NRC0298-01 (EB-	2(10-12) - Soil) - co	ont. Sample	d: 03/03/08 12:	15				
Semivolatile Organic Compounds								
Bis(2-chloroethyl)ether	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Bis(2-chloroisopropyl)ether	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
2-Chloronaphthalene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
2-Chlorophenol	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.389	- 1	03/09/08 13:48	SW846 8270C	803067
Chrysene	ND		mg/kg dry	0.389	-	03/09/08 13:48	SW846 8270C	803067
Dibenz (a,h) anthracene	ND		mg/kg dry	0.389	· 1	03/09/08 13:48	SW846 8270C	803067
Dibenzofuran	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Di-n-butyl phthalate	· ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
1,4-Dichlorobenzene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
1,2-Dichlorobenzene	ND	·	mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
1,3-Dichlorobenzene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
3,3-Dichlorobenzidine	ND		mg/kg dry	0.780	1	03/09/08 13:48	SW846 8270C	803067
2,4-Dichlorophenol	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Diethyl phthalate	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
2,4-Dimethylphenol	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Dimethyl phthalate	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
4,6-Dinitro-2-methylphenol	ND		mg/kg dry	0.974	1	03/09/08 13:48	SW846 8270C	803067
2,4-Dinitrophenol	ND		mg/kg dry	0.974	1	03/09/08 13:48	SW846 8270C	803067
2,6-Dinitrotoluene	ND	,	mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
2,4-Dinitrotoluene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Di-n-octyl phthalate	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Bis(2-ethylhexyl)phthalate	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Fluoranthene	ND ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Fluorene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Hexachlorobenzene	ND			0.389	1	03/09/08 13:48	SW846 8270C	803067
Hexachlorobutadiene			mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
	ND		mg/kg dry			03/09/08 13:48		803067
Hexachlorocyclopentadiene	ND		mg/kg dry	0.389	1		SW846 8270C	803067
Hexachloroethane	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Isophorone	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
2-Methylnaphthalene	ND .		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
2-Methylphenol	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
3/4-Methylphenol	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
Naphthalene	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
3-Nitroaniline	ND		mg/kg dry	0.974	1	03/09/08 13:48	SW846 8270C	803067
2-Nitroaniline	ND		mg/kg dry	0.974	1	03/09/08 13:48	SW846 8270C	803067
4-Nitroaniline	. ND		mg/kg dry	0.974	1	03/09/08 13:48	SW846 8270C	803067
Nitrobenzenc	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
4-Nitrophenol	ND		mg/kg dry	0.974	1	03/09/08 13:48	SW846 8270C	803067
2-Nitrophenol	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
N-Nitrosodiphenylamine	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	803067
N-Nitrosodi-n-propylamine	ND		mg/kg dry	0.389	1	03/09/08 13:48	SW846 8270C	80306

TestAmericu

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes	1407793)		Work Order: Project Name: Project Number: Received:	NRC0298 Atlanta Rush Pr 1782-308-03 03/05/08 08:00	oject		
		ANALYT	ICAL REPORT				
Analyte	Result	Flag Un	its MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0298-01 (EB-2(10)-12) - Soil) - co	••••••••••	3/08 12+15	•••••		· · · · · · · · · · · · · · · · · · ·	
Semivolatile Organic Compounds by E			5/00 12.15				
Pentachlorophenol	ND	mg/kg o	iry 0.974	1	03/09/08 13:48	.SW846 8270C	8030673
Phenanthrene	ND	'ng/kg c			03/09/08 13:48	SW846 8270C	8030673
Phenol	ND	mg/kg o	-		03/09/08 13:48	SW846 8270C	8030673
Pyrene	ND	mg/kg o	-		03/09/08 13:48	SW846 8270C	8030673
1,2,4-Trichlorobenzene	ND	mg/kg o	•		03/09/08 13:48	SW846 8270C SW846 8270C	8030673
I-Methylnaphthalene	ND	mg/kg o			03/09/08 13:48	SW846 8270C	8030673
2,4,6-Trichlorophenol	ND	mg/kg o			03/09/08 13:48	SW846 8270C SW846 8270C	8030673
2,4,5-Trichlorophenol	ND	mg/kg o	•		03/09/08 13:48	SW846 8270C	8030673
Surr: Terphenyl-d14 (26-128%)	85 %			•	03/09/08 13:48	SW846 8270C	803067.
Surr: 2,4,6-Tribromophenol (20-132%)	74 %				03/09/08 13:48	SW846 8270C	803067
Surr: Phenol-d5 (23-113%)	71%				03/09/08 13:48	SW846 8270C	803067.
Surr: 2-Fluorobiphenyl (19-109%)	62 %				03/09/08 13:48	SW846 8270C	803067.
Surr: 2-Fluorophenol (19-105%) Surr: Nitrobenzene-d5 (22-104%)	62 % 55 %				03/09/08 13:48 03/09/08 13:48	SW846 8270C	803067.
Sample ID: NRC0298-06 (EB-3(10 General Chemistry Parameters % Dry Solids	86.0	%	0.500	1	03/07/08 09:40	ŚW-846	8030654
Volatile Organic Compounds by EPA	Method 8260B						
Acetone	ND	mg/kg o	iry 0.055	9 1	03/12/08 01:32	SW846 8260B	8030653
Benzene	ND	mg/kg o			03/12/08 01:32	SW846 8260B	8030653
Bromobenzene	ND	mg/kg o	•		03/12/08 01:32	SW846 8260B	8030653
Bromochloromethane	ND	mg/kg c			03/12/08 01:32	SW846 8260B	8030653
Bromodichloromethane	ND	mg/kg o	-		03/12/08 01:32	SW846 8260B	8030653
Bromoform	ND	mg/kg c	-		03/12/08 01:32	SW846 8260B	8030653
Bromomethane	ND	mg/kg o			03/12/08 01:32	SW846 8260B	8030653
2-Butanone	ND	mg/kg c		9 1	03/12/08 01:32	SW846 8260B	8030653
sec-Butylbenzene	ND	mg/kg c			03/12/08 01:32	SW846 8260B	8030653
n-Butylbenzene	ND	mg/kg c			03/12/08 01:32	SW846 8260B	8030653
ert-Butylbenzene	ND	mg/kg d			03/12/08 01:32	SW846 8260B	8030653
Carbon disulfide	ND	mg/kg o	lry 0.0055	9 1	03/12/08 01:32	SW846 8260B	8030653
Carbon Tetrachloride	ND	mg/kg o	lry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653
Chlorobenzene	ND	mg/kg c	iry 0.0022	4 · 1	03/12/08 01:32	SW846 8260B	8030653
Chlorodibromomethane	ND	mg/kg d			03/12/08 01:32	SW846 8260B	8030653
Chloroethane	ND	mg/kg d	lry 0,0055	9 1	03/12/08 01:32	SW846 8260B	8030653
Chloroform	ND	mg/kg c	lry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653
Chloromethane	ND	mg/kg o	lry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653
2-Chlorotoluene	ND	. mg/kg c	iry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653
f-Chlorotoluene	ND	mg/kg d	lry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653
,2-Dibromo-3-chloropropane	ND	mg/kg d	lry 0.0055	9 1	03/12/08 01:32	SW846 8260B	8030653
1,2-Dibromoethane (EDB)	ND	mg/kg o	lry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653
Dibromomethane	ND	mg/kg d		4 1	03/12/08 01:32	SW846 8260B	8030653
,4-Dichlorobenzene	ND	mg/kg d	lry 0.0022	4 1	03/12/08 01:32	SW846 8260B	8030653

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

i

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00
		·····	

				Dilution	Analysis		
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0298-06 (EB-3(10-	12) - Soil) - cor	nt. Sampled: 03/03/08 13:4	0			÷	
Volatile Organic Compounds by EPA M							
1,3-Dichlorobenzene	ND	mg/kg dry	0.00224	I	03/12/08 01:32	SW846 8260B	8030653
1,2-Dichlorobenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Dichlorodifluoromethane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,1-Dichloroethane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,2-Dichloroethane	ND	mg/kg dry	0.00224	- 1	03/12/08 01:32	SW846 8260B	803065
cis-1,2-Dichloroethene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,1-Dichloroethene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,3-Dichloropropane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,2-Dichloropropane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
2,2-Dichloropropane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00224	L	03/12/08 01:32	SW846 8260B	803065
trans-1,3-Dichloropropene	ND	mg/kg dry	0.00224	. 1	03/12/08 01:32	SW846 8260B	803065
1,1-Dichloropropene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Ethylbenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Hexachlorobutadiene	ND	mg/kg dry	0.00559	ł	03/12/08 01:32	SW846 8260B	803065
2-Hexanone	ND	mg/kg dry	0.0559	1	03/12/08 01:32	SW846 8260B	803065
Isopropylbenzene	ND [*]	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
p-Isopropyltoluene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Methylene Chloride	ND	mg/kg dry	0.0112	1	03/12/08 01:32	SW846 8260B	803065
4-Methyl-2-pentanone	ND	mg/kg dry	0.0559	1	03/12/08 01:32	SW846 8260B	803065
Naphthalene	ND	mg/kg dry	0.00559	ł	03/12/08 01:32	SW846 8260B	803065
n-Propylbenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Styrene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,1,1,2-Tetrachloroethane	ND .	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Tetrachloroethene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Toluene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,1,2-Trichloroethane	ND	mg/kg dry	0.00559	1	03/12/08 01:32	SW846 8260B	803065
1,1,1-Trichloroethane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Trichloroethene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Trichlorofluoromethane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,2,3-Trichloropropane	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Vinyl chloride	ND	mg/kg dry	0.00224	1	03/12/08 01:32	SW846 8260B	803065
Xylenes, total	ND	mg/kg dry	0.00559	1	03/12/08 01:32	SW846 8260B	803065
Surr: 1,2-Dichloroethane-d4 (41-150%)	91%		5.00007	-	03/12/08 01:32	SW846 8260B	80306.
Surr: Dibromofluoromethane (55-139%)	102 %				03/12/08 01:32	SW846 8260B	80306
Surr: Toluene-d8 (57-148%)	116%				03/12/08 01:32	SW846 8260B	80306

TestAme

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Ł

Analyte	e	Result	Flag	Units	MR	Dilution L Factor	Analysis Date/Time	Method	Batch
Attn	Chicago,, IL 60602 Carl Dawes		A	Project Number: 1782-308-03 Received: 03/05/08 08:00 ANALYTICAL REPORT					
Client	Weaver Boos Consultants LLC (140 70 West Madison, Suite 4250	7793)			Work Order: Project Name:	NRC0298 Atlanta Rush P			

Sample ID: NRC0298-06 (EB-3(10-12) - Soil) - cont. Sampled: 03/03/08 13:40

Volatile Organic Compounds by EPA Method 8260B - cont.

Surr: 4-Bromofluorobenzene (58-150%) 115 %

Surr: 4-Bromofluorobenzene (58-150%)	115 %				03/12/08 01:32	SW846 8260B	8030653
Semivolatile Organic Compounds by	EPA Method 8270C						
Acenaphthene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW04C 9270C	0020(72
Acenaphthylene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Anthracene	ND	mg/kg dry	0.386	i	03/09/08 14:17	SW846 8270C SW846 8270C	8030673 8030673
Benzo (a) anthracene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Benzo (a) pyrene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C SW846 8270C	8030673
Benzo (b) fluoranthene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Benzo (g,h,i) perylene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Benzo (k) fluoranthene	ND	mg/kg dry	0.386	1	03/09/08 14:17		
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Butyl benzyl phthalate	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Carbazole	' ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
4-Chloro-3-methylphenol	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
4-Chloroaniline	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C SW846 8270C	8030673 8030673
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.386	l	03/09/08 14:17		
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
2-Chloronaphthalene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
2-Chlorophenol	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C SW846 8270C	8030673
4-Chlorophenyl phenyl ether	ND	mg/kg dry	0.386	1	03/09/08 14:17		8030673
Chrysene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Dibenz (a,h) anthracene	ND	mg/kg dry	0.386	1		SW846 8270C	8030673
Dibenzofuran	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Di-n-butyl phthalate	ND	mg/kg dry	0.386	1	03/09/08 14:17 03/09/08 14:17	SW846 8270C	8030673
1,4-Dichlorobenzene	ND	mg/kg dry	0.386	1		SW846 8270C	8030673
1,2-Dichlorobenzene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
1,3-Dichlorobenzene	ND	mg/kg dry	0.386		03/09/08 14:17	SW846 8270C	8030673
3,3-Dichlorobenzidine	ND	mg/kg dry	0.388	1	03/09/08 14:17 03/09/08 14:17	SW846 8270C	8030673
2,4-Dichlorophenol	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Diethyl phthalate	ND	mg/kg dry	0.386	1		SW846 8270C	8030673
2,4-Dimethylphenol	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Dimethyl phthalate	ND	mg/kg dry	0.386	1	03/09/08 14:17 03/09/08 14:17	SW846 8270C	8030673
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.967	1	-	SW846 8270C	8030673
2,4-Dinitrophenol	ND	mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	8030673
2,6-Dinitrotoluene	ND	mg/kg dry	0.386		03/09/08 14:17	SW846 8270C	8030673
2,4-Dinitrotoluene	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Di-n-octyl phthalate	ND	mg/kg dry		1	03/09/08 14:17	SW846 8270C	8030673
Bis(2-ethylhexyl)phthalate	ND	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Fluoranthene	ND	mg/kg dry	0.386 0.386	1	03/09/08 14:17	SW846 8270C	8030673
Fluorene	ND ,	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	8030673
Hexachlorobenzene	ND	mg/kg dry	0.386		03/09/08 14:17	SW846 8270C	8030673
,		mg/ng uty	0.380	1	03/09/08 14:17	SW846 8270C	8030673

THE LEADER IN ENVIRONMENTAL TESTING

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
						•••••		
Sample ID: NRC:0298-06 (EB-3(10		-	led: 03/03/08 13:	40				
Semivolatile Organic Compounds by E		0C - cont.						
Hexachlorobutadiene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Hexachlorocyclopentadiene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Hexachloroethane	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Isophorone	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
2-Methylnaphthalene	ND	•	mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
2-Methylphenol	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
3/4-Methylphenol	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Naphthalene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
3-Nitroaniline	ND		mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	803067
2-Nitroaniline	ND		mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	803067
4-Nitroaniline	ND		mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	803067
Nitrobenzene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
4-Nitrophenol	ND		mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	803067
2-Nitrophenol	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
N-Nitrosodiphenylamine	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
N-Nitrosodi-n-propylamine	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Pentachlorophenol	ND		mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	803067
Phenanthrene	ND		mg/kg dry	0.386	I	03/09/08 14:17	SW846 8270C	80 3067
Phenol	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
Pyrene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
1-Methylnaphthalene	ND		mg/kg dry	0.386	1	03/09/08 14:17	SW846 8270C	803067
2,4,6-Trichlorophenol	ND		mg/kg dry	0,386	1	03/09/08 14:17	SW846 8270C	803067
2,4,5-Trichlorophenol	ND		mg/kg dry	0.967	1	03/09/08 14:17	SW846 8270C	803067
Surr: Terphenyl-d14 (26-128%)	84 %			•••••	-	03/09/08 14:17	SW846 8270C	80306
Surr: 2,4,6-Tribromophenol (20-132%)	67%					03/09/08 14:17	SW846 8270C	80306
Surr: Phenol-d5 (23-113%)	67 %					03/09/08 14:17	SW846 8270C	80306
Surr: 2-Fluorobiphenyl (19-109%)	57%					03/09/08 14:17	SW846 8270C	80306
Surr: 2-Fluorophenol (19-105%)	59 %					03/09/08 14:17	SW846 8270C	80306
Surr: Nitrobenzene-d5 (22-104%)	55 %					03/09/08 14:17	SW846 8270C	80306

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

()

7 C	Chicago,, IL 60602	Work Order: Project Name: Project Number:	NRC0298 Atlanta Rush Project 1782-308-03
Attn C	Carl Dawes	Received:	03/05/08 08:00

•		ANALYTICAL RI	EPORT				
Analyte	Result Fla _f	g Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0298-09 (EB-4	(10-12) - Soil) Sampled:	03/03/08 14:45					
General Chemistry Parameters							
% Dry Solids	86.1	%	0.500	1	03/07/08 09:40	SW-846	8030654
Volatile Organic Compounds by El	PA Method 8260B		0.000	•	03/07/08 09:40	511-040	0050054
Acetone	ND	malka da	0.0522	,	02/12/00 02 01	011/04/00/00	0000650
Benzene	ND	mg/kg dry	0.0522	1	03/12/08 02:01	SW846 8260B	8030653
Bromobenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Bromochloromethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Bromodichloromethane		mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Bromoform	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Bromomethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
2-Butanone	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
	ND	mg/kg dry	0.0522	1	03/12/08 02:01	SW846 8260B	8030653
sec-Butylbenzene n-Butylbenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
tert-Butylbenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Carbon disulfide	ND	mg/kg dry	0.00522	1	03/12/08 02:01	SW846 8260B	8030653
Carbon Tetrachloride	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Chlorobenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Chlorodibromomethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Chloroethane	ND	mg/kg dry	0.00522	1	03/12/08 02:01	SW846 8260B	8030653
Chloroform	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Chloromethane	ND	mg/kg dry	0.00209	ļ	03/12/08 02:01	SW846 8260B	8030653
2-Chlorotoluene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
4-Chlorotoluene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,2-Dibromo-3-chloropropane	ND	mg/kg dry	0.00522	1	03/12/08 02:01	SW846 8260B	8030653
1,2-Dibromoethane (EDB)	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Dibromomethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,4-Dichlorobenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,3-Dichlorobenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,2-Dichlorobenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Dichlorodifluoromethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,1-Dichloroethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,2-Dichloroethane	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
cis-1,2-Dichloroethene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,1-Dichloroethene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00209				8030653
1,3-Dichloropropane	ND	mg/kg dry	0.00209	1	03/12/08 02:01 03/12/08 02:01	SW846 8260B	8030653
1,2-Dichloropropane	ND	mg/kg dry	0.00209	1		SW846 8260B	8030653
2,2-Dichloropropane	ND			1	03/12/08 02:01	SW846 8260B	8030653
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
trans-1,3-Dichloropropene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
1,1-Dichloropropene		mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Ethylbenzene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
Hexachlorobutadiene	ND	mg/kg dry	0.00209	1	03/12/08 02:01	SW846 8260B	8030653
	ND	mg/kg dry	0.00522	1	03/12/08 02:01	SW846 8260B	8030653

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 600-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (14 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes	407793)		Work Order: Project Name: Project Number: Received:	NRC0298 Atlanta Rush Pro 1782-308-03 03/05/08 08:00	oject	n	
		ANALYTICA	L REPORT				
Analyte	Result Fla	g Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC:0298-09 (EB-4(10-	12) - Soil) - cont. Sai	mpled: 03/03/0	8 14:45				
Volatile Organic Compounds by EPA M		•					
2-Hexanone	ND	mg/kg dry	0.052	2 1	03/12/08 02:01	SW846 8260B	8030653
Isopropylbenzene	ND	mg/kg dry	0.0020	19 1	03/12/08 02:01	SW846 8260B	8030653
p-Isopropyltoluene	ND	mg/kg dry	. 0.0020	9 1	03/12/08 02:01	SW846 8260B	8030653
Methyl tert-Butyl Ether	ND	mg/kg dry	0.0020		03/12/08 02:01	SW846 8260B	8030653
Methylene Chloride	ND	mg/kg dry	0.010		03/12/08 02:01	SW846 8260B	8030653
4-Methyl-2-pentanone	ND	mg/kg dry	0.052	2 1	03/12/08 02:01	SW846 8260B	8030653
Naphthalene	ND	mg/kg dry	0.0052	2 1	03/12/08 02:01	SW846 8260B	8030653
n-Propylbenzene	ND	mg/kg dry	0.0020	19 1	03/12/08 02:01	SW846 8260B	8030653
Styrene	ND	mg/kg dry	0.0020	9 1	03/12/08 02:01	SW846 8260B	8030653
1,1,1,2-Tetrachloroethane	ND	mg/kg dry	0.0020	9 1	03/12/08 02:01	SW846 8260B	8030653
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.0020	9 1	03/12/08 02:01	SW846 8260B	8030653
Tetrachloroethene	ND	mg/kg dry	0.0020)9 1	03/12/08 02:01	SW846 8260B	8030653
Toluene	ND	mg/kg dry	0.0020)9 1	03/12/08 02:01	SW846 8260B	8030653
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.0020)9 1	03/12/08 02:01	SW846 8260B	8030653
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.0020)9 1	03/12/08 02:01	SW846 8260B	8030653
1,1,2-Trichloroethane	ND	mg/kg dry	0.0052	22 1	03/12/08 02:01	SW846 8260B	8030653
1,1,1-Trichloroethane	ND	mg/kg dry	0.002	09 1	03/12/08 02:01	SW846 8260B	8030653
Trichloroethene	ND	mg/kg dry	0.002	09 1	03/12/08 02:01	SW846 8260B	8030653
Trichlorofluoromethane	ND	mg/kg dry	0.002	D 9 1	03/12/08 02:01	SW846 8260B	8030653
1,2,3-Trichloropropane	ND	mg/kg dry	0.002	D9 I	03/12/08 02:01	SW846 8260B	8030653
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.002	09 1	03/12/08 02:01	SW846 8260B	8030653
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.002	09 1	03/12/08 02:01	SW846 8260B	8030653
Vinyl chloride	ND	mg/kg dry	0.002	09 1	03/12/08 02:01	SW846 8260B	8030653
Xylenes, total	ND	mg/kg dry	0.005	22 1	03/12/08 02:01	SW846 8260B	8030653
Surr: 1,2-Dichloroethane-d4 (41-150%)	106 %				03/12/08 02:01	SW846 8260B	803065
Surr: Dibromofluoromethane (55-139%)	106 %				03/12/08 02:01	SW846 8260B	803065
Surr: Toluene-d8 (57-148%)	114 %				03/12/08 02:01	SW846 8260B	803065
Surr: 4-Bromofluorobenzene (58-150%)	115 %				03/12/08 02:01	SW846 8260B	803065
Semivolatile Organic Compounds by El	PA Method 8270C						
Acenaphthene	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Acenaphthylene	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Anthracene	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Benzo (a) anthracene	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Benzo (a) pyrene	ND	mg/kg d r y	0.38	2 i	03/09/08 14:45	SW846 8270C	803067
Benzo (b) fluoranthene	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Benzo (g,h,i) perylene	ND	mg/kg dry	0.38		03/09/08 14:45	SW846 8270C	803067
Benzo (k) fluoranthene	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Butyl benzyl phthalate	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Carbazole	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
4-Chloro-3-methylphenol	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
4-Chloroaniline	ND	mg/kg dry	0.38	2 1	03/09/08 14:45	SW846 8270C	803067
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.38		03/09/08 14:45	SW846 8270C	803067

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

1 /

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298	
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project	
	Chicago,, IL 60602	Project Number:	1782-308-03	
Attn	Carl Dawes	Received:	03/05/08 08:00	

. Dilution Analysis										
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch			
Sample ID: NRC0298-09 (EB-	4(10-12) - Soil) - c	ont. Sampled: 03/03/08 14	:45	•••••••••••			****			
Semivolatile Organic Compounds										
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.382		03/09/08 14:45	SW846 8270C	803067			
2-Chloronaphthalene	ND	mg/kg dry	· 0.382	1	03/09/08 14:45	SW846 8270C	8030673			
2-Chlorophenol	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
4-Chlorophenyl phenyl ether	ND	mg/kg dry	0.382	ı I	03/09/08 14:45	SW846 8270C	8030673			
Chrysene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Dibenz (a,h) anthracene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Dibenzofuran	ND	mg/kg dry	0.382	ì	03/09/08 14:45	SW846 8270C	8030673			
Di-n-butyl phthalate	ND.	mg/kg dry	0.382	1.	03/09/08 14:45	SW846 8270C	8030673			
1,4-Dichlorobenzene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
1,2-Dichlorobenzene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
1,3-Dichlorobenzene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
3,3-Dichlorobenzidine	ND	mg/kg dry	0.764	1	03/09/08 14:45	SW846 8270C	8030673			
2,4-Dichlorophenol	ND	ing/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Diethyl phthalate	ND	mg/kg dry	0.382	l	03/09/08 14:45	SW846 8270C	8030673			
2,4-Dimethylphenol	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Dimethyl phthalate	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673			
2,4-Dinitrophenol	ND.	mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673			
2,6-Dinitrotoluene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
2,4-Dinitrotoluene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Di-n-octyl phthalate	ND	mg/kg dry	0.382	· 1	03/09/08 14:45	SW846 8270C	8030673			
Bis(2-ethylhexyl)phthalate	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Fluoranthene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Fluorene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Hexachlorobenzene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Hexachlorobutadiene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Hexachlorocyclopentadiene	ND	mg/kg dry	0.382	- 1	03/09/08 14:45	SW846 8270C	8030673			
Hexachloroethane	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Indeno (1,2,3-cd) pyrene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Isophorone	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
2-Methylnaphthalene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
2-Methylphenol	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
3/4-Methylphenol	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
Naphthalene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
3-Nitroaniline	ND	mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673			
2-Nitroaniline	ND	mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673			
4-Nitroaniline	ND	mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673			
Nitrobenzene	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
4-Nitrophenol	ND	mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	803067			
2-Nîtrophenol	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
N-Nitrosodiphenylamine	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			
N-Nitrosodi-n-propylamine	ND	mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673			

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

					Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0298-09 (EB-4(10	-12) - Soil) - co	ont. Sample	ed: 03/03/08 14:	45				
Semivolatile Organic Compounds by E	PA Method 827	DC - cont.						
Pentachlorophenol	ND		mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673
Phenanthrene	ND		mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673
Phenol	ND		mg/kg dry	0.382	I	03/09/08 14:45	SW846 8270C	8030673
Pyrene	ND		mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673
1-Methylnaphthalene	ND		mg/kg dry	0.382	1	03/09/08 14:45	SW846_8270C	8030673
2,4,6-Trichlorophenol	ND		mg/kg dry	0.382	1	03/09/08 14:45	SW846 8270C	8030673
2,4,5-Trichlorophenol	ND		mg/kg dry	0.954	1	03/09/08 14:45	SW846 8270C	8030673
Surr: Terphenyl-d14 (26-128%)	70 %					03/09/08 14:45	SW846 8270C	803067.
Surr: 2,4,6-Tribromophenol (20-132%)	62 %					03/09/08 14:45	SW846 8270C	803067.
Surr: Phenol-d5 (23-113%)	64 %					03/09/08 14:45	SW846 8270C	803067.
Surr: 2-Fluorobiphenyl (19-109%)	57%					03/09/08 14:45	SW846 8270C	803067.
Surr: 2-Fluorophenol (19-105%)	58 %					03/09/08 14:45	SW846 8270C	803067.
Surr: Nitrobenzene-d5 (22-104%)	56 %					03/09/08 14:45	SW846 8270C	803067

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Chicago,, IL 60602 Project Number: 1782-308-03	Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRC0298 Atlanta Rush Project
	Attn		5	5

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Semivolatile Organic Compounds	by EPA Method 827	0C			• • • • • • • • • • • • • • • • • • • •		•••••
SW846 8270C	8030673	NRC0298-01	30.04	1.00	03/06/08 10:45	DXG	EPA 3550B
SW846 8270C	8030673	NRC0298-06	30.06	1.00	03/06/08 10:45	DXG	EPA 3550B
SW846 8270C	8030673	NRC0298-09	30.41	1.00	03/06/08 10:45	DXG	EPA 3550B
olatile Organic Compounds by I	EPA Method 8260B	<u>.</u>					
SW846 8260B	8030653	NRC0298-01	5.72	5.00	03/03/08 12:15	NKN	EPA 5035
SW846 8260B	8030653	NRC0298-06	5.20	5.00	03/03/08 13:40	NKN	EPA 5035
SW846 8260B	8030653	NRC0298-09	5.56	5.00	03/03/08 14:45	NKN	EPA 5035

THE LEADER IN ENVIRONMENTAL TESTING

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method 8260B					
8030653-BLK1						
Acetone	<0.0250 .		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Benzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Bromobenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Bromochloromethane	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Bromodichloromethanc	<0,000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Bromoform	<0.000530		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Bromomethane	<0.00157		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
2-Butanone	<0.00500		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
sec-Butylbenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
n-Butylbenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
tert-Butylbenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Carbon disulfide	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Carbon Tetrachloride	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Chlorobenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Chlorodibromomethane	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Chloroethane	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Chloroform	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Chloromethane	<0.000880		i mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
2-Chlorotoluene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
4-Chlorotoluene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2-Dibromo-3-chloropropane	<0.00100		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2-Dibromoethane (EDB)	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Dibromomethane	<0.000540		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,4-Dichlorobenzene	<0.000640		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,3-Dichlorobenzene	<0.000530		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2-Dichlorobenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Dichlorodifluoromethane	<0.000930		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1-Dichloroethane	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2-Dichloroethane	<0.000800		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
cis-1,2-Dichloroethene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1-Dichloroethene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
trans-1,2-Dichloroethene	<0.000670		mg/kg wet	8030653	8030653-BLKI	03/12/08 00:33
1,3-Dichloropropane	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2-Dichloropropane	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
2,2-Dichloropropane	<0.000420		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
cis-1,3-Dichloropropene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
trans-1,3-Dichloropropene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1-Dichloropropene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Ethylbenzene	<0.000670		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Hexachlorobutadiene	<0.000630		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
2-Hexanone	<0.00407		mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33

THE LEADER IN E	NVIRONMENTAL	TESTING
-----------------	--------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ł

Client	Weaver Boos Consultants LLC (1407793)
	70 West Madison, Suite 4250
	Chicago,, IL 60602

Attn

Carbazole

Carl Dawes

Work Order: Project Name: Project Number: Received:

NRC0298 Atlanta Rush Project 1782-308-03 03/05/08 08:00

.

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B				
8030653-BLK1	•				
Isopropylbenzene	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
p-Isopropyltoluene	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Methyl tert-Butyl Ether	<0.000670	mg/kg wet	8030653	8030653-BLKI	03/12/08 00:33
Methylene Chloride	<0.00348	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
4-Methyl-2-pentanone	<0.00426	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Naphthalene	<0.00151	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
n-Propylbenzene	<0.000530	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Styrene	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1,1,2-Tetrachloroethane	<0.000500	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1,2,2-Tetrachloroethane	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Tetrachloroethene	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Toluene	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2,3-Trichlorobenzene	<0.000660	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2,4-Trichlorobenzene	<0.000650	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1,2-Trichloroethane	<0.00102	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,1,1-Trichloroethane	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Trichloroethene	<0.000280	mg/kg wet	8030653	8030653-BLK1	. 03/12/08 00:33
Trichlorofluoromethane .	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2,3-Trichloropropane	<0.000550	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,3,5-Trimethylbenzene	<0.000670	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
1,2,4-Trimethylbenzene	<0.00127	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
Vinyl chloride	<0.000710	mg/kg wet	8030653	8030653-BLKI	03/12/08 00:33
Xylenes, total	<0.00172	mg/kg wet	8030653	8030653-BLK1	03/12/08 00:33
urrogate: 1,2-Dichloroethane-d4	107%	0.0.00	8030653	8030653-BLK1	03/12/08 00:33
urrogate: Dibromofluoromethane	108%		8030653	8030653-BLK1	03/12/08 00:33
urrogate: Toluene-d8	113%		8030653	8030653-BLK1	03/12/08 00:33
urrogate: 4-Bromofluorobenzene	116%		8030653	8030653-BLK1	03/12/08 00:33
				COULDS-DEXT	
emivolatile Organic Compounds	s by EPA Method 8270C				
030673-BLK1				•	
Acenaphthene	<0.0310	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Acenaphthylene	<0.0320	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Inthracene	<0.0330	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Benzo (a) anthracene	<0.0380	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Benzo (a) pyrene	<0.0290	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Benzo (b) fluoranthene	<0.0320	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
enzo (g,h,i) perylene	<0.0290	mg/kg wet	8030673	8030673-BLKI	. 03/07/08 19:01
enzo (k) fluoranthene	<0.0290	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Bromophenyl phenyl ether	<0.111	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
utyl benzyl phthalate	<0.0890	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
' 1-		• • •		Second Brit	00/0//00 19.01

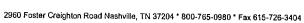
mg/kg wet

<0.165

8030673

8030673-BLK1

03/07/08 19:01


2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298	
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project	
	Chicago,, 1L 60602	Project Number:	1782-308-03	
Attn	Carl Dawes	Received:	03/05/08 08:00	

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Semivolatile Organic Compour	nds by EPA Method 82700	2					
8030673-BLK1	·						
4-Chloro-3-methylphenol	<0.100		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
4-Chloroaniline	<0.289		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Bis(2-chloroethoxy)methane	<0.111		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Bis(2-chloroethyl)ether	<0.135		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Bis(2-chloroisopropyl)ether	<0.102		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2-Chloronaphthalene	<0.0680		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2-Chlorophenol	<0.109		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
4-Chlorophenyl phenyl ether	<0.111		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Chrysene	<0.0390		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Dibenz (a,h) anthracene	< 0.0310		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Dibenzofuran	<0.0890		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Di-n-butyl phthalate	<0.0860		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
1,4-Dichlorobenzene	<0.115		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
1,2-Dichlorobenzene	<0.0880		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
1,3-Dichlorobenzene	<0.0800		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
3,3-Dichlorobenzidine	<0.270		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2,4-Dichlorophenol	<0.0870		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Diethyl phthalate	<0.0500		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2,4-Dimethylphenol	<0.281		mg/kg wet	8030673	8030673~BLK1	03/07/08 19:01	
Dimethyl phthalate	<0.0880		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
4,6-Dinitro-2-methylphenol	<0.0910		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2,4-Dinitrophenol	<0.135		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2,6-Dinitrotoluene	<0.111		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2,4-Dinitrotoluene	<0.0880		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Di-n-octyl phthalate	<0.132		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Bis(2-ethylhexyl)phthalate	<0.111		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Fluoranthene	<0.0340		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Fluorene	<0.0390		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Hexachlorobenzene	<0.0830		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Hexachlorobutadiene	<0.108		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Hexachlorocyclopentadiene	<0.111	•	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Hexachloroethane	<0.105		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Indeno (1,2,3-cd) pyrene	<0.0310		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Isophorone	<0.100		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2-Methylnaphthalene	<0.0330		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2-Methylphenol	<0.0990		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
3/4-Methylphenol	<0.145		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
Naphthalene	<0.0410		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
3-Nitroaniline	<0.110		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
2-Nitroaniline	<0.111		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	
4-Nitroaniline	<0.275		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01	

Tes

		•			
Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298	•	
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project		
	Chicago,, IL 60602	Project Number:	1782-308-03		
Attn	Carl Dawes	 Received:	03/05/08 08:00		

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compound	is by EPA Method 827	0C	•••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
8030673-BLK1			•			
Nitrobenzene	<0.106		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
4-Nitrophenol	<0.276		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
2-Nitrophenol	<0.197		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
N-Nitrosodiphenylamine	<0.109		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
N-Nitrosodi-n-propylamine	<0.122		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Pentachlorophenol	<0.0740		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Phenanthrene	<0.0340		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Phenol	<0.0690		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Ругепе	<0.0410		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Pyridine	<0.0940		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
1,2,4-Trichlorobenzene	<0.111		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
l-Methylnaphthalene	<0.0320		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
2,4,6-Trichlorophenol	<0.0870	•	mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
2,4,5-Trichlorophenol	<0.0680		mg/kg wet	8030673	8030673-BLK1	03/07/08 19:01
Surrogate: Terphenyl-d14	79%			8030673	8030673-BLK1	03/07/08 19:01
Surrogate: 2,4,6-Tribromophenol	66%			8030673	8030673-BLK1	03/07/08 19:01
Surrogate: Phenol-d5	65%			8030673	8030673-BLK1	03/07/08 19:01
Surrogate: 2-Fluorobiphenyl	64%			8030673	8030673-BLK1	03/07/08 19:01
Surrogate: 2-Fluorophenol	60%			8030673	8030673-BLK1	03/07/08 19:01
Surrogate: Nitrobenzene-d5	60%			8030673	8030673-BLK1	03/07/08 19:01

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

• •

ClientWcaver Boos Consultants LLC (1407793)Work Order:NRC029870 West Madison, Suite 4250Project Name:Atlanta Rush ProjectChicago, 1L 60602Project Number:1782-308-03AttnCarl DawesReceived:03/05/08 08:00

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 8260B	· · · · · · · · · · · · · · · · · · ·						
8030653-BS1								
Acetone	250	237		ug/kg	95%	49 - 150	8030653	03/11/08 23:05
Benzene	50.0	45.1		ug/kg	90%	76 - 130	8030653	03/11/08 23:05
Bromobenzene	50.0	46.6		ug/kg	93%	80 - 128	8030653	03/11/08 23:05
Bromochloromethane	50.0	47.7		ug/kg	95%	70 - 135	8030653	03/11/08 23:05
Bromodichloromethane	50.0	49.1		ug/kg	98%	78 - 135	8030653	03/11/08 23:05
Bromoform	50.0	46.8		ug/kg	94%	67 - 143	8030653	03/11/08 23:05
Bromomethane	50.0	42.4		ug/kg	85%	58 - 150	8030653	03/11/08 23:05
2-Butanone	250	255		ug/kg	102%	61 - 143	8030653	03/11/08 23:05
sec-Butylbenzene	50.0	48.0		ug/kg	96%	80 - 134	8030653	03/11/08 23:05
n-Butylbenzene	50.0	47.5		ug/kg	95%	71 - 141	8030653	03/11/08 23:05
tert-Butylbenzene	50.0	49.1		ug/kg	98%	79 - 132	8030653	03/11/08 23:05
Carbon disulfide	50.0	43.0		ug/kg	86%	70 - 134	8030653	03/11/08 23:05
Carbon Tetrachloride	50.0	47.5		ug/kg	95%	75 - 137	8030653	03/11/08 23:05
Chlorobenzene	50.0	46.6		ug/kg	93%	80 - 121	8030653	03/11/08 23:05
Chlorodibromomethane	50.0	50,6		ug/kg	101%	77 - 130	8030653	03/11/08 23:05
Chloroethane	50.0	37.8		ug/kg	76%	62 - 149	8030653	03/11/08 23:05
Chloroform	50.0	45.4		ug/kg	91%	75 - 130	8030653	03/11/08 23:05
Chloromethane	50.0	32.9		ug/kg	66%	35 - 130	8030653	03/11/08 23:05
2-Chlorotoluene	50.0	46.9		ug/kg	94%	80 - 131	8030653	03/11/08 23:05
4-Chlorotoluene	50.0	46.0		ug/kg	92%	80 - 129	8030653	03/11/08 23:05
1,2-Dibromo-3-chloropropane	50.0	52.2		ug/kg	104%	62 - 142	8030653	03/11/08 23:0
1,2-Dibromoethane (EDB)	50.0	50.6		ug/kg	101%	81 - 130	8030653	03/11/08 23:05
Dibromomethane	50.0	48.7		ug/kg	97%	77 - 133	8030653	03/11/08 23:0
1,4-Dichlorobenzene	50.0	45.8		ug/kg	92%	75 - 128	8030653	03/11/08 23:05
1,3-Dichlorobenzene	50.0	45.7		ug/kg	91%	79 - 128	8030653	03/11/08 23:0
1,2-Dichlorobenzene	50.0	47.5		ug/kg	95%	80 - 130	8030653	03/11/08 23:05
Dichlorodifluoromethane	50.0	25.2		ug/kg	50%	11 - 129	8030653	03/11/08 23:0:
1,1-Dichloroethane	50.0	46.3		ug/kg	93%	68 - 150	8030653	03/11/08 23:0:
1,2-Dichloroethane	50.0	48.6		ug/kg	97%	72 - 132	8030653	03/11/08 23:0
cis-1,2-Dichloroethene	50.0	47.1		ug/kg	94%	77 - 132	8030653	03/11/08 23:0
1,1-Dichloroethene	50.0	43.2		ug/kg	86%	75 - 133	8030653	03/11/08 23;0
trans-1,2-Dichloroethene	50.0	46.7		ug/kg	93%	79 - 133	8030653	03/11/08 23:0
1,3-Dichloropropane	50.0	49.1		ug/kg	98%	80 - 125	8030653	03/11/08 23:0
1,2-Dichloropropane	50.0	44.8		ug/kg	90%	75 - 124	8030653	03/11/08 23:0
2,2-Dichloropropane	50.0	45.8		ug/kg	92%	59 - 144	8030653	03/11/08 23:0
cis-1,3-Dichloropropene	50.0	48.6		ug/kg	97%	80 - 137	8030653	03/11/08 23:0
trans-1,3-Dichloropropene	50.0	48.6		ug/kg	97%	75 - 133	8030653	03/11/08. 23:0
1,1-Dichloropropene	50.0	45.9		ug/kg	92%	76 - 133	8030653	03/11/08 23:0
Ethylbenzeno	50.0	46.9		ug/kg	94%	80 - 128	8030653	03/11/08 23:0
Hexachlorobutadiene	50.0	48.2		ug/kg	96%	60 - 150	8030653	03/11/08 23:0
2-Hexanono	250	254		ug/kg	102%	63 - 149	8030653	03/11/08 23:0

TestAmericu

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ţ

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by El	PA Method 8260B					• • • • • • • • • • • •		
8030653-BS1								
Isopropylbenzene	50.0	41.4		ug/kg	83%	74 - 131	8030653	03/11/08 23:05
p-Isopropyltoluene	50.0	46.3		ug/kg	93%	75 - 133	8030653	03/11/08 23:05
Methyl tert-Butyl Ether	50.0	45.2		ug/kg	90%	67 - 130	8030653	03/11/08 23:05
Methylene Chloride	50.0	45.3		ug/kg	91%	65 - 144	8030653	03/11/08 23:05
4-Methyl-2-pentanone	250	254	•	ug/kg	102%	64 - 142	8030653	03/11/08 23:05
Naphthalene	50.0	46.0		ug/kg	92%	63 - 144	8030653	03/11/08 23:05
n-Propylbenzene	50.0	46.6		ug/kg	93%	80 - 131	8030653	03/11/08 23:05
Styrene	50.0	49.3		ug/kg	99%	80 - 144	8030653	03/11/08 23:05
1,1,1,2-Tetrachloroethane	50.0	50.6		ug/kg	101%	80 - 129	8030653	03/11/08 23:05
1,1,2,2-Tetrachloroethane	50.0	50.1		ug/kg	100%	73 - 139	8030653	03/11/08 23:05
Tetrachloroethene	50.0	46,0		ug/kg	92%	76 - 128	8030653	03/11/08 23:05
Toluene	50.0	46.0		ug/kg	92%	80 - 125	8030653	03/11/08 23:05
1,2,3-Trichlorobenzene	50.0	46.2		ug/kg	92%	64 - 136	8030653	03/11/08 23:05
1,2,4-Trichlorobenzene	50.0	45.8		ug/kg	92%	58 - 145	8030653	03/11/08 23:05
1,1,2-Trichloroethane	50.0	47.9		ug/kg	96%	80 - 127	8030653	03/11/08 23:05
1,1,1-Trichloroethane	50.0	46.7		ug/kg	93%	76 - 134	8030653	03/11/08 23:05
Trichloroethene	50.0	46.0		ug/kg	92%	75 - 131	8030653	03/11/08 23:05
Trichlorofluoromethane	50.0	38,0		ug/kg	76%	63 - 130	8030653	03/11/08 23:05
1,2,3-Trichloropropane	50.0	45.7		ug/kg	91%	66 - 129	8030653	03/11/08 23:05
1,3,5-Trimethylbenzene	50.0	47.2		ug/kg	94%	78 - 133	8030653	03/11/08 23:05
1,2,4-Trimethylbenzene	50.0	46.6		ug/kg	93%	76 - 135	8030653	03/11/08 23:05
Vinyl chloride	50.0	36.7		ug/kg	73%	58 - 134	8030653	03/11/08 23:05
Xylenes, total	150	140		ug/kg	93%	79 - 130	8030653	03/11/08 23:05
Surrogate: 1,2-Dichloroethane-d4	50.0	57.3			115%	41 - 150	8030653	03/11/08 23:05
Surrogate: Dibromofluoromethane	50.0	56.5			113%	55 - 139	8030653	03/11/08 23:05
Surrogate: Toluene-d8	50.0	57.4			115%	57 - 148	8030653	03/11/08 23:05
Surrogate: 4-Bromofluorobenzene	50.0	56.2			112%	58 - 150	8030653	03/11/08 23:05
Semivolatile Organic Compounds b	y EPA Method 8270C							
8030673-BS1								
Acenaphthene	1.67	1.45		mg/kg wet	87%	52 - 106	8030673	03/07/08 14:18
Acenaphthylene	1.67	1.50		mg/kg wet	90%	53 - 109	8030673	03/07/08 14:18
Anthracene	1.67	1.50		mg/kg wet	9 0%	54 - 124	8030673	03/07/08 14:18
Benzo (a) anthracene	1.67	1.42		mg/kg wet	85%	53 - 111	8030673	03/07/08 14:18
Benzo (a) pyrene	1,67	1.37		mg/kg wet	82%	52 - 122	8030673	03/07/08 14:18
Benzo (b) fluoranthene	1.67	1.54		mg/kg wet	92%	48 - 115	8030673	03/07/08 14:18
Benzo (g,h,i) perylene	1.67	1.31		mg/kg wet	79%	46 - 114	8030673	03/07/08 14:18
Benzo (k) fluoranthene	1.67	1.07	*	mg/kg wet	64%	41 - 121	8030673	03/07/08 14:18
4-Bromophenyl phenyl ether	1.67	1.28		mg/kg wet	77%	47 - 102	8030673	03/07/08 14:18
Butyl benzyl phthalate	1.67	1.60		mg/kg wet	96%	56 - 127	8030673	03/07/08 14:18
Carbazole	1.67	1.48		mg/kg wet	89%	53 - 113	8030673	03/07/08 14:18

*.**

ł

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

,

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	s by EPA Method 8270C		• • • • • • • • • • • •	•		• • • • • • • • • • •		
8030673-BS1	-							
4-Chloro-3-methylphenol	1.67	1.33		mg/kg wet	80%	42 - 121	8030673	03/07/08 14:18
4-Chloroaniline	1.67	1.34		mg/kg wet	80%	40 - 112	8030673	03/07/08 14:18
Bis(2-chloroethoxy)methane	1.67	1.29		mg/kg wet	77%	45 - 105	8030673	03/07/08 14:18
Bis(2-chloroethyl)ether	1.67	1.22		mg/kg wet	73%	45 - 106	8030673	03/07/08 14:18
Bis(2-chloroisopropyl)ether	1.67	1.11		mg/kg wet	67%	46 - 109	8030673	03/07/08 14:18
2-Chloronaphthalene	1.67	1.43		mg/kg wet	86%	49 - 105	8030673	03/07/08 14:18
2-Chlorophenol	1.67	1.32		mg/kg wet	79%	44 - 119	8030673	03/07/08 14:18
4-Chlorophenyl phenyl ether	1.67	1.28		mg/kg wet	77%	53 - 110	8030673	03/07/08 14:18
Chrysene	1.67	1.50		mg/kg wet	90%	49 - 113	8030673	03/07/08 14:18
Dibenz (a,h) anthracene	1.67	1.38		mg/kg wet	83%	47 - 117	8030673	03/07/08 14:18
Dibenzofuran	1.67	1.47		mg/kg wet	88%	55 - 111	8030673	03/07/08 14:18
Di-n-butyl phthalate	1.67	1.50		mg/kg wet	90%	54 - 150	8030673	03/07/08 14:18
1,4-Dichlorobenzene	1.67	1,21		mg/kg wet	73%	35 ~ 109	8030673	03/07/08 14:18
1,2-Dichlorobenzene	1.68	1.27		mg/kg wet	75%	36 - 112	8030673	03/07/08 14:18
1,3-Dichlorobenzene	1.67	1.26		mg/kg wet	75%	36 - 110	8030673	03/07/08 14:18
3,3-Dichlorobenzidine	1.67	1,33		mg/kg wet	80%	42 - 111	8030673	03/07/08 14:18
2,4-Dichlorophenol	1.67	1.33		mg/kg wet	80%	40 - 118	8030673	03/07/08 14:18
Diethyl phthalate	1.67	1.29		mg/kg wet	77%	43 - 122	8030673	03/07/08 14:18
2,4-Dimethylphenol	1.67	1.49		mg/kg wet	89%	31 - 128	8030673	03/07/08 14:18
Dimethyl phthalate	1.67	1.42		mg/kg wet	85%	54 - 111	8030673	03/07/08 14:18
4,6-Dinitro-2-methylphenol	1.67	1.30		mg/kg wet	78%	24 - 131	8030673	03/07/08 14:18
2,4-Dinitrophenol	1.67	0.911		mg/kg wet	55%	11 - 148	8030673	03/07/08 14:18
2,6-Dinitrotoluene	1.67	1.61		mg/kg wet	97%	51 - 119	8030673	03/07/08 14:18
2,4-Dinitrotoluene	1.67	1.60		mg/kg wet	96%	54 - 113	8030673	03/07/08 14:18
Di-n-octyl phthalate	1.67	1.50		mg/kg wet	90%	45 - 134	8030673	03/07/08 14:18
Bis(2-ethylhexyl)phthalate	1.67	1.61		mg/kg wet	97%	52 - 122	8030673	03/07/08 14:18
Fluoranthene	1.67	1,50		mg/kg wet	90%	52 - 113	8030673	03/07/08 14:18
Fluorene	1.67	1.46		mg/kg wet	87%	54 - 107	8030673	03/07/08 14:18
Hexachlorobenzene	1.67	1.40		mg/kg wet	84%	51 - 117	8030673	03/07/08 14:18
Hexachlorobutadiene	1.67	1.31		mg/kg wet	78%	38 - 117	8030673	03/07/08 14:13
Hexachlorocyclopentadiene	1.67	1.03		mg/kg wet	62%	14 - 123	8030673	03/07/08 14:11
Hexachloroethane	1.67	1.16		mg/kg wet	70%	40 - 114	8030673	03/07/08 14:18
Indeno (1,2,3-cd) pyrene	1.67	1,40		mg/kg wet	84%	47 - 115	8030673	03/07/08 14:1
Isophorone	1.67	1.32		mg/kg wet	79%	35 - 107	8030673	03/07/08 14:1
2-Methylnaphthalene	1.67	1.31		mg/kg wet	79%	42 - 112	8030673	03/07/08 14:1
2-Methylphenol	1.67	1.30		mg/kg wet	78%	44 - 119	8030673	03/07/08 14:1
3/4-Methylphenol	1.67	1,40		mg/kg wet	84%	49 - 129	8030673	03/07/08 14:1
Naphthalene	1.67	1.30		mg/kg wet	78%	34 ~ 107	8030673	03/07/08 14:1
3-Nitroaniline	1.67	1.46		mg/kg wet	88%	50 - 123	8030673	03/07/08 14:1
2-Nitroaniline	1.67	1.49		mg/kg wet	89%	54 - 120	8030673	03/07/08 14:1
4-Nitroanilino	1.67	1.45		mg/kg wet	87%	46 - 124	8030673	03/07/08 14:1

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Work Order:	NRC
Project Name:	Atlan
Project Number:	1782
Received:	03/05

NRC0298 Atlanta Rush Project 1782-308-03 03/05/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C	**************	• • • • • • • • • • • •	• • • • • • • • • • • • • • • •			• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
8030673-BS1								
Nitrobenzene	1.67	1.27		mg/kg wet	76%	35 - 102	8030673	03/07/08 14:18
4-Nitrophenol	1.67	1.40		mg/kg wet	84%	32 - 138	8030673	03/07/08 14:18
2-Nitrophenol	1.67	1.37		mg/kg wet	82%	34 - 119	8030673	03/07/08 14:18
N-Nitrosodiphenylamine	1.67	1.54		mg/kg wet	92%	61 - 139	8030673	03/07/08 14:18
N-Nitrosodi-n-propylamine	1.67	1.09		mg/kg wet	65%	44 - 117	8030673	03/07/08 14:18
Pentachiorophenol	1.67	1.50		mg/kg wet	90%	38 - 141	8030673	03/07/08 14:18
Phenanthrene	1.67	1.46		mg/kg wet	88%	53 - 108	8030673	03/07/08 14:18
Phenol	1.67	1.29		mg/kg wet	77%	43 - 122	8030673	03/07/08 14:18
Pyrene	1.67	1.51		mg/kg wet	91%	45 - 122 54 - 113	8030673	
Pyridine	1.67	0.932		mg/kg wet	56%	30 - 103		03/07/08 14:18
1,2,4-Trichlorobenzene	1.67	1.30		mg/kg wet	78%	30 - 103 35 - 102	8030673	03/07/08 14:18
1-Methylnaphthalene	1.67	1.29		mg/kg wet	787% 77%	35 - 102 36 - 100	8030673	03/07/08 14:18
2,4,6-Trichlorophenol	1.67	1,46		mg/kg wet	88%	36 - 100 50 - 122	8030673	03/07/08 14:18
2,4,5-Trichlorophenol	1,67	1.50		mg/kg wet	88% 90%	_	8030673	03/07/08 14:18
Surrogate: Terphenyl-d14	1,67	1.19		ing/kg wei	90% 71%	45 - 122 26 - 128	8030673	03/07/08 14:18
Surrogate: 2,4,6-Tribromophenol	1,67	1.29				26 - 128	8030673	03/07/08 14:18
Surrogate: Phenol-dS	1,67	1.16			78%	20 - 132	8030673	03/07/08 14:18
Surrogate: 2-Fluorobiphenyl	1.67	1.18			70%	23 - 113	8030673	03/07/08 14:18
Surrogate: 2-Fluorophenol	1.67	1.18			71%	19 - 109	8030673	03/07/08 14:18
Surrogate: Nitrobenzene-d5	1,67	1.13			66% 68%	19 - 105 22 - 104	8030673 8030673	03/07/08 14:18 03/07/08 14:18

THE LEADER IN ENVIRONMENTAL TESTING

1

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Work Order:	NRC0298
Project Name:	Atlanta Rush Project
Project Number:	1782-308-03
Received:	03/05/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD 1	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 8	8260B			• • • • • • • •			• • • • • • •				
8030653-BSD1												
Acetone		241	MNR1	ug/kg	250	96%	49 - 150	1	45	8030653		03/11/08 23:35
Benzene		46.0	MNR1	ug/kg	50.0	92%	76 - 130	2	43	8030653		03/11/08 23:35
Bromobenzene		46.7	MNRI	ug/kg	50.0	93%	80 - 128	0.2	50	8030653		03/11/08 23:35
Bromochloromethane		48.7	MNRI	ug/kg	50 .0	97%	70 - 135	2	32	8030653		03/11/08 23:35
Bromodichloromethane		48.4	MNR1	ug/kg	50.0	97%	78 - 135	1	37	8030653		03/11/08 23:35
Bromoform		46.8	MNR1	ug/kg	50.0	94%	67 - 143	0.02	50	8030653		03/11/08 23:35
Bromomethane		41,3	MNRI	ug/kg	50.0	83%	58 - 150	3	50	8030653		03/11/08 23:35
2-Butanone		251	MNRI	ug/kg	250	100%	61 - 143	1	43	8030653		03/11/08 23:35
sec-Butylbenzene		48. 6	MNR1	ug/kg	50.0	97%	80 - 134	ι	50	8030653		03/11/08 23:35
n-Butylbenzene		47.6	MNRI	ug/kg	50.0	95%	71 - 141	0.2	50	8030653		03/11/08 23:35
tert-Butylbenzene		49.8	MNRI	ug/kg	\$0.0	100%	79 - 132	1	50	8030653		03/11/08 23:35
Carbon disulfide		43.6	MNR1	ug/kg	50.0	87%	70 - 134	1	47	8030653		03/11/08 23:3
Carbon Tetrachloride		48.8	MNR1	ug/kg	50.0	98%	75 - 137	3	44	8030653		03/11/08 23:3:
Chlorobenzene		47.4	MNR1	ug/kg	50.0	95%	80 - 121	2	44	8030653		03/11/08 23:3
Chlorodibromomethane		50.4	MNR1	ug/kg	50.0	101%	77 - 130	0.6	45	8030653		03/11/08 23:3
Chloroethane		38.2	MNR1	ug/kg	50.0	76%	62 - 149	1	50	8030653		03/11/08 23:3
Chloroform		45.3	MNRI	ug/kg	50.0	91%	75 - 130	0.3	36	8030653		03/11/08 23:3
Chloromethane		33.4	MNR1	ug/kg	50.0	67%	35 - 130	1	50	8030653		03/11/08 23:3
2-Chlorotoluene		47.8	MNR1	ug/kg	50.0	96%	80 - 131	2	50	8030653		03/11/08 23:3
4-Chlorotaluene		46.1	MNR1	ug/kg	50.0	92%	80 - 129	0.2	50	8030653		03/11/08 23:3
1,2-Dibromo-3-chloropropane		52.5	MNR1	ug/kg	50.0	105%	62 - 142	0.5	50	8030653		03/11/08 23:3
1,2-Dibromoethane (EDB)		50.5	MNR1	ug/kg	50.0	101%	81 - 130	0.2	50	8030653		03/11/08 23:3
Dibromomethane		48.8	MNRI	ug/kg	50.0	98%	77 - 133	0.2	45	8030653		03/11/08 23:3
1,4-Dichlorobenzene		45.6	MNRI	ug/kg	50.0	91%	75 - 128	· 0.3	50	8030653		03/11/08 23:3
1,3-Dichlorobenzene		46.2	MNRI	ug/kg	50.0	92%	79 - 128	1	50	8030653		03/11/08 23:3
1,2-Dichlorobenzene		48,3	MNR1	ug/kg	50,0	97%	80 - 130	2	50	8030653		03/11/08 23:3
Dichlorodifluoromethane		25.3	MNRI	ug/kg	50.0	51%	11 - 129	0.4	43	8030653		03/11/08 23:3
1,1-Dichloroethane		47.3	MNR1	ug/kg	50.0	95%	68 - 150	2	37	8030653		03/11/08 23:3
1,2-Dichloroethane		48.8	MNR1	ug/kg	50.0	98%	72 - 132	0.5	44	8030653		03/11/08 23:3
cis-1,2-Dichloroethene		47.6	MNR1	ug/kg	50.0	95%	77 - 132	1	35	8030653		03/11/08 23:3
1,1-Dichloroethene		43.5	MNRI	ug/kg	50.0	87%	75 - 133	0.7	41	8030653		03/11/08 23:3
trans-1,2-Dichloroethene		47.4	MNRI	ug/kg	50.0	95%	79 - 133	1	37	8030653		03/11/08 23:3
1,3-Dichloropropane		49.2	MNR1	ug/kg	50.0	98%	80 - 125	0.3	44	8030653		03/11/08 23:3
1,2-Dichloropropane		45.2	MNR1	ug/kg	50.0	90%	75 - 124	1	35	8030653		03/11/08 23:3
2,2-Dichloropropane		45.9	MNR1	ug/kg	50.0	92%	59 - 144	0.2	33	8030653		03/11/08 23:3
cis-1,3-Dichloropropene		48.5	MNR1	ug/kg	50.0	97%	80 - 137	0.3	43	8030653		03/11/08 23:3
trans-1,3-Dichloropropene		48.5	MNR1	ug/kg	50.0	97%	75 - 133	0.3	50	8030653		03/11/08 23:3
1,1-Dichloropropene		46.4	MNR1	ug/kg	50.0	93%	76 - 133	1	41	8030653		03/11/08 23:3
Ethylbenzene		47.6	MNR1	ug/kg	50.0	95%	80 - 128	2	48	8030653		03/11/08 23:3
Hexachlorobutadiene		49.9	MNRI	ug/kg	50.0	100%	60 - 150	4	50	8030653		03/11/08 23::
2-Hexanong		255	MNRI	ug/kg	250	102%		0.4	50	8030653		03/11/08 23:3

1

TestAme

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRC0298 Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

۰,

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	3260B										
8030653-BSD1								•		•		
Isopropylbenzene		42.0	MNR1	ug/kg	50.0	84%	74 - 131	1	50	8030653		03/11/08 23:35
p-Isopropyltoluene		46.6	MNR1	ug/kg	50.0	93%	75 - 133	0.7	50	8030653		03/11/08 23:35
Methyl tert-Butyl Ether		45.0	MNR1	ug/kg	50.0	90%	67 - 130	0.6	45	8030653		03/11/08 23:35
Methylene Chloride		46.3	MNR1	ug/kg	50.0	93%	65 - 144	2	39	8030653		03/11/08 23:35
4-Methyl-2-pentanone		255	MNR1	ug/kg	250	102%	64 - 142	0.4	50	8030653		03/11/08 23:35
Naphthalene		48.8	MNR1	ug/kg	50.0	98%	63 - 144	6	50	8030653		03/11/08 23:35
n-Propylbenzene		46.4	MNRI	ug/kg	50.0	93%	80 - 131	0.5	50	8030653		03/11/08 23:35
Styrene		49.9	MNR1	ug/kg	50.0	100%	80 - 144	I	50	8030653		03/11/08 23:35
1,1,1,2-Tetrachloroethane		50.6	MNRI	ug/kg	50.0	101%	80 - 129	0.04	43	8030653		03/11/08 23:35
1,1,2,2-Tetrachloroethane		49.8	MNR1	ug/kg	50.0	100%	73 - 139	0.7	50	8030653		03/11/08 23:35
Tetrachloroethene		46.9	MNR1	ug/kg	50.0	94%	76 - 128	2	45	8030653		03/11/08 23:35
Toluene		46.6	MNR1	ug/kg	50.0	93%	80 - 125	1	44	8030653		03/11/08 23:35
1,2,3-Trichlorobenzene		47.8	MNRI	ug/kg	50.0	96%	64 ~ 136	3	50	8030653		03/11/08 23:35
1,2,4-Trichlorobenzene		47.0	MNR1	ug/kg	50.0	94%	58 - 145	2	50	8030653		03/11/08 23:35
1,1,2-Trichloroethane		48.4	MNRI	ug/kg	50.0	97%	80 - 127	1	41	8030653		03/11/08 23:35
1,1,1-Trichloroethane		47.4	MNR1	ug/kg	50.0	95%	. 76 - 134	2	39	8030653		03/11/08 23:35
Trichloroethene		46.8	MNR1	ug/kg	50.0	94%	75 - 131	2	40	8030653		03/11/08 23:35
Trichlorofluoromethane		38.3	MNR1	ug/kg	50.0	77%	63 - 130	1	42	8030653		03/11/08 23:35
1,2,3-Trichloropropane		45.4	MNR1	ug/kg	50.0	91%	66 - 129	0.8	50	8030653		03/11/08 23:35
1,3,5-Trimethylbenzene		47.6	MNRI	ug/kg	50.0	95%	78 - 133	1	50	8030653		03/11/08 23:35
1,2,4-Trimethylbenzene		47.2	MNR1	ug/kg	50.0	94%	76 - 135	1	50	8030653		03/11/08 23:35
Vinyl chloride		37.0	MNR1	ug/kg	50.0	74%	58 - 134	0.9	41	8030653		03/11/08 23:35
Xylenes, total		142	MNRI	ug/kg	150	95%	79 - 130	2	48 ·	8030653		03/11/08 23:35
Surrogate: 1,2-Dichloroethane-d4		57.5		ug/kg	50.0	115%	41 - 150			8030653	-	03/11/08 23:35
Surrogate: Dibromofluoromethane		55.8		ug/kg	50.0	112%	55 - 139	•		8030653		03/11/08 23:35
Surrogate: Toluene-d8		56.9		ug/kg	50.0	114%	57 - 148			8030653		03/11/08 23:35
Surrogate: 4-Bromofluorobenzene		56.3		ug/kg	50.0	113%	58 - 150			8030653		03/11/08 23:35

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike

Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method	8270C							
8030673-MS1									
Acenaphthene	ND	1.60	mg/kg dry	1.85	86%	28 - 117	8030673	NRC0283-01	03/07/08 19:29
Acenaphthylene	ND	1.61	mg/kg dry	1.85	87%	33 - 113	8030673	NRC0283-01	03/07/08 19:29
Anthracene	ND	1.62	mg/kg dry	1.85	88%	31 - 131	8030673	NRC0283-01	03/07/08 19:29
Benzo (a) anthracene	ND	1.56	mg/kg dry	1.85	85%	29 - 124	8030673	NRC0283-01	03/07/08 19:29
Benzo (a) pyrene	ND	1.53	mg/kg dry	1.85	83%	30 - 127	8030673	NRC0283-01	03/07/08 19:29
Benzo (b) fluoranthene	ND	1.85	mg/kg dry	1.85	100%	26 - 128	8030673	NRC0283-01	03/07/08 19:29
Benzo (g,h,i) perylene	ND	1.51	mg/kg dry	1.85	82%	21 - 122	8030673	NRC0283-01	03/07/08 19:29
Benzo (k) fluoranthene	ND	1.36	mg/kg dry	1.85	74%	20 - 130	8030673	NRC0283-01	03/07/08 19:29
4-Bromophenyl phenyl ether	ND	1.33	mg/kg dry	1.85	72%	30 - 106	8030673	NRC0283-01	03/07/08 19:29
Butyl benzyl phthalate	ND	1.75	mg/kg dry	1.85	95%	40 - 131	8030673	NRC0283-01	03/07/08 19:29
Carbazole	ND	1.57	mg/kg dry	1.85	85%	37 - 116	8030673	NRC0283-01	03/07/08 19:29
4-Chloro-3-methylphenol	ND	1.43	mg/kg dry	1,85	77%	19 - 128	8030673	NRC0283-01	03/07/08 19:29
4-Chloroaniline	ND	1.35	mg/kg dry	1.85	73%	10 - 119	8030673	NRC0283-01	03/07/08 19:29
Bis(2-chloroethoxy)methane	ND	1.37	· mg/kg dry	1.85	74%	30 - 110	8030673	NRC0283-01	03/07/08 19:29
Bis(2-chloroethyl)ether	ND	1.41	mg/kg dry	1.85	77%	36 - 106	8030673	NRC0283-01	03/07/08 19:29
Bis(2-chloroisopropyl)ether	ND	1.27	mg/kg dry	1.85	69%	34 - 109	8030673	NRC0283-01	03/07/08 19:29
2-Chloronaphthalene	ND	1.59	mg/kg dry	1.85	86%	31 - 107	8030673	NRC0283-01	03/07/08 19:29
2-Chlorophenol	ND	1.46	mg/kg dry	1,85	79%	32 - 119	8030673	NRC0283-01	03/07/08 19:29
4-Chlorophenyl phenyl ether	ND	1.40	mg/kg dry	1.85	76%	35 - 113	8030673	NRC0283-01	03/07/08 19:29
Chrysene	ND	1.54	mg/kg dry	1.85	83%	30 - 119	8030673	NRC0283-01	03/07/08 19:29
Dibenz (a,h) anthracene	ND	1.54	mg/kg dry	1.85	84%	27 - 122	8030673	NRC0283-01	03/07/08 19:29
Dibenzofuran	ND	1.62	mg/kg dry	1.85	88%	33 - 121	8030673	NRC0283-01	03/07/08 19:29
Di-n-butyl phthalate	ND	1.62	mg/kg dry	1.85	88%	38 - 123	8030673	NRC0283-01	03/07/08 19:29
1,4-Dichlorobenzene	ND	1.37	mg/kg dry	1.85	74%	26 - 109	8030673	NRC0283-01	03/07/08 19:29
1,2-Dichlorobenzene	ND	1.50	mg/kg dry	1.86	80%	26 - 112	8030673	NRC0283-01	03/07/08 19:29
1,3-Dichlorobenzene	ND	1.41	mg/kg dry	1.85	76%	26 - 110	8030673	NRC0283-01	03/07/08 19:29
3,3-Dichlorobenzidine	ND	1.24	mg/kg dry	1.85	67%	10 - 112	8030673	NRC0283-01	03/07/08 19:29
2,4-Dichlorophenol	ND	1.45	mg/kg dry	1.85	78%	28 - 118	8030673	NRC0283-01	03/07/08 19:29
Diethyl phthalate	ND	1.40	mg/kg dry	1.85	76%	29 - 122	8030673	NRC0283-01	03/07/08 19:29
2,4-Dimethylphenol	ND	1.49	mg/kg dry	1.85	81%	10 - 128	8030673	NRC0283-01	03/07/08 19:29
Dimethyl phthalate	ND	1.50	mg/kg dry	1.85	81%	31 - 118	8030673	NRC0283-01	03/07/08 19:29
4,6-Dinitro-2-methylphenol	ND	0.505	mg/kg dry	1.85	27%	10 - 136	8030673	NRC0283-01	03/07/08 19:29
2,4-Dinitrophenol	ND	0.591	mg/kg dry	1.85	32%	10 - 148	8030673	NRC0283-01	03/07/08 19:29
2,6-Dinitrotoluene	ND	1.63	mg/kg dry	1.85	88%	28 - 125	8030673	NRC0283-01	03/07/08 19:29
2,4-Dinitrotoluene	ND	1.65	mg/kg dry	1.85	89%	30 - 119	8030673	NRC0283-01	03/07/08 19:29
Di-n-octyl phthalate	ND	1.05	mg/kg dry	1.85	107%	31 - 137	8030673	NRC0283-01	03/07/08 19:29
Bis(2-ethylhexyl)phthalate	1.82	2.79	mg/kg dry	1.85	53%	38 - 125	8030673	NRC0283-01	03/07/08 19:29

TestAmeria 1

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRC0298

1782-308-03

Atlanta Rush Project

Work Order;

Project Name:

Project Number:

Ę

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes				Project Numbe Received:		2-308-03)5/08 08:00			
		PROJE	CT QUALITY C	ONTROL D	ATA				
			Matrix Spike -						
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method	18270C		* * * * * * * * * * * * *	• • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • •
8030673-MS1									
Fluoranthene	ND	1.57	mg/kg dry	1.85	85%	23 - 132	8030673	NRC0283-01	03/07/08 19:
Fluorene	ND	1.62	mg/kg dry	1.85	88%	38 - 110	8030673	NRC0283-01	03/07/08 19:
Hexachlorobenzene	ND	1.50	mg/kg dry	1.85	81%	35 - 120	8030673	NRC0283-01	03/07/08 19:
Hexachlorobutadiene	ND	1.41	mg/kg dry	1.85	76%	28 - 113	8030673	NRC0283-01	03/07/08 19:
Hexachlorocyclopentadiene	ND	0.887	mg/kg dry	1.85	48%	10 - 123	8030673	NRC0283-01	03/07/08 19:2
Hexachloroethane	ND	1.38	mg/kg dry	4.85	75%	20 - 120	8030673	NRC0283-01	03/07/08 19:2
Indeno (1,2,3-cd) pyrene	ND	1.54	mg/kg dry	1.85	83%	24 - 122	8030673	NRC0283-01	03/07/08 19:2
Isophorone	ND	1,39	mg/kg dry	1.85	75%	23 - 108	8030673	NRC0283-01	03/07/08 19:2
2-Methylnaphthalene	ND	1.41	mg/kg dry	1.85	76%	26 - 116	8030673	NRC0283-01	03/07/08 19:2
2-Methylphenol	ND	1.44	mg/kg dry	1.85	78%	23 - 122	8030673	NRC0283-01	03/07/08 19:2
3/4-Methylphenol	ND	1.57	mg/kg dry	1.85	85%	23 - 138	8030673	NRC0283-01	03/07/08 19:2
Naphthalene	ND	1.44	mg/kg dry	1.85	78%	14 - 117	8030673	NRC0283-01	03/07/08 19:2
3-Nitroaniline	ND	1.55	mg/kg dry	1.85	84%	27 - 124	8030673	NRC0283-01	03/07/08 19:2
2-Nitroaniline	ND	1.66	mg/kg dry	1.85	90%	35 - 122	8030673	NRC0283-01	
4-Nitroaniline	ND	1.58	mg/kg dry	1.85	86%	25 - 124	8030673	NRC0283-01	03/07/08 19:2
Nitrobenzene	ND	1.42	mg/kg dry	1.85	77%	19 - 105	8030673		03/07/08 19:2
4-Nitrophenol	ND	1.63	mg/kg dry	1.85	88%	14 - 144	8030673	NRC0283-01	03/07/08 19:2
2-Nitrophenol	ND	1.39	mg/kg dry	1.85	75%	23 - 119		NRC0283-01	03/07/08 19:2
N-Nitrosodiphenylamine	ND	1.58	mg/kg dry	1.85	86%	37 - 144	8030673	NRC0283-01	03/07/08 19:2
N-Nitrosodi-n-propylamine	ND	1.26	mg/kg dry	1.85	68%	28 - 121	8030673	NRC0283-01	03/07/08 19:2
Pentachlorophenol	ND	1.65	mg/kg dry	1.85	89%		8030673	NRC0283-01	03/07/08 19:2
Phenanthrene	ND	1.58	mg/kg dry	1.85	86%	13 - 149	8030673	NRC0283-01	03/07/08 19:2
Phenol	ND	1.50	mg/kg dry	1.85		21 - 130	8030673	NRC0283-01	03/07/08 19:2
Pyrene	ND	1.72			81%	31 - 116	8030673	NRC0283-01	03/07/08 19:2
Pyridine	ND	0.530	mg/kg dry	1.85	93%	24 - 133	8030673	NRC0283-01	03/07/08 19:2
,2,4-Trichlorobenzene	ND	1.41	mg/kgˈdry	1.85	29%	.10 - 103	8030673	NRC0283-01	03/07/08 19:2
-Methyinaphthalene	ND	1.38	mg/kg dry	1.85	76%	27 - 102	8030673	NRC0283-01	03/07/08 19:2
,4,6-Trichlorophenol	ND	1.58	mg/kg dry	1.85	75%	10 - 121	8030673	NRC0283-01	03/07/08 19:2
,4,5-Trichlorophenol	ND	1.68	mg/kg dry	1.85	89%	32 - 122	8030673	NRC0283-01	03/07/08 19:2
urrogate: Terphenyl-dI4			mg/kg dry	1.85 ·	91%	30 - 122	8030673	NRC0283-01	03/07/08 19:2
urrogate: 2,4,6-Tribromophenol		1.30	mg/kg dry	1.85	. 70%	26 - 128	8030673	NRC0283-01	03/07/08 19:29
urrogate: Phenol-dS		1.29	mg/kg dry	1.85	70%	20 - 132	8030673	NRC0283-01	03/07/08 19:2
urrogale: 2-Fluorobiphenyi		1.30	mg/kg dry	1.85	70%	23 - 113	8030673	NRC0283-01	03/07/08 19:2
urrogale: 2-Fluorophenol		1.23	mg/kg dry	1.85	67%	19 - 109	8030673	NRC0283-01	03/07/08 19:29
urrogate: Nitrobenzene-d5		1.21	mg/kg dry	1.85	66%	19 - 105 .	8030673	NRC0283-01	03/07/08 19:29
, ogano, minovenzene-as		1.17	mg/kg dry	1.85	63%	22 - 104	8030673	NRC0283-01	03/07/08 19:2

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

				Matrix Sp	ike Duj	-						
Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Meti	10d 8270C										
8030673-MSD1												
Acenaphthene	ND	1.55		mg/kg dry	1.86	83%	28 - 117	3	33	8030673	NRC0283-01	03/07/08 19:57
Acenaphthylene	ND	1.63		mg/kg dry	1.86	87%	33 - 113	1	38	8030673	NRC0283-01	03/07/08 19:57
Anthracene	ND	1.58		mg/kg dry	1.86	85%	31 - 131	3	32	8030673	NRC0283-01	03/07/08 19:57
Benzo (a) anthracene	ND	1.53		mg/kġ dry	1.86	82%	29 - 124	2	26	8030673	NRC0283-01	03/07/08 19:57
Benzo (a) pyrene	ND	1.49		mg/kg dry	1.86	80%	3 0 - 127	3	31	8030673	NRC0283-01	03/07/08 19:57
Benzo (b) fluoranthene	ND	1.71		mg/kg dry	1.86	92%	26 - 128	8	37	8030673	NRC0283-01	03/07/08 19:57
Benzo (g,h,i) perylene	ND	1.37		mg/kg dry	1.86	73%	21 - 122	10	28	8030673	NRC0283-01	03/07/08 19:57
Benzo (k) fluoranthene	ND	1.27		mg/kg dry	1.86	68%	20 - 130	7	35	8030673	NRC0283-01	03/07/08 19:57
4-Bromophenyl phenyl ether	ND	1.25		mg/kg dry	1.86	67%	30 - 106	6	38	8030673	NRC0283-01	03/07/08 19:57
Butyl benzyl phthalate	ND ·	1.69		mg/kg dry	1.86	91%	40 - 131	3	37	8030673	NRC0283-01	03/07/08 19:57
Carbazole	ND	1.52		mg/kg dry	1.86	82%	37 - 116	4	31	8030673	NRC0283-01	03/07/08 19:57
4-Chloro-3-methylphenol	ND	1:45		mg/kg dry	1.86	78%	19 - 128	l	38	8030673	NRC0283-01	03/07/08 19:57
4-Chloroaniline	ND	1.36		mg/kg dry	1.86	73%	10 - 119	0.7	44	8030673	NRC0283-01	03/07/08 19:57
Bis(2-chloroethoxy)methane	ND	1.40		mg/kg dry	1.86	75%	30 - 110	2	34	8030673	NRC0283-01	03/07/08 19:57
Bis(2-chloroethyl)ether	ND	1.34		mg/kg dry	1.86	72%	36 - 106	5	38	8030673	NRC0283-01	03/07/08 19:57
Bis(2-chloroisopropyl)ether	ND	1.23		mg/kg dry	1.86	66%	34 - 109	3	40	8030673	NRC0283-01	03/07/08 19:57
2-Chloronaphthalene	ND	1.52		mg/kg dry	1.86	82%	31 - 107	4	38	8030673	NRC0283-01	03/07/08 19:57
2-Chlorophenol	ND	1.41		mg/kg dry	1.86	76%	32 - 119	4	40	8030673	NRC0283-01	03/07/08 19:57
4-Chlorophenyl phenyl ether	ND	1.30		mg/kg dry	1.86	70%	35 - 113	8	37	8030673	NRC0283-01	03/07/08 19:57
Chrysene	ND	1.50		mg/kg dry	1.86	81%	30 - 119	2	31	8030673	NRC0283-01	03/07/08 19:57
Dibenz (a,h) anthracene	ND	1.38		mg/kg dry	1.86	74%	27 - 122	11	32	8030673	NRC0283-01	03/07/08 19:57
Dibenzofuran	ND	1.52		mg/kg dry	1.86	82%	33 - 121	6	35	8030673	NRC0283-01	03/07/08 19:57
Di-n-butyl phthalate	ND	1.53		mg/kg dry	1.86	82%	38 - 123	6	31	8030673	NRC0283-01	03/07/08 19:57
1,4-Dichlorobenzene	ND	1.37		mg/kg dry	1.86	73%	26 - 109	0.4	41	8030673	NRC0283-01	03/07/08 19:57
1,2-Dichlorobenzene	ND	1.43		mg/kg dry	1.88	76%	26 - 112	5	40	8030673	NRC0283-01	03/07/08 19:57
1,3-Dichlorobenzene	ND	1.42		mg/kg dry	1.86	76%	26 - 110	0.8	41	8030673	NRC0283-01	03/07/08 19:57
3,3-Dichlorobenzidine	ND	1.26		mg/kg dry	1.86	68%	10 - 112	2	48	8030673	NRC0283-01	03/07/08 19:57
2,4-Dichlorophenol	ND	1.39		mg/kg dry	1.86	75%	28 - L18	4	32	8030673	NRC0283-01	03/07/08 19:57
Diethyl phthalate	ND	1.30		mg/kg dry	1.86	70%	29 - 122	7	37	8030673	NRC0283-01	03/07/08 19:57
2,4-Dimethylphenol	ND	1.50		mg/kg dry	1.86	80%	10 - 128	0.1	50	8030673	NRC0283-01	03/07/08 19:57
Dimethyl phthalate	ND	1.40		mg/kg dry	1.86	75%	31 - 118	7	39	8030673	NRC0283-01	03/07/08 19:57
4,6-Dinitro-2-methylphenol	ND	0.532		mg/kg dry	1.86	29%	10 - 136	5	45	8030673	NRC0283-01	03/07/08 19:57
2,4-Dinitrophenol	ND	0.569		mg/kg dry	1.86	31%	10 - 148	4	50	8030673	NRC0283-01	03/07/08 19:57
2,6-Dinitrotoluene	ND	1.57		mg/kg dry	1.86	84%	28 - 125	4	37	8030673	NRC0283-01	03/07/08 19:57
2,4-Dinitrotoluene	ND	1.55		mg/kg dry	1.86	83%	30 - 119	6	41	8030673	NRC0283-01	03/07/08 19:57
Di-n-octyl phthalate	ND	1.77		mg/kg dry	1.86	95%	31 - 137	11	34	8030673	NRC0283-01	03/07/08 19:57
Bis(2-ethylhexyl)phthalate	1.82	2,92		mg/kg dry	1.86	59%	38 - 125	5	38	8030673	NRC0283-01	03/07/08 19:57
Fluoranthene	ND	1.56		mg/kg dry	1.86	84%	23 - 132		36	8030673	NRC0283-01	03/07/08 19:57
Fluorene	ND	1.53		mg/kg dry	1.86	82%	38 - 110		35	8030673	NRC0283-01	03/07/08 19:57
Hexachlorobenzene	ND	1.43		mg/kg dry	1.86	77%	35 - 120		37	8030673	NRC0283-01	03/07/08 19:53
Hexachlorobutadiene	ND	1.43		mg/kg dry	1.86	77%	28 - 113		35	8030673	NRC0283-01	03/07/08 19:51

TestAm 10

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0298 Project Name: Project Number: Received:

Atlanta Rush Project 1782-308-03 03/05/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Meth	od 8270C										
8030673-MSD1												
Hexachlorocyclopentadiene	ND	0.857		mg/kg dry	1.86	46%	10 - 123	3	36	8030673	NRC0283-01	. 03/07/08 19:57
Hexachloroethane	ND	1.42		mg/kg dry	1.86	76%	20 - 120	3	42	8030673	NRC0283-01	03/07/08 19:57
Indeno (1,2,3-cd) pyrene	ND	1.39		mg/kg dry	· 1.86	75%	24 - 122	10	28	8030673	NRC0283-01	03/07/08 19:57
Isophorone	ND	1.43		mg/kg dry	1.86	77%	23 - 108	3	33	8030673	NRC0283-01	03/07/08 19:57
2-Methylnaphthalene	ND	1.42		mg/kg dry	1.86	76%	26 - 116	0.9	33	8030673	NRC0283-01	03/07/08 19:57
2-Methylphenol	ND	1.41		mg/kg dry	1.86	76%	23 - 122	2	43	8030673	NRC0283-01	03/07/08 19:57
3/4-Methylphenol	ND	1.57		mg/kg dry	1.86	84%	23 - 138	0.3	47	8030673	NRC0283-01	03/07/08 19:57
Naphthalene	ND	1.47		mg/kg dry	1.86	79%	14 - 117	2	34	8030673	NRC0283-01	03/07/08 19:57
3-Nitroaniline	ND	1.51		mg/kg dry	1.86	81%	27 - 124	2	41	8030673	NRC0283-01	03/07/08 19:57
2-Nitroaniline	ND	1.53		mg/kg dry	1.86	82%	35 - 122	8	33	8030673	NRC0283-01	03/07/08 19:57
4-Nitroaniline	ND	1.49		mg/kg dry	1.86	80%	25 - 124	6	35	8030673	NRC0283-01	03/07/08 19:57
Nitrobenzene	ND	1.41		mg/kg dry	1.86	76%	19 - 105	ĩ	36	8030673	NRC0283-01	03/07/08 19:57
4-Nitrophenol	ND	1.50		mg/kg dry	1.86	81%	14 - 144	8	39	8030673	NRC0283-01	03/07/08 19:57
2-Nitrophenol	ND	1.44		mg/kg dry	1.86	77%	23 - 119	4	37	8030673	NRC0283-01	03/07/08 19:57
N-Nitrosodiphenylamine	ND	1.51		mg/kg dry	1.86	81%	37 - 144	5	32	8030673	NRC0283-01	03/07/08 19:57
N-Nitrosodi-n-propylamine	ND	1.32		mg/kg dry	1.86	71%	28 - 121	4	41	8030673	NRC0283-01	03/07/08 19:57
Pentachlorophenol	ND	1.72		mg/kg dry	1.86	92%	13 - 149	5	41	8030673	NRC0283-01	03/07/08 19:57
Phenanthrene	ND	1.53		mg/kg dry	1,86	82%	21 - 130	3	33	8030673	NRC0283-01	03/07/08 19:57
Phenol	ND	1.49		mg/kg dry	1.86	80%	31 - 116	0.7	40	8030673	NRC0283-01	03/07/08 19:57
Pyrene	ND	1.62		mg/kg dry	1.86	87%	24 - 133	6	36	8030673	NRC0283-01	03/07/08 19:57
Pyridine	ND	0.533		mg/kg dry	1.86	29%	10 - 103	0.6	50	8030673	NRC0283-01	03/07/08 19:57
1,2,4-Trichlorobenzene	ND	1.40		mg/kg dry	1.86	75%	27 - 102	0.5	34	8030673	NRC0283-01	
1-Methylnaphthalene	ND	1.41		mg/kg dry	1.86	76%	10 - 121	2	34	8030673	NRC0283-01	03/07/08 19:57
2,4,6-Trichlorophenol	ND	1.58		mg/kg dry	1.86	85%	32 - 122	4	41	8030673	NRC0283-01	03/07/08 19:57
2,4,5-Trichlorophenol	ND	1.60		mg/kg dry	1.86	86%	30 - 122	5	39	8030673		03/07/08 19:57
Surrogate: Terphenyl-d14		1.32		mg/kg dry	1.86	71%	26 - 122	J	39	8030673	NRC0283-01	03/07/08 19:57
Surrogate: 2,4,6-Tribromophenol		1.33		mg/kg dry	1.86	71%	20 - 128			8030673	NRC0283-01	03/07/08 19:57
Surrogate: Phenol-d5		1.35		mg/kg dry	1.86	73%	23 - 113	,			NRC0283-01	03/07/08 19:57
Surrogate: 2-Fluorobiphenyl		1.30		mg/kg dry	1.86	70%	23 - 113 19 - 109			8030673	NRC0283-01	03/07/08 19:57
Surrogate: 2-Fluorophenol		1.30		mg/kg dry	1.86	70%	19 - 109			8030673 8030673	NRC0283-01	03/07/08 19:57
Surrogate: Nitrobenzene-d5		1.29	•	mg/kg dry	1.86	69%	22 - 103			8030673	NRC0283-01 NRC0283-01	03/07/08 19:57 03/07/08 19:57

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

:

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0298
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-03
Attn	Carl Dawes	Received:	03/05/08 08:00

TestAmerica Nashville.

1

CERTIFICATION SUMMARY

Method	Matrix	AIHA	Nelac	Georgia	
SW846 8260B	Soil	N/A	X		
SW846 8270C	Soil	N/A	х		
SW-846	Soil				

<u>TestAmericu</u>

THE LEADER IN ENVIRONMENTAL TESTING

i

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Chicago,, IL 60602Project Number:1782-308-03AttnCarl DawesReceived:03/05/08 08:00		Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRC0298 Atlanta Rush Project
	Attn	•	•	•

DATA QUALIFIERS AND DEFINITIONS

MNR1There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike.NDNot detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

NARTE A COOLER RECEIPT FORM

•.

x.

...

sucher Received/Opened On 199708 (5.5%)	1RC0298
(-7) i Hast 4 digits, Facts	
Fouries (R Gun (U:92171982 ?? 7 Doorbox Carson	
Fouries IR Gun (0:9217 1982 Compto on Carlo of tergy plank when opened. 2.2. Dugton: Carlo of Compto on Carlo of tergy plank training sample or tamp blank training sample or tamp blank training sample of tamp blank t	TEN? YES NO NA
Student strange of the article print when set	(TES).NONA
E LIECTION, and on outside of cooler?	
Lyen Period and whore:	(YES, NONA
5. Were duplication intract, signed, and dated correctly?	(YES)NO NA
6. Were clistody papers inside cooler?	
I certify that i op much the cooler and answered questions 1-6 (initial)	YESNQNA
The optimization of the second sine of the second s	
and datasi correctly?	YESNON.A
Were traise "-Grind and duce of Bubblewrop Plattic boy Popmers Vermiculite Form Insert	Paper Other None
lead lee-pack to direct contact	
Cloning provided Cloning providents arrive in good condition (unbrokens?	CYES NO. NA
(c) fild all container labels complete (#, date, signed pres , etc)?	YES, NO. NA
() Were all container labels comprete (#, duct all) when all container labels comprete (#, duct all)	YES NO NA
.). 16.1 dimentation tabels and tags agree with custody papers?	YES. DNO UNA
and the second second second second second second second second second second second second second second second	YESNO NA
where we are the waite headspace provent in any ACA start multiple realers.	sequence #
14. Vias teacors () significants in this cooler?	AAN
the state of the sector and answered questions 7.14 (initial)	H level? YES NO NA
(5) PL thus to require the agoler dual arguments and an argument and a second preservation reached the correct p (5) On preside bottles and phytost strips suggest preservation reached the correct p	YESNONA
the correct preservatives were used	-
b) Did the bottle labels indicate that are not and standard ID of preservative us it preservation in-house was needed, record standard ID of preservative us	YES NO. (NA)
16 - May residual chlorine present?	
IE Way residual construction provide and pH as per SUP and anywared gaugeitans. If the	YES NO NA
1. Avera custowy augents, properly filled out (ink, signed, arch?	\times
the ted yes, sign the functody papers in the appropriate place?	YES NO . NA
a construct on tainers used for the analysis requested?	YESNG . NA
the state sufficient amount of sample sent in each container?	YES NO NO
it was sufficient another or project into LIMS and answored questions 17-20 prioti-	AAS
the start of the start of a Jabel with the unique LMS number to such contained on be	H ATOY
y = y = y (for each and y state international and a second at together (55 66) was a first generation	ENT YES NOL #

Constrained Constrained Constrained Constrained Pages IA: T Constrained Resonance 13:13 2:1 2:0.4.7.3 Process <	Client Name Address: [8 City/Stetb/Zip.Code: Project Manager.	ANALTICAL TESTING CORPORATION	Nashville, TN 37204	N 372	3								1	E C O	Compliance Monitoring	Aonitorin	Compliance Monitoring			
Address [S T, Jr. J. L. L. Address [S T, Jr. J. L. Project Name Consistantic code: Δ_{12} correction: Encode Name Project Name Correlation: Correlation: Project Name Correlation: Encode Name Project Name Correlation: Encode Name Name: Correlation: Encode Name Name: Correlation: Encode Name Name: Correlation: Encode Name Name: Correlation: Correlation: Name: Correlation: Name Name Correlation: Name </td <td>Address: [8 City/StataZip.Code: A Project Manager.</td> <td>(Carrel</td> <td></td> <td>500</td> <td></td> <td></td> <td> </td> <td>Client</td> <td>*</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>~</td> <td></td> <td></td>	Address: [8 City/StataZip.Code: A Project Manager.	(Carrel		500				Client	*		1					1		~		
Сонузывиста Соло А., делиц (д. 2. С. 6. С. 1. 1. 4. С. 6. 2. 2. 1. 2. 4. 5. 0. 1. 1. 4. 1. 5. 0. 1. 1. 2. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	City/Statis/Zip.Code: Project Manager.	13 1	N	Ţ	£						1	Proje	kt Nam	N		110	5			
Рификт Инлиери Сог. Г. П. L. L. Ч.К. Ц. К. П. С. А. С. С. С. А. С. А. С. А. С.	Project Manager.	1. Renil	191	3			J					-	Project	~1		202				
Telebrine finance Control Contrel Control Control Control Control Control Control Contrel Contr	Telephone Number 6	er l		es							ł	Site/Loc	cation IL					, Stat		
 Чима. Генн Цама Д. и. П. /li>			P	54			Fax_(オ		2	R	teport Te	J.	Jawo		Wear	(1)	-1	0
Summary second market benchar	Her Name: (Print Name) (5	0 N Z	ver	-							<u> </u>	ivoice Tr		_					
Матки Ревеляние Матки Ревеляние Алериа Гол Алериа Гол Алериа гллу чербул К N<	Sampier Signature:		2	11 2	, , ,								Quote 1	#			۵. 	đ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ĸ			البين ة (Matrix	Presen	vation &	# of Co	ntainers				Anai	lyza For						Teval
$\label{eq:relation} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t Ircharges may apply)		əlizo		ichà Orpec - 2011/20119 Kiuð Anwei			· · · · · · · · · · · · · · · · · · ·											2 9 d	te i j
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			dwog		sids J S X VIPO -									N N O	5028	ری ان 0		Ţ		vel 3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	> -			Mered	VIG ege Mawbinuo Mawatenv			jo	Specify)	201	790			031441				c o	Other	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Date S		FIERA F	M - MM 9 - M9 NS - 15	^{\$} ONH	HOWN	nertraM		1	5	\neg		\neg	\neg	\square		4	REMA	XX X
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-12)	Yes	ž							-+				_						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-6)	5/08	5						+					_			$\frac{1}{1}$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5/00	2					4				+			,			 		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0		T			-				+		-			$\frac{1}{1}$			
12) $\frac{12}{37}$ $\frac{12}{37}$ $\frac{12}{37}$ $\frac{11}{30}$ $\frac{11}{300}$ $\frac{11}{300}$ $\frac{1}{300}$ $\frac{1}{1000}$ $\frac{1}{1000$	(4-6)		4	1					_	1,			+	-			<u>`</u>			ĺ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(10-12)	201 134	0		•		1	-	_	1	+	-	+-	<u> </u>						
1 22 X X X X X X X X X X X X X X X X X X				1				╤	-			-	-					X		
21) 23/2/ 500 X ABORATORY COMMENTS: Intrab Temp: Intrab Temp: Rec Lab Temp: R	2	10%	2	1				[-]	-	X	H							-		1
International and the section of the	(12-81)		0										÷					X		
Zur Lun 24/08 1900 Received By Deron Date 2/2008 Time / 2009 Seals: Y N NA Date 2/2008 Time / 2009 Seals: Y N NA Date Time. Date 2/2008 Time / 2009 Seals: Y N NA Date Time. Date Time. 2009 Date Time. 2009 Date 17 Date 7.2 7	ructions:		•													ORA(O) Init Lab	ty comy Temp:			
Zerul Levin 3/3/08 1900 Received By. Der por Date 3/3/08 Time, 1/20 Crusticaly Seals: Y N N/A Date: Time. Date 3/4/08 Time. W./S Received By: Date: Time. Dotto 3/4/08 Time. W./S Received By: Date: 3/5 Time. D. C. Wethod of Shipment: Date: 7.2 7						ļ		4	1		ł		ŀ		<u> </u>	Reclat	Temp:		•.	
Date: Time: Date: 11me: Received By: Date: Time: Dot Method of Shipment: Date: 2/5 Time: D. Of Method of Shipment: 2.2.7	Br. Davel Lew	MB MB	20%		2		ved By:	$\overline{\nabla}$	t,	H	_ <u>_</u>	1 <u>6</u>	08 Tim	e/ 92	Bolls	tody Ser les Subi	lis: Y Jied by T	N est Ame	N/A rice: Y	Z
		10 D	Softer	- Time	K'K		ved By:	465)	-	Aar		ate: 			Net Not	and of S	hioment:			· :
	d By:	P A	B								トノ		1	0						ł

f

!

i

t 1

.

t

ł

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

March 19, 2008 9:09:11AM

Client:	Weaver Boos Consultants LLC (1407793)
	70 West Madison, Suite 4250
	Chicago,, IL 60602
Attn:	Carl Dawes

SAMPLE IDENTIFICATION

EB-5 (4-6) EB-5 (9-11) EB-5 (17-19) EB-6 (4-6) EB-6 (8-9.5) Date Received: LAB NUMBER NRC0496-01 NRC0496-02 NRC0496-03 NRC0496-04 NRC0496-05

Work Order:

Project Name: Project Nbr:

P/O Nbr:

NRC0496 Atlanta Rush Project [none] 03/07/08

COLLECTION DATE AND TIME

03/04/08 11:00 03/04/08 11:30 03/04/08 12:20 03/04/08 14:50 03/04/08 15:40

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Georgia Certification Number: Florida cert E87358

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

Roxanne L. Connor

Roxanne Connor Program Manager - Conventional Accounts

THE LEADER IN ENVIRONMENTAL TESTING

1

Client	Weaver Buos Consultants LLC (1407793)		Work Order:	NRC0496
	70 West Madison, Suite 4250	·	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602		Project Number:	[none]
Attn	Carl Dawes		Received:	03/07/08 08:00

ANALYTICAL REPORT

					Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batc
Sample ID: NRC0496-01 (EB-5	(4-6) - Soil) Sam	pled: 03/04	/08 11:00					
General Chemistry Parameters	(,							
% Dry Solids	84.8		%	0.500	1	03/18/08 14:39	SW-846	80325
Volatile Organic Compounds by EF	A Method 8260B							
Acetone	ND		mg/kg dry	0.0568	I	03/17/08 22:42	SW846 8260B	80326
Benzene	ND		mg/kg dry	0.00227		03/17/08 22:42	SW846 8260B	80326
Bromobenzene	ND		ing/kg dry	0.00227	i	03/17/08 22:42	SW846 8260B	80326
Bromochloromethane	ND		mg/kg dry	0.00227	I	03/17/08 22:42	SW846 8260B	80326
Bromodichloromethane	ND		mg/kg dry	0.00227	. 1	03/17/08 22:42	SW846 8260B	80326
Bromoform	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
Bromomethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
2-Butanone	ND		mg/kg dry	0.0568	1	03/17/08 22:42	SW846 8260B	80326
sec-Butylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
n-Butylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
tert-Butylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
Carbon disulfide	ND		mg/kg dry	0.00568	1	03/17/08 22:42	SW846 8260B	80326
Carbon Tetrachloride	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
Chlorobenzene				0.00227	1	03/17/08 22:42	SW846 8260B	80326
Chlorodibromomethane	ND		mg/kg dry mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
	ND			0.00227	1	03/17/08 22:42	SW846 8260B	80320
Chloroethane Chloroform	ND		mg/kg dry	0.00308	1	03/17/08 22:42	SW846 8260B	80326
	ND		mg/kg dry	0.00227		03/17/08 22:42	SW846 8260B	80326
Chloromethane	ND		mg/kg dry		1			80326
2-Chlorotoluene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
4-Chlorotoluene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	
1,2-Dibromo-3-chloropropane	ND		mg/kg dry	0.00568		03/17/08 22:42	SW846 8260B	80326
1,2-Dibromoethane (EDB)	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
Dibromomethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
1,4-Dichlorobenzene	ND		mg/kg dry	0.00227	. 1	03/17/08 22:42	SW846 8260B	80326
1,3-Dichlorobenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
1,2-Dichlorobenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032 6
Dichlorodifluoromethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80320
1,1-Dichloroethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
1,2-Dichloroethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
cis-1,2-Dichloroethene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
1,1-Dichloroethene	ND '		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
trans-1,2-Dichloroethene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
1,3-Dichloropropane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
1,2-Dichloropropane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
2,2-Dichloropropane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
cis-1,3-Dichloropropene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80326
trans-1,3-Dichloropropene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80320
l,l-Dichloropropene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032
Ethylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	80320
Hexachlorobutadiene	ND		mg/kg dry	0.00568	1	03/17/08 22:42	SW846 8260B	80326

THE LEADER IN ENVIRONMENTAL TESTIN	iĢ –
------------------------------------	------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602

Carl Dawes

Attn

Work Order: NRC0496 · Project Name: Project Number: [none] Received:

Atlanta Rush Project 03/07/08 08:00

		•	ANALYTICAL REPO	DRT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0496-01 (EB-5 (4	-6) - Soil) - cor	nt. Sample	d: 03/04/08 11:00			•••••••••••••••••••••••••••••••••••••••		
Volatile Organic Compounds by EPA								
2-Hexanone	ND		mg/kg dry	0.0568	1	03/17/08 22:42	SW846 8260B	8032601
Isopropylbenzene	ND		mg/kg dry	0.00227	1.	03/17/08 22:42	SW846 8260B	8032601
p-Isopropyltoluene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
Methyl tert-Butyl Ether	ND		mg/kg dry	0.00227	· 1	03/17/08 22:42	SW846 8260B	8032601
Methylene Chloride	ND		mg/kg dry	0.0114	1	03/17/08 22:42	SW846 8260B	8032601
4-Methyl-2-pentanone	ND		mg/kg dry	0.0568	1	03/17/08 22:42	SW846 8260B	8032601
Naphthalene	ND		mg/kg dry	0.00568	1	03/17/08 22:42	SW846 8260B	8032601
n-Propylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
Styrene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
1,1,1,2-Tetrachloroethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B SW846 8260B	8032601
1,1,2,2-Tetrachloroethane	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	
Tetrachloroethene	ND		mg/kg dry	0.00227	-	03/17/08 22:42		8032601
Toluene	ND		mg/kg dry	0.00227	1		SW846 8260B	8032601
1,2,3-Trichlorobenzene	ND		mg/kg dry	0.00227	-	03/17/08 22:42	SW846 8260B	8032601
1,2,4-Trichlorobenzene	ND	L	mg/kg dry		1	03/17/08 22:42	SW846 8260B	8032601
1,1,2-Trichloroethane	ND	L		0.00227	1	03/17/08 22:42	SW846 8260B	8032601
1,1,1-Trichloroethane	ND		mg/kg dry mg/kg dry	0.00568	1	03/17/08 22:42	SW846 8260B	8032601
Trichloroethene	ND			0.00227	. 1	03/17/08 22:42	SW846 8260B	8032601
Trichlorofluoromethane	ND		mg/kg dry mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
1,2,3-Trichloropropane	ND			0.00227	1	03/17/08 22:42	SW846 8260B	8032601
1,3,5-Trimethylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
1,2,4-Trimethylbenzene	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
Vinyl chloride	ND		mg/kg dry	0.00227	1	03/17/08 22:42	SW846 8260B	8032601
Xylenes, total	ND ND		mg/kg dry	0.00227	1 .	03/17/08 22:42	SW846 8260B	8032601
Surr: 1,2-Dichloroethane-d4 (41-150%)			mg/kg dry	0.00568	1	03/17/08 22:42	SW846 8260B	8032601
Surr: 1,2-Dichioroethane-a4 (41-130%) Surr: Dibromofluoromethane (55-139%)	107 % 106 %					03/17/08 22:42	SW846 8260B	8032601
Surr: Toluene-d8 (57-148%)	106 %					03/17/08 22:42	SW846 8260B	8032601
Surr: 4-Bromofluorobenzene (58-150%)	100 %					03/17/08 22:42 03/17/08 22:42	SW846 8260B SW846 8260B	8032601 8032601

 $t \rightarrow$

70 West Madison, Suite 4250 Project Name: Atlanta Rush Project Chicago,, IL 60602 Project Number: [none]	Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
Chicago,, IL 60602 Project Number: [none]		70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
		Chicago,, IL 60602	Project Number:	[none]
Attn Carl Dawes Received: 03/07/08 08:00	Attn	Carl Dawes	Received:	03/07/08 08:00

		ANALYTICAL RE	PORT				
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0496-02 (EB-	5 (9-11) - Soil) Sar	npled: 03/04/08 11:30					
General Chemistry Parameters							
% Dry Solids	88.7	%	0.500	1	03/12/08 13:10	SW-846	8031461
				•	057120015110	511 010	0051101
Volatile Organic Compounds by E							
Acetone	0.113	mg/kg dry	0.0567	1	03/14/08 18:22	SW846 8260B	8031163
Benzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Bromobenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Bromochloromethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Bromodichloromethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Bromoform	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Bromomethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
2-Butanone	ND	mg/kg dry	0.0567	1	03/14/08 18:22	SW846 8260B	8031163
sec-Butylbenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
n-Butylbenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
tert-Butylbenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Carbon disulfide	0.0224	mg/kg dry	0.00567	1	03/14/08 18:22	SW846 8260B	8031163
Carbon Tetrachloride	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Chlorobenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Chlorodibromomethane	ND	mg/kg dry	0.00227	l	03/14/08 18:22	SW846 8260B	8031163
Chloroethane .	ND	mg/kg dry	0.00567	1	03/14/08 18:22	SW846 8260B	8031163
Chloroform	ND	mg/kg dry	0.00227	l	03/14/08 18:22	SW846 8260B	8031163
Chloromethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
2-Chlorotoluene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
4-Chlorotoluene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,2-Dibromo-3-chloropropane	ND	mg/kg dry	0.00567	1	03/14/08 18:22	SW846 8260B	8031163
1,2-Dibromoethane (EDB)	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Dibromomethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,4-Dichlorobenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,3-Dichlorobenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,2-Dichlorobenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Dichlorodifluoromethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,1-Dichloroethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,2-Dichloroethane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
cis-1,2-Dichloroethene	ND	, mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,1-Dichloroethene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,3-Dichloropropane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
1,2-Dichloropropane	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
2,2-Dichloropropane	ND	mg/kg dry	0.00227	. 1	03/14/08 18:22	SW846 8260B	8031163
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	•	
trans-1,3-Dichloropropene	ND					SW846 8260B	8031163
1,1-Dichloropropene	ND	mg/kg dry mg/kg d⊒/	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Ethylbenzene	ND	mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
Hexachlorobutadiene		mg/kg dry	0.00227	1	03/14/08 18:22	SW846 8260B	8031163
a source of the second se	ND	mg/kg dry	0.00567	1	03/14/08 18:22	SW846 8260B	8031163

TestAmericu

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) NRC0496 Work Order: 70 West Madison, Suite 4250 Atlanta Rush Project Project Name: Chicago,, IL 60602 Project Number: [none] Carl Dawes Attn 03/07/08 08:00 Received: ANALYTICAL REPORT Dilution Analysis Analyte Flag MRL Result Units Factor Date/Time Method Batch Sample ID: NRC0496-02 (EB-5 (9-11) - Soil) - cont. Sampled: 03/04/08 11:30 Volatile Organic Compounds by EPA Method 8260B - cont. 2-Hexanone ND mg/kg dry 0.0567 1 03/14/08 18:22 SW846 8260B 8031163 Isopropylbenzene ND mg/kg dry 0.00227 03/14/08 18:22 1 SW846 8260B 8031163 p-Isopropyltoluene ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 Methyl tert-Butyl Ether ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 Methylene Chloride ND mg/kg dry 0.0113 1 03/14/08 18:22 SW846 8260B 8031163 4-Methyl-2-pentanone ND mg/kg dry 0.0567 1 03/14/08 18:22 SW846 8260B 8031163 Naphthalene 0.0109 0.00567 mg/kg dry 1 03/14/08 18:22 SW846 8260B 8031163 n-Propylbenzene ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 Styrene ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 1,1,1,2-Tetrachloroethane ND mg/kg dry 0.00227 03/14/08 18:22 1 SW846 8260B 8031163 1,1,2,2-Tetrachloroethane ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 Tetrachloroethene ND mg/kg dry 0.00227 03/14/08 18:22 1 SW846 8260B 8031163 Toluene ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 1,2,3-Trichlorobenzene ND mg/kg dry 0.00227 03/14/08 18:22 1 SW846 8260B 8031163 1,2,4-Trichlorobenzene ND mg/kg dry 0.00227 1 03/14/08 18:22 SW846 8260B 8031163 1,1,2 Trichloroethane ND mg/kg dry 0.00567 03/14/08 18:22 1 SW846 8260B 8031163 1,1,1-Trichloroethane ND mg/kg dry 0.00227 SW846 8260B 1 03/14/08 18:22 8031163 Trichloroethene ND mg/kg dry 0.00227 03/14/08 18:22 1 SW846 8260B 8031163 Trichlorofluoromethane ND mg/kg dry 0.00227 03/14/08 18:22 1 SW846 8260B 8031163 1,2,3-Trichloropropane

Semivolatile Organic Compounds by EPA Method 8270C
--

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Surr: Toluene-d8 (57-148%)

Surr: 1,2-Dichloroethane-d4 (41-150%)

Surr: Dibromofluoromethane (55-139%)

Surr: 4-Bromofluorobenzene (58-150%)

Vinyl chloride

Xylenes, total

ND

ND

0.00301

ND

ND

110 %

105 %

110%

107 %

- I J	-						
Acenaphthene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Acenaphthylene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Anthracene	0.691	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Benzo (a) anthracene	1.77	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Benzo (a) pyrene	1.53	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Benzo (b) fluoranthene	1.71	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Benzo (g,h,i) perylene	1.09	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Benzo (k) fluoranthene	1.00	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Butyl benzyl phthalate	ND	mg/kg dry	0.370	-	03/10/08 20:00	SW846 8270C	8031212
Carbazole	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
4-Chloro-3-methylphenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
4-Chloroaniline	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
		0-0-7		•	00/10/00 20.00	01104002/00	0031212

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

0.00227

0.00227

0.00227

0,00227

0.00567

1

1

1

1

1

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

03/14/08 18:22

SW846 8260B

SW846-8260B

8031163

8031163

8031163

8031163

8031163

8031163

8031163

8031163

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRC0496

[none]

Atlanta Rush Project

Work Order:

Project Name:

Project Number:

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, 1L 60602

Attn Carl Dawes		•	eived: 03,	/07/08 08:00			
		ANALYTICAL RE	PORT				
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0496-02 (EB	-5 (9-11) - Soil) - co	nt. Sampled: 03/04/08 11:3	30				
Semivolatile Organic Compounds	s by EPA Method 827	0C - cont.					
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
2-Chloronaphthalene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
2-Chlorophenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
4-Chlorophenyl phenyl ether	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Chrysene	1.71	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Dibenz (a,h) anthracene	0.426	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Dibenzofuran	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Di-n-butyl phthalate	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
1,4-Dichlorobenzene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
1,2-Dichlorobenzene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
1,3-Dichlorobenzene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
3,3-Dichlorobenzidine	ND	mg/kg dry	0.741	1	03/10/08 20:00	SW846 8270C	8031212
2,4-Dichlorophenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Diethyl phthalate	ND	mg/kg dry	0.370	Î	03/10/08 20:00	SW846 8270C	8031212
2,4-Dimethylphenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Dimethyl phthalate	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.925	1	03/10/08 20:00	SW846 8270C	8031212
2,4-Dinitrophenol	ND	mg/kg dry	0.925	1	03/10/08 20:00	SW846 8270C	8031212
2,6-Dinitrotoluene	ND	mg/kg dry	0.370	- 1	03/10/08 20:00	SW846 8270C	8031212
2,4-Dinitrotoluene	ND	mg/kg dry	0.370	- 1	03/10/08 20:00	SW846 8270C	8031212
Di-n-octyl phthalate	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Bis(2-ethylhexyl)phthalate	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Fluoranthene	3.33	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Fluorene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Hexachlorobenzene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Hexachlorobutadiene	ND	mg/kg dry	0.370	1			8031212
Hexachlorocyclopentadiene	ND [*]	mg/kg dry	0.370	1	03/10/08 20:00 03/10/08 20:00	SW846 8270C	
Hexachioroethane	ND					SW846 8270C	8031212
Indeno (1,2,3-cd) pyrene	0.971	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Isophorone	0.971 ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
2-Methylnaphthalene		mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
2-Methylphenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
3/4-Methylphenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
Naphthalene	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
-	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
3-Nitroaniline 2-Nitroaniline	ND	mg/kg dry	0.925	1	03/10/08 20:00	SW846 8270C	8031212
4-Nitroaniline	ND	mg/kg dry	0.925	1	03/10/08 20:00	SW846 8270C	8031212
Nitrobenzene	ND	mg/kg dry	0.925	1	03/10/08 20:00	SW846 8270C	8031212
	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
4-Nitrophenol	ND	mg/kg dry	0.925	1	03/10/08 20:00	SW846 8270C	8031212
2-Nitrophenol	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
N-Nitrosodiphenylamine	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212
N-Nitrosodi-n-propylamine	ND	mg/kg dry	0.370	1	03/10/08 20:00	SW846 8270C	8031212

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultan 70 West Madison, Suite Chicago,, IL 60602 Attn Carl Dawes	. ,		Work Order: Project Name: Project Number: Received:	NRC0496 Atlanta Rush Pr [none] 03/07/08 08:00	oject		
		ANIAT VTT	CAL BEBODT	<u> </u>			
	****	ANALIII	CAL REPORT	Dilution	Analysis		
Analyte	Result	Flag Unit	s MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0496-02 (E		•	/08 11:30				
Semivolatile Organic Compour	nds by EPA Method 8270	C - cont.					
Pentachlorophenol	ND	mg/kg di	ry 0.925	1	03/10/08 20:00	SW846 8270C	8031212
Phenanthrene	2.66	mg/kg di	y 0.370	1	03/10/08 20:00	SW846 8270C	8031212
Phenol	ND	mg/kg di	ry 0.370	1	03/10/08 20:00	SW846 8270C	8031212
Pyrene	3.26	mg/kg di	ry 0.370	1	03/10/08 20:00	SW846 8270C	8031212
Pyridine	ND	mg/kg di	y 0.741	1	03/10/08 20:00	SW846 8270C	8031212
1,2,4-Trichlorobenzene	ND	mg/kg di	ry 0.370	1	03/10/08 20:00	SW846 8270C	8031212
I-Methylnaphthalene	ND	mg/kg di	y 0.370	1	03/10/08 20:00	SW846 8270C	8031212
2,4,6-Trichlorophenol	ND	mg/kg di	y 0.370	1	03/10/08 20:00	SW846 8270C	8031212
2,4,5-Trichlorophenol	ND	mg/kg di	y 0.925	1	03/10/08 20:00	SW846 8270C	8031212
Surr: Terphenyl-d14 (26-128%)	53 %				03/10/08 20:00	SW846 8270C	8031212
Surr: 2,4,6-Tribromophenol (20-13	2%) 2%	ZX			03/10/08 20:00	SW846 8270C	803121.
Surr: Phenol-d5 (23-113%)	48 %				03/10/08 20:00	SW846 8270C	8031212
Surr: 2-Fluorobiphenyl (19-109%)	50 %				03/10/08 20:00	SW846 8270C	8031212
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E	· · ·	mpled: 03/04/08 12	2:20		03/10/08 20:00 03/10/08 20:00	SW846 8270C SW846 8270C	
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters	47 % EB-5 (17-19) - Soil) Sai	mpled: 03/04/08 12 %	2:20 0.500	1			803121.
Surr: 2-Fluorophenol (19-105%) Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds b	47 % EB-5 (17-19) - Soil) Sar 90.2			1	03/10/08 20:00	SW846 8270C	803121.
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds b	47 % E B-5 (17-19) - Soil) Sai 90.2 by EPA Method 8260B	%	0.500		<i>03/10/08 20:00</i> 03/14/08 14:27	<i>SW846 8270C</i> SW-846	8031212 8032045
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids	47 % 2 B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND	% mg/kg di	0.500 ry 0.0539	9 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14	<i>SW846 8270C</i> SW-846 SW846 8260B	8031212 8031212 8032045 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone	47 % E B-5 (17-19) - Soil) Sai 90.2 by EPA Method 8260B	% mg/kg di mg/kg di	0.500 ry 0.0539 ry 0.0021	9 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8031212 8032045 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene	47 % E B-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND	% mg/kg di mg/kg di	0.500 ry 0.0539 ry 0.0021 ry 0.0021	9 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B	8031212 8032045 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromobenzene Bromochloromethane	47 % 2 B-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021 y 0.0021 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031212 8032045 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene	47 % EB-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	47 % EB-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0533 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane	47 % EB-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	47 % EB-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.053 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.053	9 1 6 1 6 1 6 1 6 1 6 1 9 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone	47 % CB-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0533 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0539 y 0.0021	0 1 6 1 6 1 6 1 6 1 9 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene	47 % EB-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0533 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0533 y 0.0021 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1 6 1 9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds b Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene	47 % CB-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0533 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds b Acetone Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene Carbon disulfide	47 % 2B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.053 y 0.0021 y 0.0023	9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 9 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene	47 % 2B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021 y 0.0023 y 0.0023	9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 9 1 6 1 9 1 6 1 9 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8031212 8032045 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromochloromethane Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene carbon disulfide Carbon Tetrachloride	47 % 2B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0021 y 0.0023 y 0.0023 y 0.0021 y 0.0021 y 0.0021	0 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene carbon disulfide Carbon Tetrachloride Chlorobenzene	47 % 2B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	y 0.500 y 0.0021	9 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane	47 % 2B-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021 y 0.0021	9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 9 1 6 1 9 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8032043 8032043 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane	47 % 2B-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	y 0.500 y 0.0021 y 0.0023 y 0.0021 y 0.0021 y 0.0021 y 0.0023 y 0.0021 y 0.0023	9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 9 1 6 1 9 1 6 1 9 1 6 1 9 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroothane Chloroform	47 % 2B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	y 0.500 y 0.0021	9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 9 1 6 1 9 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	803204: 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	47 % 2B-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	y 0.500 y 0.0021	0 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8032045 8032045 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromooform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroothane Chloroothane 2-Chlorotoluene	47 % 2B-5 (17-19) - Soil) Sar 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021	0 1 6 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	803204: 803260
Surr: Nitrobenzene-d5 (22-104%) Sample ID: NRC0496-03 (E General Chemistry Parameters % Dry Solids Volatile Organic Compounds & Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromooform Bromomethane 2-Butanone sec-Butylbenzene n-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chlorooform Chlorooform Chloromethane 2-Chlorotoluene	47 % 2B-5 (17-19) - Soil) Sau 90.2 by EPA Method 8260B ND ND ND ND ND ND ND ND ND ND	% mg/kg di mg/kg di	0.500 y 0.0539 y 0.0021	0 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 7 1	03/10/08 20:00 03/14/08 14:27 03/17/08 23:14 03/17/08 23:14	SW846 8270C SW-846 SW846 8260B SW846 8260B	8032043 8032043 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601

,

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

	Weaver Boos Consultants LLC (1	407793)			Work Order:	NRC0496			
	70 West Madison, Suite 4250				Project Name:	Atlanta Rush Pro	ject		
	Chicago,, IL 60602				Project Number:	[none]			
Attn	Carl Dawes				Received:	03/07/08 08:00			
				ANALYTICA	L REPORT				
						Dilution	Analysis		
Analyte		Result	Flag	Units	MRI	Factor	Date/Time	Method	Batel
ample	ID: NRC0496-03 (EB-5 (17	7-19) - Soil) - co	ont. Samp	oled: 03/04/0	8 12:20				
Volatile	Organic Compounds by EPA N	Aethod 8260B - 0	cont.						
,4-Dichlo	probenzene	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
,3-Dichlo	probenzene	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
,2-Dichlo	probenzene	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
Dichlorodi	ifluoromethane	ND		mg/kg dry	0.002	16 I	03/17/08 23:14	SW846 8260B	803260
,1-Dichlo	proethane	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
,2-Dichlo	proethane	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
is-1.2-Dia	chloroethene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
,1-Dichlo		ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
-	Dichloroethene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	propropane	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	propropane	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	Dropropane	ND		mg/kg dry mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	•••				0.002		03/17/08 23:14		
	chloropropene	ND		mg/kg dry				SW846 8260B	803260
	Dichloropropene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	propropene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
Ethylbenzo		ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	robutadiene	ND		mg/kg dry	0.005		03/17/08 23:14	SW846 8260B	803260
2-Hexanor	-	ND		mg/kg dry	0.053		03/17/08 23:14	SW846 8260B	803260
sopropylt		ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
o-lsopropy	•	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
-	rt-Butyl Ether	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
•	e Chloride	ND		mg/kg dry	0.010)8 1	03/17/08 23:14	SW846 8260B	803260
-Methyl-	-2-pentanone	ND		mg/kg dry	0.053	19 1	03/17/08 23:14	SW846 8260B	803260
Vaphthale	ene	ND		mg/kg dry	0.005	39 1	03/17/08 23:14	SW846 8260B	803260
n-Propylb	enzene	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
Styrene		ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
1,1,1,2-Te	etrachloroethane	ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
1,1,2,2-Te	etrachloroethane	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
Tetrachior		ND		mg/kg dry	0.002	16 1	03/17/08 23:14	SW846 8260B	803260
Coluene		ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	hlorobenzene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	chlorobenzene	ND	L	mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	80326
	chloroethane	ND	-	mg/kg dry	0.005		03/17/08 23:14	SW846 8260B	80326
	chloroethane	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	80326
Trichloroe		ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	803260
	fluoromethane	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	80326
	chloropropane	ND			0.002			SW846 8260B	80326
	• •			mg/kg dry mg/kg dry			03/17/08 23:14		
	nethylbenzene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	80326
	nethylbenzene	ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	80326
Vinyl chlo		ND		mg/kg dry	0.002		03/17/08 23:14	SW846 8260B	80326
Xylenes, t	total Dichloroethane-d4 (41-150%)	ND		mg/kg dry	0.005	39 1	03/17/08 23:14	SW846 8260B	80326
		106 %					03/17/08 23:14	SW846 8260B	80326

THE LEADER IN ENVIRONMENTAL TESTING 2960 Foster Creighton Ros

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

							· · ·		
Client	Weaver Boos Consultants LLC (1	407793)			Work Order:	NRC0496			t.
	70 West Madison, Suite 4250				Project Name:	Atlanta Rush Pre	niect		
	Chicago,, IL 60602				Project Number:	[none]	- -		
Attn	Carl Dawes				Received:	03/07/08 08:00	•		•
			• • • • • • • • • • • • • • • • • • •						
			A	NALYTICA	L REPORT				
				·····		Dilution	Analysis	······	
Analyte		Result	Flag	Units	MRL	·	Date/Time	Method	Batch
Sample	ID: NRC0496-03 (EB-5 (17	-19) - Soil) - co	nt Samn	led. 03/04/0	8 17.70				.
	Organic Compounds by EPA M			1041 03/04/0	0 12.20				
	uene-d8 (57-148%)	104 %	Joint,						
	romofluorobenzene (58-150%)	104 %					03/17/08 23:14 03/17/08 23:14	SW846 8260B	8032601
		•					03/17/08 23:14	SW846 8260B	8032601
	ID: NRC0496-04 (EB-6 (4-4	6) - Soil) Sámp	led: 03/0	4/08 14:50					
	Chemistry Parameters								
% Dry So	lids	85.7	•	%	0.500	1	03/15/08 08:47	SW-846	8032333
Volatile	Organic Compounds by EPA M	lethod 8260B							
Acetone		ND		mg/kg dry	0.0582	2 1	03/17/08 23:45	SW846 8260B	8032601
Benzene		ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
Bromober	nzene	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
Bromochl	oromethane	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
Bromodic	hloromethane	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
Bromofor	m	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
Bromome	thane .	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
2-Butanor	ne	ND		mg/kg dry	0.0582		03/17/08 23:45	SW846 8260B	8032601
sec-Butyll	benzene	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
n-Butylbe	nzene	· ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
tert-Butyl	benzene	ND		mg/kg dry	0.0023		03/17/08 23:45	SW846 8260B	8032601
Carbon di	sulfide	ND		mg/kg dry	0.0058	2 1	03/17/08 23:45	SW846 8260B	8032601
Carbon Te	etrachloride	ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
Chlorober		ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
Chlorodib	romomethane	ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
Chloroeth		ND		mg/kg dry	0.0058	2 1	03/17/08 23:45	SW846 8260B	8032601
Chlorofor		ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
Chlorome		ND		mg/kg dry 🥤	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
2-Chloroto		ND		mg/kg dry	0.0023	3. 1	03/17/08 23:45	SW846 8260B	8032601
4-Chlorote		ND .		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
	mo-3-chloropropane	ND		mg/kg dry	0.00582	2 1	03/17/08 23:45	SW846 8260B	8032601
	moethane (EDB)	ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
Dibromon		ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
•	orobenzene	ND		mg/kg dry	0.00233	3 1	03/17/08 23:45	SW846 8260B	8032601
-	robenzene	ND		mg/kg dry	0.00233	31	03/17/08 23:45	SW846 8260B	8032601
	probenzene	ND		mg/kg dry	0.0023	3 Ì	03/17/08 23:45	SW846 8260B	8032601
	ifluoromethane	ND		mg/kg dry	0.0023	3 1	03/17/08 23:45	SW846 8260B	8032601
1,1-Dichlo		ND		mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
1,2-Dichlo		ND		mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
	chloroethene	ND	•	mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
1,1-Dichlo		ND		mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
	Dichloroethene	ND		mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
1,3-Dichlo		ND		mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
1,2-Dichlo 2,2-Dichlo	• •	ND		mg/kg dry	0.00233		03/17/08 23:45	SW846 8260B	8032601
	iopropano	ND		mg/kg dry	0.00233	3 1	03/17/08 23:45	SW846 8260B	8032601

THE LEADER IN ENVIRONMENTAL TESTING

,

_

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

thod Backler 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803 6 8260B 803
6 8260B 803 6 8260B 803
6 8260B 803
6 8260B 803
6 8260B 803
6 8260B 803
6 8260B 803
6 8260B 80. 6 8260B 80.
6 8260B 80.
6 8260B 80.
6 8270C 803
6 82700 803
6 8270C 803
6 8270C 803 6 8270C 803 6 8270C 803

THE LEADER IN E	ENVIRONMENTAL	TESTING
-----------------	---------------	---------

Dichlorodifluoromethane

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Attn	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes		Work Order: Project Name: Project Number: Received:	ect Name: Atlanta Rush Project ect Number: [none]				
			ANALYTICAL	REPORT				
Analyt	e	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
	ID: NRC0496-04 (EB-6		t. Sampled: 03/04/08 14	4:50				
Polyaro	matic Hydrocarbons by EPA	A 8270C - cont.						
Dibenz (a,h) anthracene		ND	mg/kg dry	0.0772	1	03/15/08 06:10	SW846 8270C	8032330
luoranti	nene	ND	mg/kg dry	0.0772	: 1	03/15/08 06:10	SW846 8270C	8032330
luorene		ND	mg/kg dry	0.0772	: 1	03/15/08 06:10		. 8032330
ndeno (1	,2,3-cd) pyrene	ND	mg/kg dry	0.0772	: 1	03/15/08 06:10	ŚW846 8270C	8032330
laphthal	ene	ND	mg/kg dry	0.0772	: I	03/15/08 06:10	SW846 8270C	8032330
henanth	irene	ND	ing/kg dry	0.0772	: 1	03/15/08 06:10	SW846 8270C	8032330
yrene		ND	mg/kg dry	0.0772	: 1	03/15/08 06:10	SW846 8270C	8032330
urr: Ter	phenyl-d14 (26-128%)	72 %				03/15/08 06:10	SW846 8270C	803233
urr: 2-F	'luorobiphenyl (19-109%)	59 %				03/15/08 06:10	SW846 8270C	803233
urr: Niti	robenzene-d5 (22-104%)	. 65 %				03/15/08 06:10	SW846 8270C	803233
ample	ID: NRC0496-05 (EB-6	(8-9.5) - Soil) San	npled: 03/04/08 15:40					
	Chemistry Parameters							
6 Dry So	-	74.5	%	0.500	. 1	03/12/08 13:10	SW-846	8031461
Volatile	e Organic Compounds by EP	A Method 8260B					5	0051101
cetone	5 I I I I I I I I I I I I I I I I I I I	0.123	mg/kg dry	0.0720	. 1	03/14/08 18:52	SW846 8260B	8031163
lenzene		ND	mg/kg dry	0.0028		03/14/08 18:52	SW846 8260B	8031163
Bromobenzene		ND	mg/kg dry	0.0028		03/14/08 18:52	SW846 8260B	8031163
Bromoch	loromethane	ND	mg/kg dry	0.0028		03/14/08 18:52	SW846 8260B	8031163
Bromodia	chloromethane	ND	mg/kg dry	0.0028		03/14/08 18:52	SW846 8260B	8031163
Bromoform		ND	mg/kg dry	0.0028		03/14/08 18:52	SW846 8260B	8031163
romome	ethane	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
-Butano		ND	mg/kg dry	0.0720		03/14/08 18:52	SW846 8260B	8031163
ec-Buty	benzene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
-Butyibe		ND	mg/kg dry	0.0028		03/14/08 18:52	SW846 8260B	8031163
	lbenzene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
arbon d	isulfide	0.0214	mg/kg dry	0.00720		03/14/08 18:52	SW846 8260B	8031163
	etrachloride	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846.8260B	8031163
hlorobe	nzene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
	bromomethane	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
hloroet		ND	mg/kg dry	0.00720		03/14/08 18:52	SW846 8260B	8031163
hlorofo		ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
hlorom		ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
-Chloro	toluene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
-Chloro	toluene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
,2-Dibro	omo-3-chloropropane	ND	mg/kg dry	0.00720		03/14/08 18:52	SW846 8260B	8031163
I,2-Dibromoethane (EDB)		ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
Dibromomethane		ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
1,4-Dichlorobenzene		ND	mg/kg dry	0.00288		03/14/08 18:52	SW846-8260B	8031163
	orobenzene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
2-Dichl	orobenzene	ND	mg/kg dry	0.00288		03/14/08 18:52	SW846 8260B	8031163
					· ·			

mg/kg dry

ND

0.00288

1

SW846 8260B 8031163

03/14/08 18:52

.

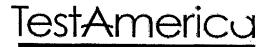
2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ŝ

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Cari Dawes	Received:	03/07/08 08:00

,

ANALYTICAL REPORT								
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch	
Sample ID: NRC0496-05 (EB-6 (8	8-9.5) - Soil) - con	t. Sampled: 03/04/08 15:4	0		•			
Volatile Organic Compounds by EPA	Method 8260B - co	nt.						
1,1-Dichloroethane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,2-Dichloroethane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
cis-1,2-Dichloroethene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,1-Dichloroethene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,3-Dichloropropane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,2-Dichloropropane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
2,2-Dichloropropane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
trans-1,3-Dichloropropene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
I,1-Dichloropropene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Ethylbenzene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Hexachlorobutadiene	ND	mg/kg dry	0.00720	1	03/14/08 18:52	SW846 8260B	8031163	
2-Hexanone	ND	mg/kg dry	0.0720	1	03/14/08 18:52	SW846 8260B	8031163	
Isopropylbenzene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
p-Isopropyltoluene	0.00361		0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Methylene Chloride	ND	mg/kg dry	0.0144	1	03/14/08 18:52	SW846 8260B	8031163	
4-Methyl-2-pentanone	ND	mg/kg dry mg/kg dry	0.0144	1	03/14/08 18:52	SW846 8260B	8031163	
Naphthalene	0.0629	mg/kg dry	0.00720	1	03/14/08 18:52	SW846 8260B	8031163	
n-Propylbenzene	ND	mg/kg dry	0.00720	1	03/14/08 18:52	SW846 8260B	8031163	
Styrene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,1,1,2-Tetrachloroethane	ND		0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,1,2,2-Tetrachloroethane	ND	mg/kg dry						
Tetrachloroethene	ND	mg/kg dry	0.00288 0.00288	1 1	03/14/08 18:52 03/14/08 18:52	SW846 8260B SW846 8260B	8031163 8031163	
Toluene	ND	mg/kg dry . mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,2,3-Trichlorobenzene	ND	• • •						
		mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,1,2-Trichloroethane	ND	mg/kg dry	0.00720	1	03/14/08 18:52	SW846 8260B	8031163	
1,1,1-Trichloroethane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Trichloroethene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Trichlorofluoromethane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,2,3-Trichloropropane	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,3,5-Trimothylbenzene	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
1,2,4-Trimethylbenzene	0.00315	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Vinyl chloride	ND	mg/kg dry	0.00288	1	03/14/08 18:52	SW846 8260B	8031163	
Xylenes, total	ND	mg/kg dry	0.00720	1	03/14/08 18:52	SW846 8260B	8031163	
Surr: 1,2-Dichloroethane-d4 (41-150%)	113 %	•			03/14/08 18:52	SW846 8260B	803116.	
Surr: Dibromofluoromethane (55-139%) Surr: Toluene-d8 (57-148%)	105 % 114 %				03/14/08 18:52	SW846 8260B	803116	
Surr: 4-Bromofluorobenzene (58-150%)	114 %				03/14/08 18:52	SW846 8260B SW846 8260B	803116. 803116.	
•					03/14/08 18:52	577 040 0200D	003110.	
Semivolatile Organic Compounds by								
Acenaphthene	0.661	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212	


<u>TestAmericu</u>

THE LEADER	N ENVIRONMENTAL	TESTING
------------	-----------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

ANALYTICAL REPORT									
Analyte		lag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch		
Sample ID: NRC0496-05 (EB-6	5 (8-9.5) - Soil) - cont. S	ampled: 03/04/08 15:40							
Semivolatile Organic Compounds							•		
Acenaphthylene	ND	mg/kg dry	0.437	1	02/10/08 20-25	5W046 00700	0001010		
Anthracene	1.59	mg/kg dry	0.437	I I	03/10/08 20:25	SW846 8270C	8031212		
Benzo (a) anthracene	5.03	mg/kg dry	2.18	5	03/10/08 20:25 03/11/08 19:51	SW846 8270C	8031212		
Benzo (a) pyrene	4.20	mg/kg dry	0.437	1.		SW846 8270C	8031212		
Benzo (b) fluoranthene	3.73	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Benzo (g,h,i) perylene	3.50	mg/kg dry	0.437		03/10/08 20:25	SW846 8270C	8031212		
Benzo (k) fluoranthene	3.02	mg/kg dry		1	03/10/08 20:25	SW846 8270C	8031212		
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Butyl benzyl phthalate	ND		0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Carbazole	0.816	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
4-Chloro-3-methylphenol	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
4-Chloroaniline	ND .	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Bis(2-chloroethyl)ether		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.437	- 1	03/10/08 20:25	SW846 8270C	8031212		
2-Chloronaphthalene	ND ·	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
2-Chiorophenol	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
4-Chlorophenyl phenyl ether	ND	_ mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Chrysene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Dibenz (a,h) anthracene	4.37 1.49	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Dibenzofuran		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Di-n-butyl phthalate	0.467	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
1,4-Dichlorobenzene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
1,2-Dichlorobenzene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
1,3-Dichlorobenzene 3,3-Dichlorobenzidine	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
	ND	mg/kg dry	0.875	1	03/10/08 20:25	SW846 8270C	8031212		
2,4-Dichlorophenol	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Diethyl phthalate	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
2,4-Dimethylphenol	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Dimethyl phthalate	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	1.09	1	03/10/08 20:25	SW846 8270C	8031212		
2,4-Dinitrophenol	ND	mg/kg dry	1.09	· 1	03/10/08 20:25	SW846 8270C	8031212		
2,6-Dinitrotoluene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
2,4-Dinitrotoluene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Di-n-octyl phthalate	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Bis(2-ethylhexyl)phthalate	1.11	mg/kg dry	0.437	1.	03/10/08 20:25	SW846 8270C	8031212		
Fluoranthene	8.51	mg/kg dry	2.18	5	03/11/08 19:51	SW846 8270C	8031212		
Fluorene	0.827	mg/kg dry	0.437	. 1	03/10/08 20:25	SW846 8270C	8031212		
Hexachlorobenzene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Hexachlorobutadiene	ND	mg/kg dry	0.437	1 1	03/10/08 20:25	SW846 8270C	8031212		
Hexachlorocyclopentadiene	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Hexachloroethane	ND	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		
Indeno (1,2,3-cd) pyrene	2.99	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212		

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

ANALYTICAL REPORT								
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0496-05 (EB-6 ((8-9.5) - Soil) - co	ont. Samp	led: 03/04/08 15:	40			•••••••	
Semivolatile Organic Compounds by								
Isophorone	ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
2-Methylnaphthalene	ND		ing/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
2-Methylphenol	·ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
3/4-Methylphenol	ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
Naphthalene	0.474		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
3-Nitroaniline	ND		mg/kg dry	1.09	1	03/10/08 20:25	SW846 8270C	8031212
2-Nitroaniline	ND		mg/kg dry	1.09	1	03/10/08 20:25	SW846 8270C	8031212
4-Nitroaniline	ND		mg/kg dry	1.09	1	03/10/08 20:25	SW846 8270C	8031212
Nitrobenzene	ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
4-Nitrophenol	ND		mg/kg dry	1.09	1	03/10/08 20:25		
2-Nitrophenol	ND		mg/kg dry	0.437	-	03/10/08 20:25	SW846 8270C	8031212
N-Nitrosodiphenylamine	ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C SW846 8270C	8031212 8031212
N-Nitrosodi-n-propylamine	ND		mg/kg dry	0.437	_	03/10/08 20:25		
Pentachlorophenol	ND				1		SW846 8270C	8031212
Phenanthrene	6.07		ing/kg dry	1.09	1	03/10/08 20:25	SW846 8270C	8031212
Phenol	ND		mg/kg dry	2.18	5	03/11/08 19:51	SW846 8270C	8031212
Pyrene	10.1	•	mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
Pyridine	ND		mg/kg dry	2.18	5	03/11/08 19:51	SW846 8270C	8031212
1,2,4-Trichlorobenzene	ND ND		mg/kg dry	0.875	1	03/10/08 20:25	SW846 8270C	8031212
1-Methylnaphthalene	ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
2,4,6-Trichlorophenol			mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
2,4,5-Trichlorophenol	ND		mg/kg dry	0.437	1	03/10/08 20:25	SW846 8270C	8031212
•	ND		mg/kg dry	1.09	1	03/10/08 20:25	SW846 8270C	8031212
Surr: Terphenyl-d14 (26-128%) Surr: 2,4,6-Tribromophenol (20-132%)	59 % 52 %	÷				03/10/08 20:25	SW846 8270C	8031212
Surr: 2,4,0-1710romophenoi (20-132%) Surr: Phenol-d5 (23-113%)	52 % 51 %					03/10/08 20:25	SW846 8270C	8031212
Surr: 2-Fluorobiphenyl (19-109%)	51 % 53 %					03/10/08 20:25	SW846 8270C	8031212
Surr: 2-Fluorophenol (19-105%)	49%					03/10/08 20:25 03/10/08 20:25	SW846 8270C SW846 8270C	8031212
Surr: Nitrobenzene-d5 (22-104%)	49 %					03/10/08 20:25	SW846 8270C SW846 8270C	8031212 8031212

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Polyaromatic Hydrocarbons by EPA 8270)C			•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••••••••••••••••••••••••••••••••••
SW846 8270C	8032330	NRC0496-04	30.37	1.00	03/14/08 16:29	DXG	EPA 3550B
Semivolatile Organic Compounds by EPA	Method 8270C						
SW846 8270C	8031212	NRC0496-02	30.46	1.00	03/10/08 07:45	MSR	EPA 3550B
SW846 8270C	8031212	NRC0496-05	30.70	1.00	03/10/08 07:45	MSR	EPA 3550B
SW846 8270C	8031212	NRC0496-05RE1	30.70	1.00	03/10/08 07:45	MSR.	EPA 3550B
Volatile Organic Compounds by EPA Me	thod 8260B						
SW846 8260B	8032601	NRC0496-01	5.19	5.00	03/04/08 11:00	MXE	EPA 5035
SW846 8260B	8031163	NRC0496-02	4.97	5.00	03/04/08 11:30	NKN	EPA 5035
SW846 8260B	8032601	NRC0496-03	5.14	5.00	03/04/08 12:20	MXE	EPA 5035
SW846 8260B	8032601	NRC0496-04	5.01	5.00	03/04/08 14:50	MXE	EPA 5035
SW846 8260B	8031163	NRC0496-05	4.66	5.00	03/04/08 15:40	NKN	EPA 5035

Page 15 of 47

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ł

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method 8260B		••••••••••••		
8031163-BLK1					
Acetone	<0.0250	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Benzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Bromobenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Bromochloromethane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Bromodichloromethane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Bromoform	<0.000530	mg/kg wet	8031163	8031163-BLKI	03/14/08 17:52
Bromomethane	<0.00157	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
2-Butanone	<0.00500	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
sec-Butylbenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
n-Butylbenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
tert-Butylbenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Carbon disulfide	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Carbon Tetrachloride	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Chlorobenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Chlorodibromomethane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Chloroethane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Chloroform	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Chloromethane	<0.000880	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
2-Chlorotoluene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
4-Chiorotoluene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2-Dibromo-3-chloropropane	<0.00100	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2-Dibromoethane (EDB)	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Dibromomethane	<0.000540	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,4-Dichlorobenzene	<0.000640	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,3-Dichlorobenzene	<0.000530	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2-Dichlorobenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Dichlorodifluoromethane	<0.000930	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,1-Dichloroethane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2-Dichloroethane	<0.000800	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
cis-1,2-Dichloroethene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,1-Dichloroethene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
trans-1,2-Dichloroethene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,3-Dichloropropane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2-Dichloropropane	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
2,2-Dichloropropane	<0.000420	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
cis-1,3-Dichloropropene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
trans-1,3-Dichloropropene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
I, I-Dichloropropene	<0.000670	mg/kg wet	8031163	8031163-BLKI	03/14/08 17:52
Ethylbenzene	<0.000670	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Hexachlorobutadiene	<0.000630	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
2-Hexanone	<0.00407	mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRC0496

[none]

Atlanta Rush Project

03/07/08 08:00

Work Order:

Project Name:

Received:

Project Number:

(

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

PROJECT QUALITY CONTROL DATA Blank - Cont.						
Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B		••••••••••••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
8031163-BLK1						
Isopropylbenzene	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
p-Isopropyitoluene	<0.000670		mg/kg wet	8031163	8031163-BLK1	
Methyl tert-Butyl Ether	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Methylene Chloride	< 0.00348		ing/kg wet	8031163	8031163-BLK1	03/14/08 17:52
4-Methyl-2-pentanone	<0.00426		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Naphthalene	<0.00151		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
n-Propylbenzene	<0.000530		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Styrene	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,1,1,2-Tetrachloroethane	<0.000500		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,1,2,2-Tetrachloroethane	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Tetrachloroethene	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Toluene	<0.000670		mg/kg wet	8031163	8031163-BLKI	03/14/08 17:52
1,2,3-Trichlorobenzene	<0.000660		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2,4-Trichlorobenzene	<0.000650		mg/kg wet	8031163	8031163-BLKI	03/14/08 17:52
1,1,2-Trichloroethane	<0.00102		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,1,1-Trichloroethane	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Trichloroethene	<0.000280		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Trichlorofluoromethane	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2,3-Trichloropropane	<0.000550		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,3,5-Trimethylbenzene	<0.000670		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
1,2,4-Trimethylbenzene	<0.00127		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Vinyl chloride	<0.000710		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Xylenes, total	< 0.00172		mg/kg wet	8031163	8031163-BLK1	03/14/08 17:52
Surrogate: 1,2-Dichloroethane-d4	121%			8031163	8031163-BEK1	03/14/08 17:52
Surrogate: Dibromofluoromethane	107%			8031163	8031163-BLK1	03/14/08 17:52
Surrogate: Toluene-d8	111%			8031163	8031163-BLK1	03/14/08 17:52
Surrogate: 4-Bromojluorobenzene	102%			8031163	8031163-BLK1	03/14/08 17:52
8032601-BLK1					, ,	
Acetone	<0.0250			8022 501		
Benzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Bromobenzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Bromochloromethane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Bromodichloromethane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Bromoform	<0.000530		mg/kg wet	8032601	8032601-BLKI	03/17/08 17:28
Bromomethane	<0.000330		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
2-Butanone	<0.00500		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
sec-Butylbenzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
n-Butylbenzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
tert-Butylbenzene	<0.000870		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Carbon disulfide	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
	~0.0000/0		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method 8260B					
8032601-BLK1						
Carbon Tetrachloride	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Chlorobenzene	<0,000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Chlorodibromomethane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Chloroethane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Chloroform	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Chloromethane	<0.000880		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
2-Chlorotoluene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
4-Chlorotoluene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,2-Dibromo-3-chloropropane	<0.00100		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,2-Dibromoethane (EDB)	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Dibromomethane	<0.000540		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,4-Dichlorobenzene	<0.000640		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,3-Dichlorobenzene	<0.000530		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,2-Dichlorobenzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Dichlorodifluoromethane	<0.000930		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,1-Dichloroethane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,2-Dichloroethane	<0.000800		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
cis-1,2-Dichloroethene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,1-Dichloroethene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
trans-1,2-Dichloroethene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,3-Dichloropropane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,2-Dichloropropane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
2,2-Dichloropropane	<0.000420		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
cis-1,3-Dichloropropene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
trans-1,3-Dichloropropene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,1-Dichloropropene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Ethylbenzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Hexachlorobutadiene	<0.000630		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
2-Hexanone	<0.00407		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Isopropylbenzene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
p-Isopropyltoluene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Methyl tert-Butyl Ether	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Methylene Chloride	< 0.00348		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
4-Methyl-2-pentanone	<0.00426		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Naphthalene	<0.00151		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
n-Propylbenzene	<0.000530		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Styrene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,1,1,2-Tetrachloroethane	<0.000500		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
1,1,2,2-Tetrachloroethane	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Tetrachloroethene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28
Toluene	<0.000670		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28

.

THE LEADER IN ENVIRONMENTAL TESTING

ł

Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRC0496 Atlanta Rush Project	· ·
	Chicago,, IL 60602	Project Number:	[none]	
Attn	Carl Dawes	Received:	03/07/08 08:00	·

PROJECT QUALITY CONTROL DATA Blank - Cont.

A Method 8260B <0.000660 <0.000650 <0.00102 <0.000670 <0.000670 <0.000550 <0.000670 <0.000550 <0.000670 <0.000570 <0.000670 <0.000127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28	
<0.000660 <0.00102 <0.00102 <0.000670 <0.000280 <0.000670 <0.000550 <0.00127 <0.000710 <0.00172 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601 8032601 8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28	·
<0.000650 <0.00102 <0.000670 <0.000280 <0.000670 <0.000550 <0.00127 <0.000710 <0.00172 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601 8032601 8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28	
<0.00102 <0.000670 <0.000280 <0.000670 <0.000550 <0.000670 <0.00127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601 8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28	
<0.000670 <0.000280 <0.000550 <0.000550 <0.00127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28	
<0.000280 <0.000670 <0.000550 <0.000670 <0.00127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28 03/17/08 17:28 03/17/08 17:28	·
<0.000670 <0.000550 <0.000670 <0.00127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet mg/kg wet	8032601 8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28	
<0.000550 <0.000670 <0.00127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet mg/kg wet	8032601 8032601	8032601-BLK1 8032601-BLK1 8032601-BLK1	03/17/08 17:28 03/17/08 17:28	
<0.000670 <0.00127 <0.000710 <0.00172 <0.00100		mg/kg wet mg/kg wet	8032601	8032601-BLK1 8032601-BLK1	03/17/08 17:28	
<0.00127 <0.000710 <0.00172 <0.00100	·	mg/kg wet				
<0.000710 <0.00172 <0.00100			8032601	9072C01 D1 K1		
<0.00172 <0.00100				8032601-BLK1	03/17/08 17:28	
<0.00100		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28	
		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28	
		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28	
<0.00144		mg/kg wet	8032601	8032601-BLK1	03/17/08 17:28	
111%			8032601	8032601-BLK1		
109%			8032601	8032601-BLK1		
103%			8032601	8032601-BLK1		
108%			8032601	8032601-BLK1	03/17/08 17:28	
92700						
02700						
<0.0310		ma/ka wet	9033330	9022220 DI KI	02/15/00 04 45	
					•	
	•					
-						
		uig/kg wei				
	109% 103%	109% 103% 108% 8270C <0.0310 <0.0320 <0.0320 <0.0380 <0.0290 <0.0290 <0.0290 <0.0290 <0.0290 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0320 <0.0390 <0.0310 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <0.0340 <	109% 103% 108% 8270C <0.0310	109% 8032601 103% 8032601 108% 8032601 8270C <0.0310	109% 8032601 8032601-BLK1 103% 8032601 8032601-BLK1 108% 8032601 8032601-BLK1 8270C 8032601 8032330-BLK1 <0.0310	109% 8032601 8032601-BLK1 03/17/08 17:28 103% 8032601 8032601-BLK1 03/17/08 17:28 108% 8032601 8032601-BLK1 03/17/08 17:28 8270C 90.0310 mg/kg wet 8032330 8032330-BLK1 03/15/08 04:45 <0.0320

Semivolatile Organic Compounds by EPA Method 8270C

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
•	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Blank - Cont.

Semivolatile Organic Compoun			Q.C. Batch			
	ds by EPA Method 8270C					
8031212-BLK1						
Acenaphthene	<0.0310	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Acenaphthylene	<0.0320	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Anthracene	<0.0330	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Benzo (a) anthracene	<0.0380	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Benzo (a) pyrene	<0.0290	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Benzo (b) fluoranthene	<0.0320	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Benzo (g,h,i) perylene	<0.0290	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Benzo (k) fluoranthene	<0.0290	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4-Bromophenyl phenyl ether	<0.111	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Butyl benzyl phthalate	<0.0890	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Carbazole	<0.165	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4-Chloro-3-methylphenol	<0.100	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4-Chloroaniline	<0.289	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Bis(2-chloroethoxy)methane	<0.111	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Bis(2-chloroethyl)ether	<0.135	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Bis(2-chloroisopropyl)ether	<0.102	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2-Chioronaphthalene	<0.0680	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2-Chlorophenol	<0.109	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4-Chlorophenyl phenyl ether	<0.111	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Chrysene	<0.0390	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Dibenz (a,h) anthracene	<0.0310	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Dibenzofuran	<0.0890	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Di-n-butyl phthalate	<0.0860	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
1,4-Dichlorobenzene	<0.115	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
1,2-Dichlorobenzene	<0.0880	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
1,3-Dichlorobenzene	<0.0800	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
3,3-Dichlorobenzidine	<0.270	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,4-Dichlorophenol	<0.0870	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Diethyl phthalate	<0.0500	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,4-Dimethylphenol	<0.281	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Dimethyl phthalate	<0.0880	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4,6-Dinitro-2-methylphenol	<0.0910	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,4-Dinitrophenol	<0.135	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,6-Dinitrotoluene	<0.111	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,4-Dinitrotoluene	<0.0880	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Di-n-octyl phthalate	<0.132	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Bis(2-ethylhexyl)phthalate	<0.111	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Fluoranthene	<0.0340	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Fluorene	<0.0390	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Hexachlorobenzene	<0.0830	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Hexachlorobutadiene	<0.108	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client NRC0496 Work Order: 70 West Madison, Suite 4250 Project Name: Atlanta Rush Project Chicago,, IL 60602 Project Number: [none] Carl Dawes Attn 03/07/08 08:00 Received:

		PROJECT	CQUALITY CO Blank - Cor		A .		
Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Semivolatile Organic Compound	ds by EPA Method 827	0C		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
8031212-BLK1				-			
Hexachlorocyclopentadiene	<0.111		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Hexachloroethane	< 0.105		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Indeno (1,2,3-cd) pyrene	<0.0310		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Isophorone	<0.100		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	•
2-Methylnaphthalene	<0.0330		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2-Methylphenol	<0.0990		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
3/4-Methylphenol	<0.145		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Naphthalene	<0.0410		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
3-Nitroaniline	<0.110		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2-Nitroaniline	<0.111		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4-Nitroaniline	<0.275		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Nitrobenzene	<0.106		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
4-Nitrophenol	<0.276		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2-Nitrophenol	<0.197		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
N-Nitrosodiphenylamine	<0.109		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
N-Nitrosodi-n-propylamine	<0.122		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Pentachlorophenol	<0.0740		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Phenanthrene	<0.0340		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Phenol	<0.0690		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Pyrene	<0.0410		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Pyridine	<0.0940		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
1,2,4-Trichlorobenzene	<0.111		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
1-Methylnaphthalene	<0.0320	*	mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,4,6-Trichlorophenol	<0.0870		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
2,4,5-Trichlorophenol	<0.0680		mg/kg wet	8031212	8031212-BLK1	03/10/08 18:45	
Surrogate: Terphenyl-d14	76%		5.5	8031212	8031212-BLK1	03/10/08 18:45	
Surrogate: 2,4,6-Tribromophenol	69%			8031212	8031212-BLK1	03/10/08 18:45	
Surrogate: Phenol-d5	64%			8031212	8031212-BLK1	03/10/08 18:45	
Surrogate: 2-Fluorobiphenyl	65%			8031212	8031212-BLK1	03/10/08 18:45	
Surrogate: 2-Fluorophenol	60%			8031212	8031212-BLKI	03/10/08 18:45	
Surrogate: Nitrobenzene-d5	59%			8031212	8031212-BLK1	03/10/08 18:45	

: Page 21 of 47

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
_Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA

Duplicate

Analyte	Orig. Val.	Duplicate	Q	Units	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
General Chemistry Parameters						•••••			
3031461-DUP1									
% Dry Solids	38.5	37.9		%	2	20	8031461	NRC0389-04	03/12/08 13:10
B032045-DUP1									
% Dry Solids	90.2	78.4		%	14	20	8032045	NRC0496-03	07/14/00 14:07
	90,2	/0.4		70	14	20	8032043	NKC0496-03	03/14/08 14:27
3032333-DUP1									
% Dry Solids	85.7	85.5		%	0,2	20	8032333	NRC0496-04	03/15/08 08:47
8032572-DUP1									
% Dry Solids	84.8	84,6		%	0.2	20	8032572	NRC0496-01	03/18/08 14:39

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes

Work Order: NRC0496 Project Name: Project Number: Received:

Atlanta Rush Project [none] 03/07/08 08:00

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •			••••••	•	•••••
8031163-BS1								
Acetone	250	230	•	ug/kg	92%	49 - 150	8031163	03/14/08 15:54
Benzene	50.0	50.8		ug/kg	102%	76 - 130	8031163	03/14/08 15:54
Bromobenzene	50.0	50.2		ug/kg	100%	80 - 128	8031163	03/14/08 15:54
Bromochloromethane	50,0	48.7		ug/kg	97%	70 - 135	8031163	03/14/08 15:54
Bromodichloromethane	50.0	50.8		ug/kg	102%	78 - 135	8031163	03/14/08 15:54
Bromoform	50.0	47.6		ug/kg	95%	67 - 143	8031163	03/14/08 15:54
Bromomethane	50.0	49.7	;	ug/kg	99%	58 - 150	8031163	03/14/08 15:54
2-Butanone	250	282		ug/kg	113%	61 - 143	8031163	03/14/08 15:54
sec-Butylbenzene	50.0	54.5		ug/kg	109%	80 - 134	8031163	03/14/08 15:54
n-Butylbenzene	50.0	60.7		ug/kg	121%	71 - 141	8031163	03/14/08 15:54
tert-Butylbenzene	50.0	51.8		ug/kg	104%	79 - 132	8031163	03/14/08 15:54
Carbon disulfide	50.0	47.0		ug/kg	94%	70 - 134	8031163	03/14/08 15:54
Carbon Tetrachioride	50.0	51.3		ug/kg	103%	75 - 137	8031163	03/14/08 15:54
Chlorobenzene	50.0	53.1		ug/kg	106%	80 - 121	8031163	03/14/08 15:54
Chlorodibromomethane	50.0	49,9		ug/kg	100%	77 - 130	8031163	03/14/08 15:54
Chioroethane	50.0	49.7		ug/kg	99%	62 - 149	8031163	03/14/08 15:54
Chloroform	50.0	51.0		ug/kg	102%	75 - 130	8031163	03/14/08 15:54
Chloromethane	50.0	42.7		ug/kg	85%	35 - 130	8031163	03/14/08 15:54
2-Chiorotoluene	50.0	56.6		ug/kg	113%	80 - 131	8031163	03/14/08 15:54
4-Chlorotoluene	50.0	55,4		ug/kg	111%	80 - 129	8031163	03/14/08 15:54
1,2-Dibromo-3-chloropropane	50.0	41,4		ug/kg	83%	62 - 142	8031163	03/14/08 15:54
1,2-Dibromoethane (EDB)	50.0	49.9		ug/kg	100%	81 - 130	8031163	03/14/08 15:54
Dibromomethane	. 50.0	49.9		ug/kg	100%	77 - 133	8031163	03/14/08 15:54
1,4-Dichlorobenzene	50.0	54.0		ug/kg	108%	75 - 128	8031163	03/14/08 15:54
1,3-Dichlorobenzene	50.0	58.7		ug/kg	117%	79 - 128	8031163	03/14/08 15:54
1,2-Dichlorobenzene	50.0	55.6		ug/kg	111%	80 - 130	8031163	03/14/08 15:54
Dichlorodifluoromethane	50.0	45.1		ug/kg	90%	11 - 129	8031163	03/14/08 15:54
1,1-Dichloroethane	50.0	51.7		ug/kg	103%	68 - 150	8031163	03/14/08 15:54
1,2-Dichloroethane	50.0	51.9		ug/kg	104%	72 - 132	8031163	03/14/08 15:54
cis-1,2-Dichloroethene	50.0	54.1		ug/kg	108%	77 - 132	8031163	03/14/08 15:54
1,1-Dichloroethene	50.0	44.8		ug/kg	90%	75 - 133	8031163	03/14/08 15:54
trans-1,2-Dichloroethene	50.0	53.8		ug/kg	108%	79 - 133	8031163	03/14/08 15:54
1,3-Dichloropropane	50,0	50.7		ug/kg	101%	80 - 125	8031163	03/14/08 15:54
1,2-Dichloropropane	50,0	47.9		ug/kg	96%	75 - 124	8031163	03/14/08 15:54
2,2-Dichloropropane	50.0	52.1		ug/kg	104%	59 - 144	8031163	03/14/08 15:54
cis-1,3-Dichloropropene	50.0	54.2		ug/kg	108%	80 - 137	8031163	03/14/08 15:54
trans-1,3-Dichloropropene	50.0	50.6		ug/kg	101%	75 - 133	8031163	03/14/08 15:54
1,1-Dichloropropene	50.0	52.2		ug/kg	104%	76 - 133	8031163	03/14/08 15:54
Ethylbenzene	50.0	53.4		ug/kg	107%	80 - 128	8031163	03/14/08 15:54
Hexachlorobutadiene	50.0	70.4		ug/kg	141%	60 - 150	8031163	03/14/08 15:54
2-Hexanone	250	267		ug/kg	107%	63 - 149	8031163	03/14/08 15:54

THE LEADER IN ENVIRONMENTAL TESTING

			`
Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
_Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by El	PA Method 8260B							
8031163-BS1								
Isopropylbenzene	50.0	44.8		ug/kg	90%	74 - 131	8031163	03/14/08 15:54
p-Isopropyltoluene	50.0	54.8		ug/kg	110%	75 - 133	8031163	03/14/08 15:54
Methyl tert-Butyl Ether	50.0	51.2		ug/kg	102%	67 - 130	8031163	03/14/08 15:54
Methylene Chloride	50.0	45.5		ug/kg	91%	65 - 144	8031163	03/14/08 15:54
4-Methyl-2-pentanone	250	280		ug/kg	112%	64 - 142	8031163	03/14/08 15:54
Naphthalene	50.0	52.4		ug/kg	105%	63 - 144	8031163	03/14/08 15:54
n-Propylbenzene	50.0	56.4		ug/kg	113%	80 - 131	8031163	03/14/08 15:54
Styrene	50.0	56.1		ug/kg	112%	80 - 144	8031163	03/14/08 15:54
1,1,1,2-Tetrachloroethane	50.0	49.5		ug/kg	99%	80 - 129	8031163	03/14/08 15:54
1,1,2,2-Tetrachloroethane	50.0	46.8		ug/kg	94%	73 - 139	8031163	03/14/08 15:54
Tetrachloroethcne	50.0	53.1		ug/kg	106%	76 - 128	8031163	03/14/08 15:54
Toluene	50.0	53.9		ug/kg	108%	80 - 125	8031163	03/14/08 15:54
1,2,3-Trichlorobenzene	50.0	62.0		-s∽s ug/kg	124%	64 - 136	8031163	03/14/08 15:54
1,2,4-Trichlorobenzene	50.0	59.2		ug/kg	118%	58 - 145	8031163	03/14/08 15:54
1,1,2-Trichloroethane	50.0	47.7		ug/kg	95%	80 - 127	8031163	03/14/08 15:54
1,1,1-Trichloroethane	50.0	51.3		ug/kg	103%	76 - 134	8031163	03/14/08 15:54
Trichtoroethene	50.0	53.4		ug/kg	107%	75 - 131	8031163	03/14/08 15:54
Trichlorofluoromethane	50.0	44.6		ug/kg	89%	63 - 130	8031163	03/14/08 15:54
1,2,3-Trichloropropane	50.0	43.2		ug/kg	86%	66 - 129	8031163	03/14/08 15:54
1,3,5-Trimethylbenzene	50.0	61.0		ug/kg	122%	78 - 133	8031163	03/14/08 15:54
1,2,4-Trimethylbenzene	50.0	54.2		ug/kg	108%	76 - 135	8031163	03/14/08 15:54
Vinyl chloride	50.0	49.4		ug/kg	99%	58 - 134	8031163	03/14/08 15:54
Xylenes, total	150	164	•	ug/kg	109%	79 - 130	8031163	03/14/08 15:54
Surrogate: 1,2-Dichloroethane-d4	50.0	50.4		00	101%	41 - 150	8031163	03/14/08 15:54
Surrogate: Dibromofluoromethane	50.0	52.1			104%	55 - 139	8031163	03/14/08 15:54
Surrogate: Toluene-d8	50.0	53.2			106%	57 - 148	8031163	03/14/08 15:54
Surrogate: 4-Bromofluorobenzene	50.0	50.2			100%	58 - 150	8031163	03/14/08 15:54
8032601-BS1								
Acetone	250	236		ug/kg	94%	49 - 150	8032601	03/17/08 15:22
Benzene	50.0	49.2		ug/kg	98%	76 - 130	8032601	03/17/08 15:22
Bromobenzene	50.0	49.8		ug/kg	100%	80 - 128	8032601	03/17/08 15:22
Bromochloromethane	50.0	49.9		ug/kg	100%	70 - 135	8032601	03/17/08 15:22
Bromodichloromethane	50.0	52.9		ug/kg	106%	78 - 135	8032601	03/17/08 15:22
Bromoform	50.0	52.0		ug/kg	104%	67 - 143	8032601	03/17/08 15:22
Bromomethane	50,0	38.2		ug/kg	76%	58 - 150	8032601	03/17/08 15:22
2-Butanone	250	237		ug/kg	95%	61 - 143	8032601	03/17/08 15:22
sec-Butylbenzene	50.0	49.7		ug/kg	99%	80 - 134	8032601	03/17/08 15:22
n-Butylbenzene	50.0	51.3		ug/kg	103%	71 - 141	8032601	03/17/08 15:22
tert-Butylbenzene	50.0	49.4		ug/kg	99%	79 - 132	8032601	03/17/08 15:22
Carbon disulfide	50.0	44.0		ug/kg	88%	70 - 134	8032601	03/17/08 15:22

TestAmer ľ

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0496 Project Name: Project Number: [none] Received:

Atlanta Rush Project 03/07/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B		• • • • • • • • • • • •			•••••••		
8032601-BS1							· .	
Carbon Tetrachloride	50.0	48.4		ug/kg	97%	75 - 137	8032601	03/17/08 15:22
Chlorobenzene	50.0	51.7		ug/kg	103%	80 - 121	8032601	03/17/08 15:22
Chlorodibromomethane	50.0	49.4		ug/kg	99%	77 - 130	8032601	03/17/08 15:22
Chloroethane	50.0	40.5		ug/kg	81%	62 - 149	8032601	03/17/08 15:22
Chloroform	. 50.0	48.9		ug/kg	98%	75 - 130	8032601	03/17/08 15:22
Chloromethane	50.0	34.3		ug/kg	69%	35 - 130	8032601	03/17/08 15:22
2-Chlorotoluene	50.0	53.7		ug/kg	107%	80 - 131	8032601	03/17/08 15:22
4-Chlorotoluene	50.0	54.2		ug/kg	108%	80 - 129	8032601	03/17/08 15:22
1,2-Dibromo-3-chloropropane	50.0	66.3		ug/kg	133%	62 - 142	8032601	03/17/08 15:22
1,2-Dibromoethane (EDB)	50.0	50.4		ug/kg	101%	81 - 130	8032601	03/17/08 15:22
Dibromomethane	50.0	48.5		ug/kg	97%	77 - 133	8032601	03/17/08 15:22
1,4-Dichlorobenzene	50.0	55.0		ug/kg	110%	75 - 128	8032601	03/17/08 15:22
1,3-Dichlorobenzene	50.0	54.6		ug/kg	109%	79 - 128	8032601	03/17/08 15:22
1,2-Dichlorobenzene	50.0	54.4		ug/kg	109%	80 - 130	8032601	03/17/08 15:22
Dichlorodifluoromethane	50.0	23.3		ug/kg	47%	11 - 129	8032601	03/17/08 15:22
1,1-Dichloroethane	50.0	48.7		ug/kg	97%	68 - 150	8032601	03/17/08 15:22
1,2-Dichloroethane	50.0	48.0		ug/kg	96%	72 - 132	8032601	03/17/08 15:22
cis-1,2-Dichloroethene	50.0	49.1		ug/kg	98%	77 - 132	8032601	03/17/08 15:22
1,1-Dichloroethene	50.0	43.9	•	ug/kg	88%	75 - 133	8032601	03/17/08 15:22
trans-1,2-Dichloroethene	50.0	46.2		ug/kg	92%	79 - 133	8032601	03/17/08 15:22
1,3-Dichloropropane	50.0	47.2		ug/kg	94%	80 - 125	8032601	03/17/08 15:22
1,2-Dichloropropane	50.0	45.4		ug/kg	91%	75 - 124	8032601	03/17/08 15:22
2,2-Dichloropropane	50.0	45.9		ug/kg	92%	59 - 144	8032601	03/17/08 15:22
cis-1,3-Dichloropropene	50.0	47.7		ug/kg	95%	80 - 137	8032601	03/17/08 15:22
trans-1,3-Dichloropropene	50.0	46.8		ug/kg	94%	75 - 133	8032601	03/17/08 15:22
1,1-Dichloropropene	50.0	45.8		ug/kg	92%	76 - 133	8032601	03/17/08 15:22
Ethylbenzene	50.0	50.2		ug/kg	100%	80 - 128	8032601	03/17/08 15:22
Hexachlorobutadiene	50.0	67.8		ug/kg	136%	60 - 150	8032601	03/17/08 15:22
2-Hexanone	250	253		ug/kg	101%	63 - 149	8032601	03/17/08 15:22
Isopropylbenzene	50.0	43.8	,	ug/kg	88%	74 - 131	8032601	03/17/08 15:22
p-Isopropyltoluene	50.0	48.8		ug/kg	98%	75 - 133	8032601	03/17/08 15:22
Methyl tert-Butyl Ether	50.0	45.2		ug/kg	90%	67 - 130	8032601	03/17/08 15:22
Methylene Chloride	50.0	44.7		ug/kg	89%	65 - 144	8032601	03/17/08 15:22
4-Methyl-2-pentanone	250	250		ug/kg	100%	64 - 142	8032601	03/17/08 15:22
Naphthalene	50.0	60.3		ug/kg	121%	63 - 144	8032601	03/17/08 15:22
n-Propylbenzene	50.0	54.3		ug/kg	109%	80 - 131	8032601	03/17/08 15:22
Styrene	50.0	51.4		ug/kg	103%	80 - 144	8032601	03/17/08 15:22
1,1,1,2-Tetrachloroethane	50.0	49.3		ug/kg	99%	80 - 129	8032601	03/17/08 15:22
1,1,2,2-Tetrachloroethane	50.0	47.7		ug/kg	95%	73 - 139	8032601	03/17/08 15:22
Tetrachloroethene	50.0	53.1		ug/kg	106%	76 - 128	8032601	03/17/08 15:22
Toluene	50.0	50.7		ug/kg	101%	80 - 125	8032601	03/17/08 15:22

THE LEADER IN ENVIRONMENTAL TESTING

ł

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496	
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project	
	Chicago,, IL 60602	Project Number:	[none]	
Attn	Carl Dawes	Received:	03/07/08 08:00	1

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rcc.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 8260B	• • • • • • • • • • • • • • • • • • • •					•••••••••	••••
8032601-BS1	,							
1,2,3-Trichlorobenzene	50.0	66.2		ug/kg	132%	64 - 136	8032601	03/17/08 15:22
1,2,4-Trichlorobenzene	50.0	76.6	L	ug/kg	153%	58 - 145	8032601	03/17/08 15:22
1,1,2-Trichloroethane	50.0	48.2		ug/kg	96%	80 - 127	8032601	03/17/08 15:22
1,1,1-Trichloroethane	50.0	47.0		ug/kg	94%	76 - 134	8032601	03/17/08 15:22
Trichloroethene	50.0	47.8		ug/kg	96%	75 - 131	8032601	03/17/08 15:22
Trichlorofluoromethane	50.0	44.0		ug/kg	88%	63 - 130	8032601	03/17/08 15:22
1,2,3-Trichloropropane	50.0	42.7		ug/kg	85%	66 - 129	8032601	03/17/08 15:22
1,3,5-Trimethylbenzene	50.0	50.3		ug/kg	101%	78 - 133	8032601	03/17/08 15:22
1,2,4-Trimethylbenzene	50.0	55.1		ug/kg	110%	76 - 135	8032601	03/17/08 15:22
Vinyt chloride	50.0	37.5		ug/kg	75%	58 - 134	8032601	03/17/08 15:22
Xylenes, total	150	162		ug/kg	108%	79 - 130	8032601	03/17/08 15:22
Diisopropyl Ether	50.0	47.4		ug/kg	95%	69 - 132	8032601	03/17/08 15:22
1,2-Dichloroethene (total)	100	95.4		ug/kg	95%	78 - 132	8032601	03/17/08 15:22
Surrogate: 1,2-Dichloroethane-d4	50.0	50.3		6-6	101%	41 - 150	8032601	03/17/08 15:22
Surrogate: Dibromofluoromethane	50.0	51.3			103%	55 - 139	8032601	03/17/08 15:22
Surrogate: Toluene-d8	50.0	52.3			105%	57 - 148	8032601	03/17/08 15:22
Surrogate: 4-Bromofluorobenzene	50.0	. 50.5			101%	58 - 150	8032601	03/17/08 15:22
Polyaromatic Hydrocarbons by EF	PA 8270C							
3032330-BS1								
Acenaphthene	1.67	1.33		mg/kg wet	80%	52 - 106	8032330	03/15/08 05:06
Acenaphthylene	1.67	1.45		mg/kg wet	87%	53 - 109	8032330	03/15/08 05:06
Anthracene	1.67	1.49		mg/kg wet	89%	54 - 124	8032330	03/15/08 05:06
Benzo (a) anthracene	1.67	1.47		mg/kg wet	88%	53 - 111	8032330	03/15/08 05:06
Benzo (a) pyrene	1.67	1.50		mg/kg wet	90%	52 - 122	8032330	03/15/08 05:06
Benzo (b) fluoranthene	1.67	1.50		mg/kg wet	90%	48 - 115	8032330	03/15/08 05:06
Benzo (g,h,i) perylene	1.67	1.51		ing/kg wet	91%	46 - 114	8032330	03/15/08 05:06
Benzo (k) fluoranthene	1.67	1.40		mg/kg wet	84%	41 - 121	8032330	03/15/08 05:06
Chrysene	1.67	1.43		mg/kg wet	86%	49 - 113	8032330	03/15/08 05:06
Dibenz (a,h) anthracene	1.67	1.57		mg/kg wet	94%	47 - 117	8032330	03/15/08 05:06
Fluoranthene	1.67	1.54		mg/kg wet	92%	52 - 113	8032330	03/15/08 05:06
Fluorene	1.67	1.46		mg/kg wet	88%	54 - 107	8032330	03/15/08 05:06
Indeno (1,2,3-cd) pyrene	1.67	1.56		mg/kg wet	94%	47 - 115	8032330	03/15/08 05:06
Naphthalene	1.67	1.38		ing/kg wet	83%	34 - 107	8032330	03/15/08 05:06
Phenanthrene	1.67	1.38		mg/kg wet	83%	53 - 108	8032330	03/15/08 05:06
Pyrene	1.67	1.35		mg/kg wet	81%	54 - 113	8032330	03/15/08 05:06
Surrogate: Terphenyl-d14	1.67	1.22		- 0	73%	26 - 128	8032330	03/15/08 05:06
Surrogate: 2-Fluorobiphenyl	1.67	1.19			71%	19 - 109	8032330	03/15/08 05:06
Surrogate: Nitrobenzene-d5	1.67	1.36					0002000	03/12/00 03/00

Semivolatile Organic Compounds by EPA Method 8270C

TestAmericu

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0496 Project Name: Project Number: [none] Received:

Atlanta Rush Project 03/07/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compound	ls by EPA Method 8270C	••••••••••••••••••	• • • • • • • • • •	• • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
8031212-BS1								
Acenaphthene	1.67	1.39		mg/kg wet	83%	52 - 106	8031212	03/10/08 17:05
Acenaphthylene	1.67	1.42		mg/kg wet	85%	53 - 109	8031212	03/10/08 17:05
Anthracene	1.67	1.43		mg/kg wet	86%	54 - 124	8031212	03/10/08 17:05
Benzo (a) anthracene	1.67	1.41		mg/kg wet	85%	53 - 111	8031212	03/10/08 17:05
Benzo (a) pyrene	1.67	1.35		mg/kg wet	81%	52 - 122	8031212	03/10/08 17:05
Benzo (b) fluoranthene	1.67	1.48		mg/kg wet	89%	48 - 115	8031212	03/10/08 17:05
Benzo (g,h,i) perylene	1.67	1.31		mg/kg wet	79%	46 - 114	8031212	03/10/08 17:05
Benzo (k) fluoranthene	1.67	1.15		mg/kg wet	69%	41 - 121	8031212	03/10/08 17:05
4-Bromophenyl phenyl ether	1.67	1.26		mg/kg wet	75%	47 - 102	8031212	03/10/08 17:05
Butyl benzyl phthalate	1.67	1.61		mg/kg wet	97%	56 - 127	8031212	03/10/08 17:05
Carbazole	-1.67	1.32		mg/kg wet	79%	53 - 113	8031212	03/10/08 17:05
4-Chloro-3-methylphenol	1.67	1,30		mg/kg wet	78%	42 - 121	8031212	03/10/08 17:05
4-Chloroaniline	1.67	1.25		mg/kg wet	75%	40 - 112	8031212	03/10/08 17:05
Bis(2-chloroethoxy)methane	1.67	1.33		mg/kg wet	80%	45 - 105	8031212	03/10/08 17:05
Bis(2-chloroethyl)ether	1.67	1.27		mg/kg wet	76%	45 - 105	8031212	03/10/08 17:05
Bis(2-chloroisopropyl)ether	1.67	1,20		mg/kg wet	72%	46 - 109	8031212	
2-Chloronaphthalene	1.67	1.41		mg/kg wet	85%	49 - 105	8031212	03/10/08 17:05 03/10/08 17:05
2-Chlorophenol	1.67	1.34		mg/kg wet	80%	49 - 109 44 - 119	8031212	03/10/08 17:05
4-Chlorophenyl phenyl ether	1.67	1.27		mg/kg wet	76%	53 - 110	8031212	
Chrysene	1.67	1.39		mg/kg wet	83%	49 - 113	8031212	03/10/08 17:05 03/10/08 17:05
Dibenz (a,h) anthracene	1.67	1.31		mg/kg wet	79%	47 - 117	8031212	03/10/08 17:05
Dibenzofuran	1.67	1.36		mg/kg wet	81%	55 - 111	8031212	
Di-n-butyl phthalate	1.67	1.46		mg/kg wet	88%	54 - 150	8031212	03/10/08 17:05
1,4-Dichlorobenzene	1.67	1.23		mg/kg wet	74%	35 - 109	8031212	03/10/08 17:05
1,2-Dichlorobenzene	1.68	1.33		mg/kg wet	79%	36 - 112	8031212	03/10/08 17:05
1,3-Dichlorobenzene	1.67	1.27		mg/kg wet	76%	36 - 110	8031212	03/10/08 17:05
3,3-Dichlorobenzidine	1.67	1.27		mg/kg wet	76%	42 - 111		03/10/08 17:05
2,4-Dichlorophenol	1.67	1.35		mg/kg wet	81%	42 - 111 40 - 118	8031212 8031212	03/10/08 17:05
Diethyl phthalate	1.67	1.20		mg/kg wet	72%	40 - 118 43 - 122	8031212	03/10/08 17:05
2,4-Dimethylphenol	1.67	1.47		mg/kg wet	88%	•	8031212	03/10/08 17:05
Dimethyl phthalate	1.67	1.33		mg/kg wet	80%	31 - 128	8031212	03/10/08 17:05
4,6-Dinitro-2-methylphenol	1.67	1.12		mg/kg wet	67%	54 - 111	8031212	03/10/08 17:05
2,4-Dinitrophenol	1.67	0.891		mg/kg wet		24 - 131	8031212	03/10/08 17:05
2,6-Dinitrotoluene	1.67	1.44			53%	11 - 148	8031212	03/10/08 17:05
2,4-Dinitrotoluene	1.67	1.45		mg/kg wet	87%	51 - 119	8031212	03/10/08 17:05
Di-n-octyl phthalate	1.67	1.58		mg/kg wet	87%	54 - 113	8031212	03/10/08 17:05
Bis(2-ethylhexyl)phthalate	1.67	1.61		mg/kg wet	95% 06%	45 - 134	8031212	03/10/08 17:05
Fluoranthene	1.67	1.34		mg/kg wet	96%	52 - 122	8031212	03/10/08 17:05
Fluorene	1,67	1.34		mg/kg wet	81%	52 - 113	8031212	03/10/08 17:05
Hexachlorobenzene	1.67	1.38		mg/kg wet	80%	54 - 107	8031212	03/10/08 17:05
Hexachlorobutadiene	1.67			mg/kg wet	83%	51 - 117	8031212	03/10/08 17:05
	1.07	1.42		mg/kg wet	85%	38 - 117	8031212	03/10/08 17:05

Page 27 of 47

7

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds I	by EPA Method 8270C			• • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •
8031212-BS1	· • • • • • • • • • • • • • • • • • • •							
Hexachlorocyclopentadiene	1.67	1.23		mg/kg wet	74%	14 - 123	8031212	03/10/08 17:05
Hexachloroethane	1.67	1.28		mg/kg wet	77%	40 - 114	8031212	03/10/08 17:05
Indeno (1,2,3-cd) pyrene	1.67	1.33		mg/kg wet	80%	47 - 115	8031212	03/10/08 17:05
Isophorone	1.67	1,29		mg/kg wet	78%	35 - 107	8031212	03/10/08 17:05
2-Methylnaphthalene	1.67	1.31		mg/kg wet	79%	42 - 112	8031212	03/10/08 17:05
2-Methylphenoi	1.67	1.29		mg/kg wet	77%	44 - 119	8031212	03/10/08 17:05
3/4-Methylphenol	1.67	1.37		mg/kg wet	82%	49 - 129	8031212	03/10/08 17:05
Naphthalene	1.67	1.31		mg/kg wet	78%	34 - 107	8031212	03/10/08 17:05
3-Nitroaniline	1.67	1.29		mg/kg wet	77%	50 - 123	8031212	03/10/08 17:05
2-Nitroaniline	1.67	1,36		mg/kg wet	82%	54 - 120	8031212	03/10/08 17:05
4-Nitroaniline	1.67	1.24		mg/kg wet	74%	46 - 124	8031212	03/10/08 17:05
Nitrobenzene	1.67	1.27		mg/kg wet	76%	35 - 102	8031212	03/10/08 17:05
4-Nitrophenol	1.67	1.30		mg/kg wet	78%	32 - 138	8031212	03/10/08 17:05
2-Nitrophenol	1.67	1.36		mg/kg wet	82%	34 - 119	8031212	03/10/08 17:05
N-Nitrosodiphenylamine	1.67	1.46		mg/kg wet	88%	61 - 139	8031212	03/10/08 17:05
N-Nitrosodi-n-propylamine	1.67	1.11		mg/kg wet	67%	44 - 117	8031212	03/10/08 17:05
Pentachlorophenol	1.67	1.47		mg/kg wet	88%	38 - 141	8031212	03/10/08 17:05
Phenanthrene	1.67	1.38		ing/kg wet	83%	53 - 108	8031212	03/10/08 17:05
Phenol	1.67	1.30		mg/kg wet	78%	43 - 122	8031212	03/10/08 17:05
Pyrene	1.67	1.55		mg/kg wet	93%	54 - 113	8031212	03/10/08 17:05
Pyridine	1.67	1.03		mg/kg wet	62%	30 - 103	8031212	03/10/08 17:05
1,2,4-Trichlorobenzene	1.67	1.32		mg/kg wet	79%	35 - 102	8031212	03/10/08 17:05
1-MethyInaphthalene	1.67	1.27		mg/kg wet	76%	36 - 100	8031212	03/10/08 17:05
2,4,6-Trichlorophenol	1.67	1.49		mg/kg wet	90%	50 - 122	8031212	03/10/08 17:05
2,4,5-Trichlorophenol	1.67	1.46		mg/kg wet	88%	45 - 122	8031212	03/10/08 17:05
Surrogate: Terphenyl-d14	1.67	1.29			78%	26 - 128	8031212	03/10/08 17:05
Surrogate: 2,4,6-Tribromophenol	1.67	1.27			76%	20 - 132	8031212	03/10/08 17:05
Surrogate: Phenol-d5	1.67	1.18			71%	23 - 113	8031212	03/10/08 17:05
Surrogate: 2-Fluorobiphenyl	1.67	1.22			73%	19 - 109	8031212	03/10/08 17:05
Surrogate: 2-Fluorophenol	1.67	1.15			69%	19 - 105	8031212	03/10/08 17:05
Surrogate: Nitrobenzene-d5	1.67	1.14			68%	22 - 104	8031212	03/10/08 17:05

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602

Carl Dawes Attn

NRC0496 Work Order: Project Name: Project Number: [none] Received: 03/07/08 08:00

Atlanta Rush Project

PROJECT QUALITY CONTROL DATA

,

LCS Dup

Analyte	Orig. Val. Duplicate Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by EF	A Method 8260B		•••••		• • • • • • • • •	·		····	• • • • • • • • • • • • • • • • • • • •	
8031163-BSD1										
Acetone	249	ug/kg	250	100%	49 - 150	8	45	8031163		03/14/08 16:23
Benzene	50.9	ug/kg	50.0	102%	76 - 130	0.06	43	8031163		03/14/08 16:23
Bromobenzene	52.0	ug/kg	50.0	104%	80 - 128	4	50	8031163		03/14/08 16:23
Bromochloromethane	50,4	ug/kg	50.0	101%	70 - 135	3	32	8031163		03/14/08 16:23
Bromodichloromethane	51.9	ug/kg	50.0	104%	78 - 135	2	37	8031163		03/14/08 16:23
Bromoform	47.5	ug/kg	50.0	95%	67 - 143	0.4	50	8031163		03/14/08 16:23
Bromomethane	51.4	ug/kg	50,0	103%	58 - 150	3	50	8031163		03/14/08 16:23
2-Butanone	276	ug/kg	250	110%	61 - 143	2	43	8031163		
sec-Butylbenzene	54.6	ug/kg	50,0	109%	80 - 134	0.1	50	8031163		03/14/08 16:23
n-Butylbenzene	61.1	ug/kg	50,0	122%	71 - 141	0.6	50			03/14/08 16:23
tert-Butylbenzene	53.5	ug/kg	50.0	107%	79 - 132	0.0 3		8031163		03/14/08 16:23
Carbon disulfide	49.1	ug/kg	50.0				50	8031163		03/14/08 16:23
Carbon Tetrachloride	51.6			98%	70 - 134	4	47	8031163		03/14/08 16:23
Chlorobenzene	52.7	ug/kg	50.0	103%	75 - 137	0.6	44	8031163		03/14/08 16:23
Chlorodibromomethane	51.0	ug/kg	50.0 50.0	105%	80 - 121	0.7	44	8031163		03/14/08 16:23
Chloroethane		ug/kg		102%	77 - 130	2	45	8031163		03/14/08 16:23
Chloroform	52.4 51.1	ug/kg	50.0	105%	62 - 149	5	50	8031163		03/14/08 16:23
Chloromethane	· · · · · · · · · · · · · · · · · · ·	ug/kg	50.0	102%	75 - 130	0.2	36	8031163		03/14/08 16:23
2-Chlorotoluene	45.8	ug/kg	50,0	92%	35 - 130	7	50	8031163		03/14/08 16:23
4-Chlorotoluene	57.2	ug/kg	50.0	114%	80 - 131	1	50	8031163		03/14/08 16:23
	56.9	ug/kg	50.0	114%	80 - 129	3	50	8031163		03/14/08 16:23
1,2-Dibromo-3-chloropropane	43.9	ug/kg	50.0	88%	62 - 142	6	50	8031163		03/14/08 16:23
1,2-Dibromoethane (EDB)	51.6	ug/kg	50.0	103%	81 - 130	3	50	8031163		03/14/08 16:23
Dibromomethane	50.2	ug/kg	50.0	100%	77 - 133	0.7	45	8031163		03/14/08 16:23
1,4-Dichlorobenzene	55.6	ug/kg	50.0	111%	75 - 128	3	50	8031163		03/14/08 16:23
1,3-Dichlorobenzene	59.3	ug/kg	50.0	119%	79 - 128	0.9	50	8031163		03/14/08 16:23
1,2-Dichlorobenzene	56.5	ug/kg	50.0	113%	80 - 130	2	50	8031163		03/14/08 16:23
Dichlorodifluoromethane	45.7	ug/kg	50.0	91%	11 - 129	1	43	8031163		03/14/08 16:23
1,1-Dichloroethane	51.1	ug/kg	50.0	102%	68 - 150	1	37	8031163		03/14/08 16:23
1,2-Dichloroethane	51.8	ug/kg	50.0	104%	72 - 132	0.2	44	8031163		03/14/08 16:23
cis-1,2-Dichloroethene	54.3	ug/kg	50.0	109%	77 - 132	0.4	35	8031163		03/14/08 16:23
1,1-Dichloroethene	44.1	ug/kg	50,0	88%	75 - 133	2	41	8031163		03/14/08 16:23
trans-1,2-Dichloroethene	52.6	ug/kg	50.0	105%	79 - 133	2	37	8031163		03/14/08 16:23
1,3-Dichloropropane	51.2	ug/kg	50.0	102%	80 - 125	1	44	8031163		03/14/08 16:23
1,2-Dichloropropane	48.6	ug/kg	50.0	97%	75 - 124	2	35	8031163		03/14/08 16:23
2,2-Dichloropropane	51.1	ug/kg	50.0	102%	59 - 144	2	33	8031163		03/14/08 16:23
cis-1,3-Dichloropropene	51.9	ug/kg	50.0	104%	80 - 137	4	43	8031163		03/14/08 16:23
trans-1,3-Dichloropropene	52.0	ug/kg	50.0	104%	75 - 133	3	50	8031163		03/14/08 16:23
1,1-Dichloropropene	52.0	ug/kg	50.0	104%	76 - 133	0.3	41	8031163		03/14/08 16:23
Ethylbenzene	55.2	ug/kg	50.0	110%	80 - 128	3	48	8031163		03/14/08 16:23
Hexachlorobutadiene	71.6	ug/kg	50.0	143%	60 - 150	2	50	8031163		03/14/08 16:23
2-Hexanone	277	ug/kg	250		63 - 149	4	50	8031163		

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Vai.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	8260B										
8031163-BSD1												
Isopropylbenzene		44.4		ug/kg	50.0	89%	74 - 131	0.9	50	8031163		03/14/08 16:23
p-Isopropyltoluene		55.8		ug/kg	50.0	112%	75 - 133	2	50	8031163		03/14/08 16:23
Methyl tert-Butyl Ether		48.0		ug/kg	50.0	96%	67 - 130	7	45	8031163		03/14/08 16:23
Methylene Chloride		47.1		ug/kg	50.0	94%	65 - 144	3	39	8031163		03/14/08 16:23
4-Methyl-2-pentanone		274		ug/kg	250	109%	64 - 142	2	50	8031163		03/14/08 16:23
Naphthalene		54.4		ug/kg	50.0	109%	63 - 144	4	50	8031163		03/14/08 16:23
n-Propylbenzene		57.6		ug/kg	50.0	115%	80 - 131	2	50	8031163		03/14/08 16:23
Styrene		56.7		ug/kg	50.0	113%	80 - 144	ı	50	8031163		03/14/08 16:23
1,1,1,2-Tetrachloroethane		50.9		ug/kg	50.0	102%	80 - 129	3	43	8031163		03/14/08 16:23
1,1,2,2-Tetrachloroethane		48.6		ug/kg	50.0	97%	73 - 139	4	50	8031163		03/14/08 16:23
Tetrachloroethene		50.6		ug/kg	50.0	101%	76 - 128	5	45	8031163		03/14/08 16:23
Toluene		54.1		ug/kg	50.0	108%	80 - 125	0.4	44	8031163		03/14/08 16:23
1,2,3-Trichlorobenzene		65.0		ug/kg	50.0	130%	64 - 136	5	50	8031163		03/14/08 16:23
1,2,4-Trichlorobenzene		61.3		ug/kg	50.0	123%	58 - 145	3	50	8031163		03/14/08 16:23
1,1,2-Trichloroethane		47.3		ug/kg	50.0	95%	80 - 127	0.8	41	8031163		03/14/08 16:23
1,1,1-Trichloroethane		51.9		ug/kg	50.0	104%	76 - 134	í	39	8031163		03/14/08 16:23
Trichloroethene		52.7		ug/kg	50.0	105%	75 - 131	1	40	8031163		03/14/08 16:23
Trichlorofluoromethane		44.8		ug/kg	50.0	90%	63 - 130	0.4	42	8031163		03/14/08 16:23
1,2,3-Trichloropropane		44.1		ug/kg	50.0	88%	66 - 129	2	50	8031163		03/14/08 16:23
1,3,5-Trimethylbenzene		61.4		ug/kg	50.0	123%	78 - 133	0.6	50	8031163		03/14/08 16:23
1,2,4-Trimethylbenzene		56.3		ug/kg	50.0	113%	76 - 135	4	50	8031163		03/14/08 16:23
Vinyl chloride		52.4		ug/kg	50.0	105%	58 - 134	6	41	8031163	v	03/14/08 16:23
Xylenes, total		165		ug/kg	150	110%	79 - 130	0.5	48	8031163		03/14/08 16:23
Surrogate: 1,2-Dichloroethane-d4		50.1		ug/kg	50,0	100%	41 - 150			8031163		03/14/08 16:23
Surrogate: Dibromofluoromethane		51.4		ug/kg	50.0	103%	55 - 139			8031163		03/14/08 16:23
Surrogate: To/uene-d8		52,3		ug/kg	50.0	105%	57 - 148			8031163		03/14/08 16:2
Surrogate: 4-Bromofluorobenzene		52.0		ug/kg	50.0	104%	58 - 150			8031163		03/14/08 16:23
8032601-BSD1												
Acetone		250		ug/kg	250	100%	49 - 150	6	45	8032601		03/17/08 15:54
Benzene		49.8		ug/kg	50.0	100%	76 - 130	1	43	8032601		03/17/08 15:5
Bromobenzene		48.7		ug/kg	50.0	97%	80 - 128	2	50	8032601		03/17/08 15:5
Bromochloromethane		50.9		ug/kg	50.0	102%	70 - 135	2	32	8032601		03/17/08 15:5
Bromodichloromethane		\$3,3		ug/kg	50.0	107%	78 - 135	0.7	37	8032601		03/17/08 15:5
Bromoform		51.4		ug/kg	50.0	103%	67 - 143	1	50	8032601		03/17/08 15:5
Bromomethane		39.8		ug/kg	50.0	80%	58 - 150	4	50	8032601		03/17/08 15:5
2-Butanone		244		ug/kg	250	98%	61 - 143	3	43	8032601		03/17/08 15:5
sec-Butylbenzene		49.8		ug/kg	50.0	100%	80 - 134	0.1	50	8032601		03/17/08 15:5
n-Butylbenzene		50.3		ug/kg	50.0	101%	71 - 141	2	50	8032601		03/17/08 15:5
tert-Butylbenzene		48.9		ug/kg	50.0	98%	79 - 132	۱	50	8032601		03/17/08 15:5
Carbon disulfide		44.6		ug/kg	50.0	89%	70 - 134		47	8032601		03/17/08 15:5

Ŋ

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn Carl Dawes

TestAr

Work Order:	NRC0496
Project Name:	Atlanta Rush Project
Project Number:	[none]
Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method	8260B			• • • • • • • •			•••••	• • • • • •	•••••	•••••	
8032601-BSD1	-											
Carbon Tetrachloride		49.1		ug/kg	50.0	98%	75 - 137	1	44	8032601		03/17/08 15:54
Chlorobenzene		52.4		ug/kg	50.0	105%	80 - 121	1	44	8032601		03/17/08 15:54
Chlorodibromomethane		51.2		ug/kg	50.0	102%	77 - 130	4	45	8032601		03/17/08 15:54
Chloroethane		43.0		ug/kg	50.0	86%	62 - 149	6	50	8032601		03/17/08 15:54
Chloroform		50.6		ug/kg	50.0	101%	75 - 130	3	36	8032601		03/17/08 15:54
Chloromethane		35.7		ug/kg	50.0	71%	35 - 130	4	50	8032601		03/17/08 15:54
2-Chlorotoluene		53.0		ug/kg	50.0	106%	80 - 13	L	50	8032601		03/17/08 15:54
4-Chlorotoluene		53.6		ug/kg	50.0	107%	80 - 129	1	50	8032601		03/17/08 15:54
1,2-Dibromo-3-chloropropane	•	64.9		ug/kg	50 .0	130%	62 - 142	2	50	8032601		03/17/08 [5:54
1,2-Dibromoethanc (EDB)		52.8		ug/kg	50.0	106%	81 - 130	5	50	8032601		03/17/08 15:54
Dibromomethane		50.1		ug/kg	50.0	100%	77 - 133	3	45	8032601		03/17/08 15:54
I,4-Dichlorobenzene		54.2		ug/kg	50.0	108%	75 - 128	2	50	8032601		03/17/08 15:54
1,3-Dichlorobenzene		54.6		ug/kg	50.0	109%	79 - 128	0.04	50	8032601		03/17/08 15:54
1,2-Dichlorobenzene		54.7		ug/kg	50.0	109%	80 - 130	0.6	50	8032601		03/17/08 15:54
Dichlorodifluoromethane		23.8		ug/kg	50.0	48%	11 - 129	2	43	8032601		03/17/08 15:54
1,1-Dichloroethane		49.7		ug/kg	50.0	99%	68 - 150	2	37	8032601		03/17/08 15:54
1,2-Dichloroethane		49.9		ug/kg	50.0	100%	72 - 132	4	44	8032601		03/17/08 15:54
cis-1,2-Dichloroethene		50.2		ug/kg	50.0	100%	77 - 132	2	35	8032601		03/17/08 15:54
1,1-Dichloroethene		44,5		ug/kg	50.0	89%	75 - 133	1	41	8032601		03/17/08 15:54
trans-1,2-Dichloroethene		45.9		ug/kg	50.0	92%	79 - 133	0.6	37	8032601		03/17/08 15:54
1,3-Dichloropropane		48.0		ug/kg	50.0	96%	80 - 125	2	44	8032601		03/17/08 15:54
1,2-Dichloropropane		46.6		ug/kg	50.0	93%	75 - 124	3	35	8032601		03/17/08 15:54
2,2-Dichloropropane		45.2		ug/kg	50,0	90%	59 - 144	1	33	8032601		03/17/08 15:54
cis-1,3-Dichloropropene		48.8		ug/kg	50.0	98%	80 - 137	2	43	8032601		03/17/08 15:54
trans-1,3-Dichloropropene		47.5		ug/kg	50.0	95%	75 - 133	I	50	8032601		03/17/08 15:54
1,1-Dichloropropene		47.2		ug/kg	50.0	94%	76 - 133	3	41	8032601		03/17/08 15:54
Ethylbenzene		51.3		ug/kg	50.0	103%	80 - 128	2	48	8032601		03/17/08 15:54
Hexachlorobutadiene		65.0		ug/kg	50.0	130%	60 - 150	4	50	8032601		03/17/08 15:54
2-Hexanone		262		ug/kg	250	105%	63 - 149	3	50	8032601		03/17/08 15:54
Isopropylbenzene		44.4		ug/kg	50.0	89%	74 - 131	1	50	8032601		03/17/08 15:54
p-lsopropyltoluene		48.1		ug/kg	50.0	96%	75 - 133	1	50	8032601		03/17/08 15:54
Methyl tert-Butyl Ether		45.6		ug/kg	50.0	91%	67 - 130	0.9	45	8032601		03/17/08 15:54
Methylene Chloride		47.2		ug/kg	50.0	94%	65 - 144	5	39	8032601		03/17/08 15:54
4-Methyl-2-pentanone		260		ug/kg	250	104%	64 - 142	4	50	8032601		03/17/08 15:54
Naphthalene		58.8		ug/kg	50.0	118%	63 - 144	3	50	8032601		03/17/08 15:54
n-Propylbenzene		52.7		ug/kg	50.0	105%	80 - 131	3	50	8032601		03/17/08 15:54
Styrene		53.0		ug/kg	50.0	106%		3	50	8032601		03/17/08 15:54
1,1,1,2-Tetrachloroethane		51.0		ug/kg	50,0	102%	80 - 129	4	43	8032601		03/17/08 15:54
1,1,2,2-Tetrachloroethane		48.7		ug/kg	50.0	97%	73 - 139	2	50	8032601		03/17/08 15:5
Tetrachloroethene		54.1		ug/kg	50.0	108%		2	45	8032601		03/17/08 15:5
Toluene		51.5		ug/kg	50.0		80 - 125	2	44	8032601		03/17/08 15:5

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number	: [none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA

LCS	Dup	-	Cont.
-----	-----	---	-------

nalyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
olatile Organic Compounds by E	PA Method 8	3260B							• • • • • • •		• • • • • • • • • • • • • • • •	
032601-BSD1												
1,2,3-Trichlorobenzene		64.3		ug/kg	50.0	129%	64 - 136	3	50	8032601		03/17/08 15:54
1,2,4-Trichlorobenzene		72.7		ug/kg	50.0	145%	58 - 145	5	50	8032601		03/17/08 15:54
1,1,2-Trichloroethane		50.4		ug/kg	50.0	101%	80 - 127	5	41	8032601		03/17/08 15:54
1,1,1-Trichloroethane		48.0		ug/kg	50 .0	96%	76 - 134	2	39	8032601		03/17/08 15:54
Trichloroethene		49.4		ug/kg	50.0	99%	75 - 131	3	40	8032601		03/17/08 15:54
Trichlorofluoromethane		44.5		ug/kg	50.0	89%	63 - 130	1	42	8032601		03/17/08 15:54
1,2,3-Trichloropropane		42.6		ug/kg	50.0	85%	66 - 129	0.3	50	8032601		03/17/08 15:54
1,3,5-Trimethylbenzene		49.8		ug/kg	50.0	100%	78 - 133	1	50	8032601		03/17/08 15:54
1,2,4-Trimethylbenzene		55.4		ug/kg	50.0	111%	76 - 135	0.6	50	8032601		03/17/08 15:54
Vinyl chloride		39.1		ug/kg	50.0	78%	58 - 134	4	41	8032601		03/17/08 15:54
Xylenes, total		166		ug/kg	150	111%	79 - 130	2	48	8032601		03/17/08 15:54
Diisopropyl Ether		47.9		ug/kg	50.0	96%	69 - 132	0.9	39	8032601		03/17/08 15:54
1,2-Dichloroethene (total)		96.1		ug/kg	100	96%	78 - 132	0.8	35	8032601		03/17/08 15:54
urrogate: 1,2-Dichloroethane-d4		49.2		ug/kg	50.0	98%	41 - 150			8032601		03/17/08 15:54
urrogate: Dibromofluoromethane		51.7		ug/kg	50.0	103%	55 - 139			8032601		03/17/08 15:54
Surrogate: Toluene-d8		52.1		ug/kg	50.0	104%	57 - 148			8032601		03/17/08 15:54
urrogate: 4-Bromofluorobenzene		48.9		ug/kg	50.0	98%	58 - 150			8032601		03/17/08 15:54

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)
	70 West Madison, Suite 4250
	Chicago,, IL 60602
Attn	Carl Dawes

Work Order: NRC0496 Project Name: Project Number: Received:

Atlanta Rush Project [none] 03/07/08 08:00

		PROJE	CT QUALITY C Matrix Sp		ATA	·			
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method 826	0B	*********	• • • • • • • • • • • • • • • • • • • •					•••••
8031163-MS1									
Acetone	61.7	347	ug/kg	250	114%	32 - 163	8031163	NRC0614-06	03/15/08 01:17
Benzene	ND	60.3	ug/kg	50.0	121%	33 - 146	8031163	NRC0614-06	03/15/08 01:17
Bromobenzene	ND	57.1	ug/kg	50.0	114%	10 - 156	8031163	NRC0614-06	03/15/08 01:17
Bromochloromethane	ND	58.9	ug/kg	50.0	118%	43 - 138	8031163	NRC0614-06	03/15/08 01:17
Bromodichloromethane	ND	62.5	ug/kg	50.0	125%	31 - 149	8031163	NRC0614-06	03/15/08 01:17
Bromoform	ND	59.6	ug/kg	50.0	119%	14 - 167	8031163	NRC0614-06	03/15/08 01:17
Bromomethane	ND	58.7	ug/kg	50.0	117%	16 - 172	8031163	NRC0614-06	03/15/08 01:17
2-Butanone	ND	321	ug/kg	250	129%	37 - 151	8031163	NRC0614-06	03/15/08 01:17
sec-Butylbenzene	ND	58.7	ug/kg	50.0	117%	18 - 165	8031163	NRC0614-06	03/15/08 01:17
n-Butylbenzene	ND	62.8	ug/kg	50.0	126%	10 - 168	8031163	NRC0614-06	03/15/08 01:17
tert-Butylbenzene	ND	57.8	ug/kg	50.0	116%	17 - 165	8031163	NRC0614-06	03/15/08 01:17
Carbon disulfide	ŅD	58.4	ug/kg	50.0	117%	34 - 147	8031163	NRC0614-06	03/15/08 01:17
Carbon Tetrachloride	ND	63.1	ug/kg	50.0	126%	33 - 155	8031163	NRC0614-06	03/15/08 01:17
Chlorobenzene	ND	60.0	ug/kg	50.0	120%	23 - 147	8031163	NRC0614-06	03/15/08 01:17
Chlorodibromomethane	ND	61.1	ug/kg	50.0	122%	21 - 155	8031163	NRC0614-06	03/15/08 01:17
Chloroethane	ND	59.1	ug/kg	50,0	118%	44 - 155	8031163	NRC0614-06	03/15/08 01:17
Chloroform	ND	64.1	ug/kg	50.0	128%	39 - 140	8031163	NRC0614-06	03/15/08 01:17
Chloromethane	ND	51.7	ug/kg	50.0	103%	14 - 143	8031163	NRC0614-06	03/15/08 01:17
2-Chlorotoluene	ND	60.6	ug/kg	50.0	121%	21 - 154	8031163	NRC0614-06	03/15/08 01:17
4-Chlorotoluene	ND	60.5	· ug/kg	50.0	121%	10 - 156	8031163	NRC0614-06	03/15/08 01:17
1,2-Dibromo-3-chloropropane	ND	51.9	ug/kg	50.0	104%	10 - 159	8031163	NRC0614-06	03/15/08 01:17
1,2-Dibromoethane (EDB)	ND	62.3	ug/kg	50.0	125%	. 19 - 151	8031163	NRC0614-06	03/15/08 01:17
Dibromomethane	ND	63,9	ug/kg	50.0	128%	32 - 147	8031163	NRC0614-06	03/15/08 01:17
1,4-Dichlorobenzene	ND .	55.4	ug/kg	50.0	111%	10 - 152	8031163	NRC0614-06	03/15/08 01:17
1,3-Dichlorobenzene	ND	60.9	ug/kg	. 50.0	122%	10 - 153	8031163	NRC0614-06	03/15/08 01:17
1,2-Dichlorobenzene	ND	59.2	ug/kg	50.0	118%	10 - 155	8031163	NRC0614-06	03/15/08 01:17
Dichlorodifluoromethane	ND	59.6	ug/kg	50.0	119%	10 - 143	8031163	NRC0614-06	03/15/08 01:17
1,1-Dichloroethane	ND	66.1	ug/kg	50.0	132%	49 - 156	8031163	NRC0614-06	03/15/08 01:17
1,2-Dichloroethane	ND	65.8	ug/kg	50.0	132%	27 - 145	8031163		03/15/08 01:17
cis-1,2-Dichloroethene	ND	67.0	ug/kg	50.0	134%	39 - 143	8031163	NRC0614-06	
1,1-Dichloroethene	ND	62.3	ug/kg	50.0	125%	· 42 - 145	8031163	NRC0614-06	03/15/08 01:17
trans-1,2-Dichloroethene	ND	69.7	ug/kg	50.0	139%	42 - 143 41 - 146	8031163		03/15/08 01:17 03/15/08 01:17
1,3-Dichloropropane	ND	62.7	ug/kg	50.0	125%	41 - 140 30 - 143	8031163	NRC0614-06	
1,2-Dichloropropane	ND	57.6	ug/kg	50.0		30 - 143 37 - 136		NRC0614-06	03/15/08 01:17
2,2-Dichloropropane	ND	62.1			115%		8031163	NRC0614-06	03/15/08 01:17
cis-1,3-Dichloropropene	ND D	64.4	ug/kg	50.0	124%	30 - 145	8031163	NRC0614-06	03/15/08 01:17
trans-1,3-Dichloropropene			uig/kg	50.0	129%	29 - 149	8031163	NRC0614-06	03/15/08 01:17
wans-1,5-Dichtoropropene	ND	62.5	ug/kg	50.0	125%	17 - 146	8031163	NRC0614-06	03/15/08 01:1

ļ

THE LEADER IN ENVIRONMENTAL TESTING

ł

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 826)B			•••••				
8031163-MS1									
1,1-Dichloropropene	ND	62.1	ug/kg	50.0	124%	36 - 147	8031163	NRC0614-06	03/15/08 01:17
Ethylbenzene	ND	61.8	ug/kg	50.0	124%	16 - 160	8031163	NRC0614-06	03/15/08 01:17
Hexachlorobutadiene	ND	65.4	ug/kg	50.0	131%	10 - 191	8031163	NRC0614-06	03/15/08 01:17
2-Hexanone	ND	299	ug/kg	250	120%	19 - 154	8031163	NRC0614-06	03/15/08 01:17
Isopropylbenzene	ND	51.4	ug/kg	50.0	103%	16 - 156	8031163	NRC0614-06	03/15/08 01:17
p-lsopropyitoluene	ND	58.7	ug/kg	50.0	t17%	13 - 160	8031163	NRC0614-06	03/15/08 01:17
Methyl tert-Butyl Ether	ND	65.6	ug/kg	50.0	131%	30 - 136	8031163	NRC0614-06	03/15/08 01:17
Methylene Chloride	1.28	60.8	ug/kg	50.0	119%	31 - 160	8031163	NRC0614-06	03/15/08 01:17
4-Methyl-2-pentanone	ND	328	ug/kg	250	131%	25 - 149	8031163	NRC0614-06	03/15/08 01:17
Naphthalene	ND	52.8	ug/kg	50.0	106%	10 - 151	8031163	NRC0614-06	03/15/08 01:17
n-Propylbenzene	ND	61.9	ug/kg	50.0	124%	17 - 158	8031163	NRC0614-06	03/15/08 01:17
Styrene	ND	57.5	ug/kg	50.0	115%	11 - 168	8031163	NRC0614-06	03/15/08 01:17
1,1,1,2-Tetrachloroethane	ND	59.5	ug/kg	50.0	119%	30 - 147	8031163	NRC0614-06	03/15/08 01:17
1,1,2,2-Tetrachloroethane	ND	57.3	ug/kg	50.0	115%	20 - 155	8031163	NRC0614-06	03/15/08 01:17
Tetrachloroethene	ND	61.9	ug/kg	50.0	124%	27 - 151	8031163	NRC0614-06	03/15/08 01:17
Toluene	ND	64.7	ug/kg	50.0	129%	30 - 145	8031163	NRC0614-06	03/15/08 01:17
1,2,3-Trichlorobenzene	ND	58.2	ug/kg	50.0	116%	10 - 158	8031163	NRC0614-06	03/15/08 01:17
1,2,4-Trichlorobenzene	ND	53.4	ug/kg	50.0	107%	10 - 160	8031163	NRC0614-06	03/15/08 01:17
1,1,2-Trichloroethane	ND	61.3	ug/kg	50.0	123%	34 - 140	8031163	NRC0614-06	03/15/08 01:17
1,1,1-Trichloroethane	ND	63.6	ug/kg	50 .0	127%	36 - 150	8031163	NRC0614-06	03/15/08 01:17
Trichloroethene	ND	59.5	ug/kg	50.0	119%	33 - 145	8031163	NRC0614-06	03/15/08 01:17
Trichlorofluoromethane	ND	56.0	ug/kg	50.0	112%	31 - 150	8031163	NRC0614-06	03/15/08 01:17
1,2,3-Trichloropropane	ND	50.3	ug/kg	50.0	101%	14 - 143	8031163	NRC0614-06	03/15/08 01:17
1,3,5-Trimethylbenzene	ND	65.0	ug/kg	50.0	130%	20 - 158	8031163	NRC0614-06	03/15/08 01:17
1,2,4-Trimethylbenzene	ND	60.8	ug/kg	50.0	122%	10 - 166	8031163	NRC0614-06	03/15/08 01:17
Vinyl chloride	ND	61.1	ug/kg	50.0	122%	32 - 144	8031163	NRC0614-06	03/15/08 01:17
Xylenes, total	ND	186	ug/kg	150	124%	16 - 159	8031163	NRC0614-06	03/15/08 01:17
Surrogate: 1,2-Dichloroethane-d4		54.3	ug/kg	50,0	109%	41 - 150	8031163	NRC0614-06	03/15/08 01:17
Surrogate: Dibromofluoromethane		54.4	ug/kg	50.0	109%	55 - 139	8031163	NRC0614-06	03/15/08 01:17
Surrogate: Toluene-d8		53.8	ug/kg	50.0	108%	57 - 148	8031163	NRC0614-06	03/15/08 01:17
Surrogate: 4-Bromofluorobenzene		48.2	ug/kg	50.0	96%	58 - 150	8031163	NRC0614-06	03/15/08 01:17
8032601-MS1									
Acetone	22.4	321	ug/kg	250	120%	32 - 163	8032601	NRC0496-04	03/18/08 14:43
Benzene	ND	49.2	ug/kg	50.0	98%	33 - 146	8032601	NRC0496-04	03/18/08 14:43
Bromobenzene	ND	45.6	ug/kg	50.0	91%	10~156	8032601	NRC0496-04	03/18/08 14:43
Bromochloromethane	ND	47.9	ug/kg	50.0	96%	43 - 138	8032601	NRC0496-04	03/18/08 14:43

TestAme

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250 Chicago,, IL 60602

Carl Dawes

Attn

NRC0496 Work Order: Project Name: Project Number: [none] Received:

Atlanta Rush Project 03/07/08 08:00

						Target		Sample	Analyzed
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Range	Batch	Spiked	Date/Time
Volatile Organic Compounds by	EPA Method 826	50B	•••••••••••••••••						• • • •
8032601-MS1									
Bromodichloromethane	. ND	48.8	ug/kg	50.0	98%	31 - 149	8032601	NRC0496-04	03/18/08 14:43
Bromoform	ND	40.0	ug/kg	50,0	80%	14 - 167	8032601	NRC0496-04	03/18/08 14:43
Bromomethane	ND	39.1	ug/kg	50.0	78%	16 - 172	8032601	NRC0496-04	03/18/08 14:43
2-Butanone	ND	247	ug/kg	250	99%	37 - 151	8032601	NRC0496-04	03/18/08 14:43
sec-Butylbenzene	ND	48.0	ug/kg	50.0	96%	18 - 165	8032601	NRC0496-04	03/18/08 14:43
n-Butylbenzene	ND	49.0	ug/kg	50.0	98%	10 - 168	8032601	NRC0496-04	03/18/08 14:43
tert-Butylbenzene	ND	. 47.9	ug/kg	50.0	96%	17 - 165	8032601	NRC0496-04	03/18/08 14:43
Carbon disulfide	ND	39.5	ug/kg	50.0	79%	34 - 147	8032601	NRC0496-04	03/18/08 14:43
Carbon Tetrachloride	ND	45.4	ug/kg	50.0	91%	33 - 155	8032601	NRC0496-04	03/18/08 14:43
Chlorobenzene	ND	48.7	ug/kg	50.0	97%	23 - 147	8032601	NRC0496-04	03/18/08 14:43
Chlorodibromomethane	ND	41.0	ug/kg	50.0	82%	21 - 155	8032601	NRC0496-04	03/18/08 14:43
Chloroethane	ND	40.6	ug/kg	50.0	81%	44 - 155	8032601	NRC0496-04	03/18/08 14:43
Chloroform	ND	49.5	ug/kg	50.0	99%	39 - 140	8032601	NRC0496-04	03/18/08 14:43
Chloromethane	ND	31.8	ug/kg	50.0	64%	14 - 143	8032601	NRC0496-04	03/18/08 14:43
2-Chlorotoluene	ND	50.8	ug/kg	50.0	102%	21 - 154	8032601	NRC0496-04	03/18/08 14:43
4-Chlorotoluene	ND	50.9	ug/kg	50.0	102%	10 - 156	8032601	NRC0496-04	03/18/08 14:43
1,2-Dibromo-3-chloropropane	ND	55.0	ug/kg	50.0	110%	10 - 159	8032601	NRC0496-04	03/18/08 14:43
1,2-Dibromoethane (EDB)	ND	46.1	ug/kg	50.0	92%	19 - 151	8032601	NRC0496-04	03/18/08 14:43
Dibromomethane	ND	45.6	ug/kg	50.0	91%	32 - 147	8032601	NRC0496-04	03/18/08 14:43
1,4-Dichlorobenzene	ND	50.0	ug/kg	50.0	100%	10 - 152	8032601	NRC0496-04	03/18/08 14:43
1,3-Dichlorobenzene	ND	49,2	ug/kg	50.0	98%	10 - 153	8032601	NRC0496-04	03/18/08 14:43
1,2-Dichlorobenzene	ND	48.5	ug/kg	50.0	97%	10 - 155	8032601	NRC0496-04	03/18/08 14:43
Dichlorodifluoromethane	ND	19.8	ug/kg	50.0	40%	10 - 143	8032601	NRC0496-04	03/18/08 14:43
1,1-Dichloroethane	ND	48.1	ug/kg	50.0	96%	49 - 156	8032601	NRC0496-04	03/18/08 14:43
1,2-Dichloroethane	ND	45.7	ug/kg	50.0	91%	27 - 145	8032601	NRC0496-04	03/18/08 14:43
cis-1,2-Dichloroethene	ND	49.6	ug/kg	50.0	99%	39 - 143	8032601	NRC0496-04	03/18/08 14:43
1,1-Dichloroethene	ND	44.7	ug/kg	50.0	89%	42 - 145	8032601	NRC0496-04	03/18/08 14:43
trans-1,2-Dichloroethene	ND	46.1	ug/kg	50.0	92%	41 - 146	8032601	NRC0496-04	03/18/08 14:43
1,3-Dichloropropane	ND	43.8	ug/kg	50.0	88%	30 - 143	8032601	NRC0496-04	03/18/08 14:43
1,2-Dichloropropane	ND	44.6	ug/kg	50.0	89%	37 - 136	8032601	NRC0496-04	03/18/08 14:43
2,2-Dichloropropane	ND	45.7	ug/kg	50,0	91%	30 - 145	8032601	NRC0496-04	03/18/08 14:4:
cis-1,3-Dichloropropene	ND	44.6	ug/kg	50.0	89%	29 - 149	8032601	NRC0496-04	03/18/08 14:4:
trans-1,3-Dichloropropene	. ND	42.1	ug/kg	50.0	84%	17 - 146	8032601	NRC0496-04	03/18/08 14:4
1,1-Dichloropropene	. ND	46.5	ug/kg	50,0	93%	36 - 147	8032601	NRC0496-04	03/18/08 14:4
Ethylbenzene	ND	48.4	ug/kg	50.0	97%	16 - 160	8032601	NRC0496-04	03/18/08 14:4:
Hexachlorobutadiene	ND	57.2	ug/kg	50.0	114%	10 - 100	8032601	NRC0496-04	03/18/08 14:42
2-Hexanone	ND	249	ug/kg	250	100%	19 - 154	8032601	NRC0496-04	03/18/08 14:4:

ŀ

THE LEADER IN ENVIRONMENTAL TESTING

,

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Vat	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by 1	EPA Method 8260)B						· · <i>·</i> · · · · · · · · · · · · · · · ·	
8032601-MS1									
Isopropylbenzene	ND	41.0	ug/kg	50.0	82%	16 - 156	8032601	NRC0496-04	03/18/08 14:43
p-Isopropyltoluene	ND	46.0	ug/kg	50.0	92%	13 - 160	8032601	NRC0496-04	03/18/08 14:43
Methyl tert-Butyl Ether	ND	43.4	ug/kg	50.0	87%	30 - 136	8032601	NRC0496-04	03/18/08 14:43
Methylene Chloride	ND	45.7	ug/kg	50.0	91%	31 - 160	8032601	NRC0496-04	03/18/08 14:43
4-Methyl-2-pentanone	ND	246	ug/kg	250	99%	25 - 149	8032601	NRC0496-04	03/18/08 14:43
Naphthalene	ND	38.0	ug/kg	50.0	76%	10 - 151	8032601	NRC0496-04	03/18/08 14:43
n-Propylbenzene	ND	52.2	ug/kg	50.0	104%	17 - 158	8032601	NRC0496-04	03/18/08 14:43
Styrene	ND	12.4	ug/kg	50.0	25%	11 - 168	8032601	NRC0496-04	03/18/08 14:43
1,1,1,2-Tetrachloroethane	ND	44.7	ug/kg	50.0	89%	30 - 147	8032601	NRC0496-04	03/18/08 14:43
1,1,2,2-Tetrachloroethane	ND	43.8	ug/kg	50.0	88%	20 - 155	8032601	NRC0496-04	03/18/08 14:43
Tetrachloroethene	ND	53.0	ug/kg	50.0	106%	27 - 151	8032601	NRC0496-04	03/18/08 14:43
Toluene	ND	49.2	ug/kg	50.0	98%	30 - 145	8032601	NRC0496-04	03/18/08 14:43
1,2,3-Trichlorobenzene	ND	43.5	ug/kg	50.0	87%	10 - 158	8032601	NRC0496-04	03/18/08 14:43
1,2,4-Trichlorobenzene	ND	63.5	ug/kg	50.0	127%	10 - 160	8032601	NRC0496-04	03/18/08 14:43
1,1,2-Trichloroethane	ND	45.6	ug/kg	50.0	91%	34 - 140	8032601	NRC0496-04	03/18/08 14:43
1,1,1-Trichioroethane	ND	46.1	ug/kg	50.0	92%	36 - 150	8032601	NRC0496-04	03/18/08 14:43
Trichloroethene	ND	49.4	ug/kg	50.0	99%	33 - 145	8032601	NRC0496-04	03/18/08 14:43
Trichlorofluoromethane	ND	42.7	ug/kg	50.0	85%	31 - 150	8032601	NRC0496-04	03/18/08 14:43
1,2,3-Trichloropropane	ND	38.6	ug/kg	50.0	77%	14 - 143	8032601	NRC0496-04	03/18/08 14:43
1,3,5-Trimethylbenzene	ND	47.5	ug/kg	50.0	95%	20 - 158	8032601	NRC0496-04	03/18/08 14:43
1,2,4-Trimethylbenzene	ND	51.2	ug/kg	50.0	102%	10 - 166	8032601	NRC0496-04	03/18/08 14:43
Vinyl chloride	ND	35.5	ug/kg	50,0	71%	32 - 144	8032601	NRC0496-04	03/18/08 14:43
Xylenes, total	ND	153	ug/kg	150	102%	16 - 159	8032601	NRC0496-04	03/18/08 14:43
Surrogate: 1,2-Dichloroethane-d4		49.0	ug/kg	50.0	98%	41 - 150	8032601	NRC0496-04	03/18/08 14:43
Surrogate: Dibromofluoromethane		51.9	ug/kg	50.0	104%	55 - 139	8032601	NRC0496-04	03/18/08 14:43
Surrogate: Toluene-d8		52.5	ug/kg	50.0	105%	57 - 148	8032601	NRC0496-04	03/18/08 14:43
Surrogate: 4-Bromofluorobenzene		50.5	ug/kg	50.0	101%	58 - 150	8032601	NRC0496-04	03/18/08 14:43
Polyaromatic Hydrocarbons by F	EPA 8270C								
8032330-MS1									
Acenaphthene	ND	1.32	mg/kg dry	1.92	69%	28 - 117	8032330	NRC0496-04	03/15/08 05:27
Acenaphthylene	ND	1.43	mg/kg dry	1.92	74%	33 - 113	8032330	NRC0496-04	03/15/08 05:27
Anthracene	ND	1.54	mg/kg dry	1.92	80%	31 - 131	8032330	NRC0496-04	03/15/08 05:27
Benzo (a) anthracene	ND	1.54	mg/kg dry	1.92	80%	29 - 124	8032330	NRC0496-04	03/15/08 05:27
Benzo (a) pyrene	ND	1.55	mg/kg dry	1.92	80%	30 - 127	8032330	NRC0496-04	03/15/08.05:27
Benzo (b) fluoranthene	ND	1.56	mg/kg dry	t.92	81%	26 - 128	8032330	NRC0496-04	03/15/08 05:27
Benzo (g,h,i) perylene	ND	1.52	mg/kg dry	1.92	79%	21 - 122	8032330	NRC0496-04	03/15/08 05:27

THE LEADER IN ENVIRONMENTAL	TESTING
-----------------------------	---------

Ì

1

.

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Attn	70 West Madison, Suite 4250 . Chicago,, IL 60602 Carl Dawes					Work Order: Project Name: Project Number Received:	: [non	nta Rush Pro e] 7/08 08:00	ject			
•			PROJE		ALITY C	ONTROL DA - Cont.	ТА	•		. *		
Analyte	Orio	o. Val	MS Val	0	Unita	Saika Cara	0/ D	Target	Batch	Sample	Analyzed	•

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Range	Batch	Spiked	Date/Time
Polyaromatic Hydrocarbons by E	CPA 8270C					••••		· · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •
8032330-MS1								•		
Benzo (k) fluoranthene	ND	1.53		mg/kg dry	1.92	80%	20 - 130	8032330	NRC0496-04	03/15/08 05:27
Chrysene	ND	1.45		mg/kg dry	1.92	75%	30 - 119	8032330	NRC0496-04	03/15/08 05:27
Dibenz (a,h) anthracene	ND	1.58		mg/kg dry	1.92	82%	27 - 122	8032330	NRC0496-04	03/15/08 05:27
Fluoranthene	0.0419	1.68		mg/kg dry	1.92	85%	23 - 132	8032330	NRC0496-04	03/15/08 05:27
Fluorene	ND	1.50		mg/kg dry	1.92	78%	38 - 110	8032330	NRC0496-04	03/15/08 05:27
Indeno (1,2,3-cd) pyrene	ND	1.55		mg/kg dry	1.92	81%	24 - 122	8032330	NRC0496-04	03/15/08 05:27
Naphthalene	. ND	1.27	•	mg/kg dry	1.92	66%	14 - 117	8032330	NRC0496-04	03/15/08 05:27
Phenanthrene	ND	1.47		mg/kg dry	1.92	76%	21 - 130	8032330	NRC0496-04	03/15/08 05:27
Pyrene	· ND	1.43		mg/kg dry	1.92	74%	24 - 133	8032330	NRC0496-04	03/15/08 05:27
Surrogate: Terphenyl-d14		1.23		mg/kg dry	1.92	64%	26 - 128	8032330	NRC0496-04	03/15/08 05:27
Surrogate: 2-Fluorobiphenyl		1.11		mg/kg dry	1.92	58%	19 - 109	8032330	NRC0496-04	03/15/08 05:27
Surrogate: Nitrobenzene-d5		l.19		mg/kg dry	1.92	62%	22 - 104 [°]	8032330	NRC0496-04	03/15/08 05:27
Semivolatile Organic Compounds	by EPA Method	8270C								
8031212-MS1	-					•			·	
Acenaphthene	ND	1.44		mg/kg dry	2.03	71%	28 - 117	8031212	NRC0611-02	03/10/08 19:10
Acenaphthylene	ND	1.49		mg/kg dry	2.03	73%	33 - 113	8031212	NRC0611-02	03/10/08 19:10
Anthracene	ND	1.48		mg/kg dry	2.03	73%	31 - 131	8031212	NRC0611-02	03/10/08 19:10
Benzo (a) anthracene	0.129	1.60		mg/kg dry	2.03	72%	29 - 124	8031212	NRC0611-02	03/10/08 19:10
Benzo (a) pyrene	0.110	1.58		mg/kg dry	2.03	72%	30 - 127	8031212	NRC0611-02	03/10/08 19:10
Benzo (b) fluoranthene	0.140	1.61		mg/kg dry	2.03	72%	26 - 128	8031212	NRC0611-02	03/10/08 19:10
Benzo (g,h,i) perylene	0.0911	1.56		mg/kg dry	2.03	72%	21 - 122	8031212	NRC0611-02	03/10/08 19:10
Benzo (k) fluoranthene	0.224	1.54		mg/kg dry	2.03	65%	20 - 130	8031212	NRC0611-02	03/10/08 19:10
4-Bromophenyl phenyl ether	ND	1.27		mg/kg dry	2.03	62%	30 - 106	8031212	NRC0611-02	03/10/08 19:10
Butyl benzyl phthalate	ND	1.63		mg/kg dry	2.03	80%	40 - 131	8031212	NRC0611-02	03/10/08 19:10
Carbazole	ND	1.44		mg/kg dry	2.03	71%	37 - 116	8031212	NRC0611-02	03/10/08 19:10
4-Chloro-3-methylphenol	ND	1.33		mg/kg dry	2.03	65%	19 - 128	8031212	NRC0611-02	03/10/08 19:10
4-Chloroaniline	ND	1.19		mg/kg dry	2.03	59%	10 - 119	8031212	NRC0611-02	03/10/08 19:10
Bis(2-chloroethoxy)methane	ND	1.33		mg/kg dry	2.03	65%	30 - 110	8031212	NRC0611-02	03/10/08 19:10
Bis(2-chloroethyl)ether	ND	1.26		mg/kg dry	2.03	62%	36 - 106	8031212	NRC0611-02	03/10/08 19:10
Bis(2-chloroisopropyl)ether	ND	1.14		mg/kg dry	2.03	56%	34 - 109	8031212	NRC0611-02	03/10/08 19:10
2-Chloronaphthalene	ND	1.42		mg/kg dry	2.03	70%	31 - 107	8031212	NRC0611-02	03/10/08 19:10
2-Chlorophenol	ND	1.29		mg/kg dry	2.03	64%	32 - 119	8031212	NRC0611-02	03/10/08 19:10
4-Chlorophenyl phenyl ether	ND	1.31		mg/kg dry	2.03	64%	35 - 113	8031212	NRC0611-02	03/10/08 19:10
Chrysene	0.168	1.69		mg/kg dry	2.03	75%	30 - 119	8031212	NRC0611-02	03/10/08 19:10
Dibenz (a,h) anthracene	ND	1.42		mg/kg dry	2.03	70%	27 - 122	8031212	NRC0611-02	03/10/08 , 19:10
Dibenzofuran	ND	1.44		mg/kg dry	2.03	71%	33 - 121	8031212	NRC0611-02	03/10/08 19:10

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compoun	ds by EPA Method	8270C	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • •			• • • • • • • • • • • • • • • • •	
8031212-MS1	• .								
Di-n-butyl phthalate	ND	1.44	mg/kg dry	2.03	71%	38 - 123	8031212	NRC0611-02	03/10/08 19:10
1,4-Dichlorobenzene	ND	1.13	mg/kg dry	2.03	56%	26 - 109	8031212	NRC0611-02	03/10/08 19:10
1,2-Dichlorobenzene	ND	1,26	mg/kg dry	2.05	61%	26 - 112	8031212	NRC0611-02	03/10/08 19:10
1,3-Dichlorobenzene	ND	1.17	mg/kg dry	2.03	57%	26 - 110	8031212	NRC0611-02	03/10/08 19:10
3,3-Dichlorobenzidine	ND	1.01	mg/kg dry	2.03	50%	10 - 112	8031212	NRC0611-02	03/10/08 19:10
2,4-Dichlorophenol	ND	1.38	mg/kg dry	2,03	68%	28 - 118	8031212	NRC0611-02	03/10/08 19:10
Diethyl phthalate	ND	1.24	mg/kg dry	2.03	61%	29 - 122	8031212	NRC0611-02	03/10/08 19:10
2,4-Dimethylphenol	ND	1.46	mg/kg dry	2.03	72%	10 - 128	8031212	NRC0611-02	03/10/08 19:10
Dimethyl phthalate	ND	1.32	mg/kg đry	2,03	65%	31 - 118	8031212	NRC0611-02	03/10/08 19:10
4,6-Dinitro-2-methylphenol	ND	0.857	mg/kg dry	2.03	42%	10 - 136	8031212	NRC0611-02	03/10/08 19:10
2,4-Dinitrophenol	ND	0.694	mg/kg dry	2.03	34%	10 - 148	8031212	NRC0611-02	03/10/08 19:10
2,6-Dinitrotoluene	ND	1.49	mg/kg dry	2.03	73%	28 - 125	8031212	NRC0611-02	03/10/08 19:10
2,4-Dinitrotoluene	ND	1.45	mg/kg dry	2.03	71%	30 - 119	8031212	NRC0611-02	03/10/08 19:10
Di-n-octyl phthalate	ND	1.62	mg/kg dry	2.03	79%	31 - 137	8031212	NRC0611-02	03/10/08 19:10
Bis(2-ethylhexyl)phthalate	ND	1.63	mg/kg dry	2.03	80%	38 - 125	8031212	NRC0611-02	03/10/08 19:10
Fluoranthene	0.486	2.28	mg/kg dry	2.03	88%	23 - 132	8031212	NRC0611-02	03/10/08 19:10
Fluorene	ND	1.45	mg/kg dry	2.03	71%	38 - 110	8031212	NRC0611-02	03/10/08 19:10
Hexachlorobenzene	ND	1.38	mg/kg dry	2.03	68%	35 - 120	8031212	NRC0611-02	03/10/08 19:10
Hexachlorobutadiene	ND	1.43	mg/kg dry	2.03	70%	28 - 113	8031212	NRC0611-02	03/10/08 19:10
Hexachlorocyclopentadiene	ND	1.12	mg/kg dry	2.03	55%	10 - 123	8031212	NRC0611-02	03/10/08 19:10
Hexachloroethane	ND	1.16	mg/kg dry	2,03	57%	20 - 120	8031212	NRC0611-02	03/10/08 19:10
Indeno (1,2,3-cd) pyrene	0.0776	1.52	mg/kg dry	2.03	71%	24 - 122	8031212	NRC0611-02	03/10/08 19:10
Isophorone	ND	1.28	mg/kg dry	2.03	63%	23 - 108	8031212	NRC0611-02	03/10/08 19:10
2-Methylnaphthalene	ND	1.35	mg/kg dry	2.03	66%	26 - 116	8031212	NRC0611-02	03/10/08 19:10
2-Methylphenol	ND	1.25	mg/kg dry	2.03	61%	23 - 122	8031212	NRC0611-02	03/10/08 19:10
3/4-Methylphenol	ND	1.38	mg/kg dry	2.03	68%	23 - 138	8031212	NRC0611-02	03/10/08 19:10
Naphthalene	ND	1.36	mg/kg dry	2.03	67%	14 - 117	8031212	NRC0611-02	03/10/08 19:10
3-Nitroaniline	ND	1.24	mg/kg dry	2.03	61%	27 - 124	8031212	NRC0611-02	03/10/08 19:10
2-Nitroaniline	ND	1.43	mg/kg dry	2.03	70%	35 - 122	8031212	NRC0611-02	03/10/08 19:10
4-Nitroaniline	ND	1.27	mg/kg dry	2.03	62%	25 - 124	8031212	NRC0611-02	03/10/08 19:10
Nitrobenzene	ND	1.29	mg/kg dry	2.03	63%	19 - 105	8031212	NRC0611-02	03/10/08 19:10
4-Nitrophenol	ND	1,23	mg/kg dry		60%	14 - 144	8031212	NRC0611-02	03/10/08 19:10
2-Nitrophenol	ND	- 1.43	mg/kg dry		70%	23 - 119	8031212	NRC0611-02	03/10/08 19:10
N-Nitrosodiphenylamine	ND	1.48	mg/kg dry		73%	37 - 144	8031212	NRC0611-02	03/10/08 19:10
N-Nitrosodi-n-propylamine	ND	1.13	mg/kg dry		55%	28 - 121	8031212	NRC0611-02	03/10/08 19:10
Pentachlorophenol	ND	1.30	mg/kg dry		64%	13 - 149	8031212	NRC0611-02	03/10/08 19:10
Phenanthrene	0.396	2.04	mg/kg dry		81%	21 - 130	8031212	NRC0611-02	03/10/08 19:10

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRC0496

[none]

Atlanta Rush Project

(

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250

Chicago,, IL 60602

Surrogate: 2-Fluorophenol

Surrogate: Nitrobenzene-d5

.

Attn Carl Dawes			·	Received:	03/0	7/08 08:00			
PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.									
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method	8270C		•••••	• • • • • •		• • • • • • • • • • • • •		•••••
8031212-MS1									
Phenol	ND	1.29	mg/kg dry	2.03	63%	31 - 116	8031212	NRC0611-02	03/10/08 19:10
Pyrene	0.466	2.34	mg/kg dry	2.03	92%	24 - 133	8031212	NRC0611-02	03/10/08 19:10
Pyridine	ND	0.565	mg/kg dry	2.03	28%	10 - 103	8031212	NRC0611-02	03/10/08 19:10
1,2,4-Trichlorobenzene	ND	1.34	mg/kg dry	2.03	66%	27 - 102	8031212	NRC0611-02	03/10/08 19:10
1-Methylnaphthalene	ND	1.30	mg/kg dry	2.03	64%	10 - 121	8031212	NRC0611-02	03/10/08 19:10
2,4,6-Trichlorophenol	ND	1.54	mg/kg dry	2.03	76%	32 - 122	8031212	NRC0611-02	03/10/08 19:10
2,4,5-Trichlorophenol	ND	1.55	mg/kg dry	2.03	76%	30 - 122	8031212	NRC0611-02	03/10/08 19:10
Surrogate: Terphenyl-d14		1.27	mg/kg dry	2.03	62%	26 - 128	8031212	NRC0611-02	03/10/08 19:10
Surrogate: 2,4,6-Tribromophenol		1.33	mg/kg dry	2.03	65%	20 - 132	8031212	NRC0611-02	
Surrogate: Phenol-d5		1.19	mg/kg dry	2.03	58%	23 - 113	8031212		03/10/08 19:10
Surrogate: 2-Fluorobiphenyl		1.22	mg/kg dry	2.03	60%	19 - 109	8031212	NRC0611-02 NRC0611-02	03/10/08 19:10

mg/kg dry

mg/kg dry

2.03

2.03

54%

56%

19 - 105

22 - 104

8031212

8031212

8031212

NRC0611-02

NRC0611-02

NRC0611-02

03/10/08 19:10

03/10/08 19:10

03/10/08 19:10

1.11

1.14

Work Order:

Project Name:

Project Number:

ı.

1

THE LEADER IN ENVIRONMENTAL TESTING

1 .

Clier	t Weaver Boos Consultants LLC (1407793)	Work Order: NRC0496
	70 West Madison, Suite 4250	Project Name: Atlanta Rush Project
	Chicago,, IL 60602	Project Number: [none]
Attn	Carl Dawes	Received: 03/07/08 08:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup

Analyte	· Orig. Val.	Duplicate Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds b	y EPA Method 8	260B				•••••					
8031163-MSD1								•			
Acetone	62,5	377	ug/kg	250	126%	32 - 163	8	45	8031163	NRC0614-06	03/15/08 01:47
Benzene	ND	58.2	ug/kg	50.0	116%	33 - 146	4	43	8031163	NRC0614-06	03/15/08 01:47
Bromobenzene	ND	50,1	ug/kg	50.0	100%	10 - 156	13	50	8031163	NRC0614-06	03/15/08 01:47
Bromochloromethane	ND	57.9	ug/kg	50.0	116%	43 - 138	2	32	8031163	NRC0614-06	03/15/08 01:47
Bromodichloromethane	ND	58.6	ug/kg	50.0	117%	31 - 149	6	37	8031163	NRC0614-06	03/15/08 01:47
Bromoform	ND	58.7	ug/kg	50.0	117%	14 - 167	2	50	8031163	NRC0614-06	03/15/08 01:47
Bromomethane	ND	61.0	ug/kg	50.0	122%	16 - 172	4	50	8031163	NRC0614-06	03/15/08 01:47
2-Butanone	ND	348	ug/kg	250	139%	37 - 151	8	43	8031163	NRC0614-06	03/15/08 01:47
sec-Butylbenzene	ND	49.9	ug/kg	50.0	100%	18 - 165	16	50	8031163	NRC0614-06	03/15/08 01:47
n-Butyibenzene	ND	48.8	ug/kg	50.0	98%	10 - 168	25	50	8031163	NRC0614-06	03/15/08 01:47
tert-Butylbenzene	ND	49.1	ug/kg	50.0	98%	17 - 165	16	50	8031163	NRC0614-06	03/15/08 01:47
Carbon disulfide	ND	57.4	ug/kg	50.0	115%	34 - 147	2	47	8031163	NRC0614-06	03/15/08 01:47
Carbon Tetrachloride	ND	59.1	ug/kg	50.0	118%	33 - 155	7	44	8031163	NRC0614-06	03/15/08 01:47
Chlorobenzene	ND	54.4	ug/kg	50.0	109%	23 - 147	10	44	8031163	NRC0614-06	03/15/08 01:47
Chlorodibromomethane	ND	58.6	ug/kg	50.0	117%	21 - 155	4	45	8031163	NRC0614-06	03/15/08 01:47
Chloroethane	ND	57.0	ug/kg	50.0	114%	44 - 155	4	50	8031163	NRC0614-06	03/15/08 01:47
Chloroform	ND	60.2	ug/kg	50.0	120%	39 - 140	6	36	8031163	NRC0614-06	03/15/08 01:47
Chloromethane	ND	51.5	ug/kg	50.0	103%	14 - 143	0.4	50	8031163	NRC0614-06	03/15/08 01:47
2-Chlorotoluene	ND	52.3	ug/kg	50.0	105%	21 - 154	15	50	8031163	NRC0614-06	03/15/08 01:47
4-Chlorotoluene	ND	49,8	ug/kg	50,0	100%	10 - 156	19	50	8031163	NRC0614-06	03/15/08 01:47
1,2-Dibromo-3-chloropropane	ND	50.3	ug/kg	50.0	101%	10 - 159	3	50	8031163	NRC0614-06	03/15/08 01:47
1,2-Dibromoethane (EDB)	ND	58.3	ug/kg	50.0	117%	19 - 151	7	50	8031163	NRC0614-06	03/15/08 01:47
Dibromomethane	ND	58,4	ug/kg	50.0	117%	32 - 147	, 9	45	8031163	NRC0614-06	03/15/08 01:47
1,4-Dichlorobenzene	ND	47.8	ug/kg	50.0	96%	10 - 152	15	50	8031163	NRC0614-06	03/15/08 01:47
1,3-Dichlorobenzene	ND	50.3	ug/kg	50.0	101%	10 - 153	19	50	8031163	NRC0614-06	03/15/08 01:47
1,2-Dichlorobenzene	ND	50.2	ug/kg	50.0	100%	10 - 155	16	50	8031163	NRC0614-06	03/15/08 01:47
Dichlorodifluoromethane	ND	57.7	ug/kg	50.0	115%	10 - 143	3	43	8031163	NRC0614-06	03/15/08 01:47
1,1-Dichloroethane	ND	64.7	ug/kg	50.0	129%	49 - 156	2	37	8031163	NRC0614-06	03/15/08 01:47
1,2-Dichloroethane	ND	63.2	ug/kg	50.0	126%	27 - 145	4	44	8031163	NRC0614-06	03/15/08 01:47
cis-1,2-Dichloroethene	ND	64.3	ug/kg	50.0	129%	39 - 143	4	35	8031163	NRC0614-06	03/15/08 01:47
1,1-Dichloroethene	ND	59.2	-g-s ug∕kg	50.0	118%	42 - 145	5	41	8031163	NRC0614-06	03/15/08 01:47
trans-1,2-Dichloroethene	ND	65.4	ug/kg	50.0	131%	41 - 146	6	37	8031163	NRC0614-06	03/15/08 01:47
1,3-Dichloropropane	ND	59.2	ug/kg	50.0	118%	30 - 143	6	44	8031163	NRC0614-06	03/15/08 01:47
1,2-Dichloropropane	ND	54.3	ug/kg	50.0	109%	37 - 136	6	35	8031163	NRC0614-06	03/15/08 01:47
2,2-Dichloropropane	ND	60.0	ug/kg	50.0	120%	30 - 145	3	33	8031163	NRC0614-06	03/15/08 01:47
cis-1,3-Dichloropropene	ND	59.2	ug/kg	50,0	118%	29 - 149	8	43	8031163	NRC0614-06	03/15/08 01:47
trans-1,3-Dichloropropene	ND	57.6	ug/kg	50.0	115%	17 - 146	8	50	8031163	NRC0614-06	03/15/08 01:47
1,1-Dichloropropene	ND	59.6	ug/kg	50.0	119%	36 - 147	ہ 4	41	8031163	NRC0614-06	03/15/08 01:47
Ethylbenzene	ND	53.8	ug/kg	50.0	108%	16 - 160		41			03/15/08 01:47
Hexachlorobutadiene	ND	63.4							8031163	NRC0614-06	
2-Hexanone			ug/kg	50.0	127%	10 - 191	3	50	8031163	NRC0614-06	03/15/08 01:47
2-1 ICAGIUNE	ND	330	ug/kg	250	132%	19 - 154	10	50	8031163	NRC0614-06	03/15/08 01:4

Tes **A**Me Ŋ

THE LEADER IN ENVIRONMENTAL TESTING

ŧ

Weaver Boos Consultants LLC (1407793) Client 70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0496 Project Name: Project Number: [none] Received:

Atlanta Rush Project 03/07/08 08:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

p-Isopoylolikane ND 45.4 ug/kg 50.0 91.5 1.5 2.6 50 9031163 NRCo614.06 Medslyter-Baryle ND 62.8 ug/kg 50.0 126.4 30<1160	Analyzed Date/Time	Sample Duplicated	Batch	Limit	RPD	Target Range	% Rec.	Spike Conc	Units	Q	Duplicate	Orig. Val.	Analyte
Boars Boars <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>260B</td><td>PA Method 8</td><td>Volatile Organic Compounds by E</td></th<>											260B	PA Method 8	Volatile Organic Compounds by E
biopropyBonzene ND 44.5 ug/kg 500 89% 16-156 14 50 8011163 NRCo614.06 1 p-lacpropyBonzene ND 63.4 ug/kg 500 91% 13-160 2 50 8031163 NRCo614.06 1 MethyIner-EulyElber ND 63.3 ug/kg 500 17% 31-160 2 50 8031163 NRCo614.06 1 4-MethyI-zpentance ND 63.0 ug/kg 500 10.4 21.60 2 50 8031163 NRCo614.06 1 Appthulane ND 43.0 ug/kg 500 10.15 21.5 0 8031163 NRCo614.06 1 Syrene ND 53.6 ug/kg 500 ug/kg 500 11.15 21.5 0 8031163 NRCo614.06 1 L1,2.7 Ertachloroethane ND 55.6 ug/kg 500 11.162 21.55 6 8031163 NRCo614.06 1 L1,2.7 Ertachloroethane ND 55.6 ug/kg 500 11.12													
p-lacepropyNohene ND 45.4 ug/kg 50.0 91.5 1.5 2.6 50. 9101163 NRCo614.06 M MedpyIner,Choride ND 62.3 ug/kg 50.0 126.4 30.1160 2.6 30.1163 NRCo614.06 M 4-Methylen,Choride ND 33.5 ug/kg 50.0 134.4 2.5 140.4 2.5 0.0 0301163 NRCo614.06 M Methylen,Choride ND 33.5 ug/kg 50.0 867.6 10.151.7 15 50. 6001163 NRCo614.06 60 Naphthalene ND 53.6 ug/kg 50.0 47.7 17.168 48.4 50.0 801163 NRCo614.06 60 L1,2.7-Teinchlorochane ND 55.6 ug/kg 50.0 11145 21.4 50.0 801163 NRCo614.06 60 L1,2.7-Teinchlorochane ND 55.6 ug/kg 50.0 1144 27.151 8 45 8031163 NRCo614.06 60 L2,3-Trichlorochane ND 51.9 ug/kg	03/15/08 01:47	NRC0614-06	8031163	50	14	16 - 156	89%	50.0	ug/kg		44.5	ND	
Methyltert-Buylteliher ND 62.8 ug/kg 50.0 12.6% 30.136 4 4.5 8031163 NRCo614.66 Methylterchaone ND 33.6 ug/kg 50.0 117.8 31.160 2 50 6031163 NRCo614.66 6 Naphthalene ND 33.0 ug/kg 50.0 86% 10.15 21.5 50 8031163 NRCo614.66 6 Naphthalene ND 33.0 ug/kg 50.0 86% 10.15 21.5 9 50 8031163 NRCo614.66 6 Naphthalene ND 53.6 ug/kg 50.0 111/6 30.147 7 43 8031163 NRCo614.66 6 1,1,2.7 Erachloroethane ND 55.6 ug/kg 50.0 111/6 20.147 7 43 8031163 NRCo614.66 6 1,1,2.7 Erachloroethane ND 55.6 ug/kg 50.0 116/6 21.5 50 8031163 NRCo614.66 6 1,2.3 Erachloroethane ND 59.5 ug/kg 50.0	03/15/08 01:47					13 - 160	91%	50.0			45.4	ND	p-Isopropyltoluene
Methylane Chloride 1.30 59.7 ug/kg 50.0 11.7% 31 - 160 2 39 8031163 NRC0614.06 4-Methyl-2-pentanone ND 33.6 ug/kg 50.0 11.7% 31 - 160 2 50 8031163 NRC0614.06 6 n-Propylbenzene ND 31.0 ug/kg 50.0 102% 17 - 158 19 50 8031163 NRC0614.06 6 Syrene ND 53.6 ug/kg 50.0 112% 20 - 155 2 50 8031163 NRC0614.06 6 1.1.2.7-Tetrachoroschane ND 55.6 ug/kg 50.0 112% 20 - 155 2 50 8031163 NRC0614.06 6 1.2.4.7-Tetrachoroschane ND 55.6 ug/kg 50.0 112% 20 - 155 2 50 8031163 NRC0614.06 6 1.2.4.7-Tetrachoroschane ND 51.9 ug/kg 50.0 112% 30 - 155 12 50 8031163 NRC0614.06 6 1.2.4.7-Tetrachoroschane ND 51.9 ug/k	03/15/08 01:47			45		30 - 136	126%	50.0			62.8	ND	Methyl tert-Butyl Ether
4-Methyl-2-penthanone ND 336 ug/kg 290 134% 25149 2 50 801163 NRC061-06 Nephthalene ND 43.0 ug/kg 500 867 10-115 21 50 8031163 NRC061-06 Styrene ND 23.6 R2 ug/kg 500 47% 11-168 84 50 8031163 NRC061-06 11.1.2-Tertahloroethane ND 55.6 ug/kg 500 111% 20-155 2 50 8031163 NRC061-06 0 L1.2-Tertahloroethane ND 55.6 ug/kg 500 114% 20-155 2 50 8031163 NRC061-06 0 L2.4-Trichloroethane ND 55.8 ug/kg 500 119% 30-150 83 8031163 NRC061-06 0 L2.4-Trichloroethane ND 57.3 ug/kg 500 113% 8-14 7 4 8031163 NRC061-06 L1.2-Trichloroethane ND 57.3 ug/kg 500 12.3* 50 8031163 NRC061-06	03/15/08 01:47				2	31 - 160	117%	50.0			59.7	1.30	Methylene Chloride
Naphthalene ND 43.0 ug/kg 50.0 86% 10.151 21 50 8031163 NRC0614-06 n-Propythenzene ND 23.6 R2 ug/kg 50.0 107% 17-158 9 50 8031163 NRC0614-06 1 Syrene ND 23.6 R2 ug/kg 50.0 111% 30-147 7 3 8031163 NRC0614-06 1 1,1,2.2-Tetrachloroethane ND 56.0 ug/kg 50.0 111% 27-155 2 50 8031163 NRC0614-06 1 Tetrachloroethane ND 55.0 ug/kg 50.0 104% 10-158 12 50 8031163 NRC0614-06 1 1,2,3-Trichloroethanz ND 51.9 ug/kg 50.0 104% 10-158 12 50 8031163 NRC0614-06 1,2,3-Trichloroethanz ND 51.9 ug/kg 50.0 104% 10-158 12 50 8031163 NRC0614-06 1,2,3-Trichl	03/15/08 01:47						134%	250			336	ND	4-Methyl-2-pentanone
n-Propylbenzene ND \$1.0 ug/kg \$0.0 102% 17.158 19 \$0 8031163 NRC0614-06 Styrene ND 23.6 µ2 µg/kg \$00 47% 11.16.8 84 50 8031163 NRC0614-06 1 L1,1.2-Tetrachloroethane ND 55.6 ug/kg 500 111% 21.15 2 30 8031163 NRC0614-06 1 L1,2.2-Tetrachloroethane ND 55.6 ug/kg 50.0 114% 27.151 9 45 8031163 NRC0614-06 1 L2,3-Trichlorobenzene ND 57.3 ug/kg 50.0 114% 31.45 6 40 8031163 NRC0614-06 1 L1,4-Trichloroethane ND 57.3 ug/kg 50.0 112% 31.45 6 40 8031163 NRC0614-06 1 L1,4-Trichloroethane ND 57.3 ug/kg 50.0 112% 31.45 6 40 8031163	03/15/08 01:47			50	21	10 - 151	86%	50.0			43.0	ND	Naphthalene
Styrene ND 23.6 R2 ug/kg 50.0 11.1.6 84 50 8031163 NRC061406 1 1.1.1.2-Tetrachloroethane ND 55.6 ug/kg 50.0 111% 20.147 7 43 8031163 NRC061406 1 1.2.2-Tetrachloroethane ND 56.8 ug/kg 50.0 114% 27.151 9 45 8031163 NRC061406 1 Toticane ND 59.5 ug/kg 50.0 114% 27.151 9 45 8031163 NRC061406 1 1.2.3-Trichloroethane ND 59.5 ug/kg 50.0 114% 30.145 8 44 8031163 NRC061406 1 1.2.4-Trichloroethane ND 57.3 ug/kg 50.0 112% 31.450 0 8031163 NRC061406 0 1.1.1-Trichloroethane ND 56.6 ug/kg 50.0 12% 33.145 0 8031163 NRC061406 0 1.2.3-Trichloroethane ND 55.8 ug/kg 50.0 12%	03/15/08 01:47						102%	50.0			51.0	ND	n-Propylbenzene
1,1,1,2-Tetrachloroethane ND 55.6 ug/kg 50.0 111% 30147 7 43 8031163 NRC0614-06 1,1,2,2-Tetrachloroethane ND 56.0 ug/kg 50.0 112% 20-155 2 50 6031163 NRC0614-06 1 Tetrachloroethane ND 56.8 ug/kg 50.0 119% 30-145 8 48 6031163 NRC0614-06 1 Tolane ND 51.9 ug/kg 50.0 14% 10-158 12 50 8031163 NRC0614-06 1 1,2,3-Trichloroethane ND 51.9 ug/kg 50.0 14% 10-158 12 50 8031163 NRC0614-06 1 1,2,4-Trichloroethane ND 61.6 ug/kg 50.0 11% 31-16 0.2 40 8031163 NRC0614-06 1 1,2,4-Trichloroethane ND 51.9 3 316 8031163 NRC0614-06 1 1,2,4-Trichloroethane ND 65.0 ug/kg 50.0 112% 31-150 0.2 42 8031163 NRC0614-06 0 1,2,4-Trichl	03/15/08 01:47						47%	50.0		R2	23.6	ND	Styrene
1,1.2.2-Tetrachloroethane ND 56.0 ug/kg 50.0 112% 20.155 2 50 8031163 NRC0614-06 1 Tetrachloroethane ND 56.8 ug/kg 50.0 114% 27.151 9 45 8031163 NRC0614-06 1 Tolence ND 59.5 ug/kg 50.0 114% 27.151 9 45 8031163 NRC0614-06 1 1,2,3-Trichloroethane ND 47.2 ug/kg 50.0 94% 10.165 12 50 8031163 NRC0614-06 1 1,1,2-Trichloroethane ND 57.3 ug/kg 50.0 115% 31.9 50 8031163 NRC0614-06 1 1.1.2-Trichloroethane ND 55.0 ug/kg 50.0 112% 31.150 0.2 42 8031163 NRC0614-06 1 1.1.2-Trichloroethane ND 53.8 ug/kg 50.0 112% 31.150 0.2 42 8031163 NRC0614-06 1 1.2.3-Trichloroethane ND 53.8 ug/kg 50.0 103% 21.158 <	03/15/08 01:47				7	30 - 147	111%	50.0			55.6	ND	1,1,1,2-Tetrachloroethane
Tetrachloroethene ND 56.8 ug/kg 50.0 114% 27.151 9 45 8031163 NRC0614-06 0 Toluene ND 59.5 ug/kg 50.0 104% 10-158 12 50 8031163 NRC0614-06 0 1,2,3-Trichlorobenzene ND 51.9 ug/kg 50.0 104% 10-158 12 50 8031163 NRC0614-06 0 1,2,4-Trichlorobenzene ND 57.3 ug/kg 50.0 115% 34 - 140 7 41 8031163 NRC0614-06 0 1,1,1-Trichloroethane ND 61.6 ug/kg 50.0 112% 31 - 150 0.2 42 8031163 NRC0614-06 0 1,1,1-Trichloroethane ND 65.0 ug/kg 50.0 123% 150 0.2 42 8031163 NRC0614-06 0 1,2,3-Trichlorophopane ND 65.8 ug/kg 50.0 123% 11-13 50 0 8031163 NRC0614-06 0 1,2,3-Trichlorophopane ND 47.7 ug	03/15/08 01:47						112%	50.0			56,0	ND	1,1,2,2-Tetrachioroethane
Toluene ND \$9.5 ug/kg \$0.0 119% 30 - 145 8 44 801163 NRC0614-06 0 1,2,3-Trichlorobenzene ND \$1.9 ug/kg \$0.0 104% 10 - 158 12 \$0.0 801163 NRC0614-06 0 1,2,4-Trichlorobenzene ND \$7.2 ug/kg \$0.0 94% 10 - 160 12 \$0.0 8031163 NRC0614-06 0 1,1,1-Trichlorobenzene ND \$7.3 ug/kg \$0.0 123% 36 - 150 3 39 8031163 NRC0614-06 0 1,1,1-Trichlorobenzene ND \$6.0 ug/kg \$0.0 112% 31 - 150 0.2 42 8031163 NRC0614-06 0 1,2,3-Trichlorobenzene ND \$5.8 ug/kg \$0.0 112% 31 - 150 0.2 42 8031163 NRC0614-06 0 1,2,3-Trichlorobenzene ND \$5.8 ug/kg \$0.0 108% 20 - 158 19 50 8031163 NRC0614-06 0 1,2,3-Trichehylbenzene ND <td< td=""><td>03/15/08 01:47</td><td></td><td></td><td>45</td><td></td><td>27 - 151</td><td>114%</td><td>50.0</td><td></td><td></td><td>56.8</td><td>ND</td><td>Tetrachloroethene</td></td<>	03/15/08 01:47			45		27 - 151	114%	50.0			56.8	ND	Tetrachloroethene
1,2,3-Trichlorobenzene ND \$1.9 ug/kg \$0.0 104% 10 - 158 12 \$0 8031163 NRC0614-06 4 1,2,4-Trichlorobenzene ND \$7.3 ug/kg \$0.0 11% 34 - 140 7 41 8031163 NRC0614-06 6 1,1,1-Trichlorobenzene ND \$7.3 ug/kg \$0.0 11% 34 - 140 7 41 8031163 NRC0614-06 6 1,1,1-Trichlorobtane ND \$6.0 ug/kg \$0.0 11% 31 - 150 0.2 42 8031163 NRC0614-06 6 1,2,3-Trichloropropane ND \$5.8 ug/kg \$0.0 11% 31 - 150 0.2 42 8031163 NRC0614-06 6 1,2,3-Trichloropropane ND \$5.8 ug/kg \$0.0 108% 20 - 158 19 \$0 8031163 NRC0614-06 6 1,2,3-Trichloropropane ND \$3.8 ug/kg \$0.0 108% 20 - 158 19 \$0 8031163 NRC0614-06 6 1,2,4-Trinethylbenzene ND	03/15/08 01:47							50.0			59.5	ND	Toluene
1.2.4-Trichlorobenzene ND 47.2 ug/kg 50.0 94% 10 - 160 12 50 8031163 NRC0614.06 4 1.1.2-Trichloroethane ND 57.3 ug/kg 50.0 115% 34 - 140 7 41 8031163 NRC0614.06 40 1.1.1-Trichloroethane ND 61.6 ug/kg 50.0 112% 31 - 150 0.2 42 8031163 NRC0614.06 0 Trichloroethane ND 55.8 ug/kg 50.0 112% 31 - 150 0.2 42 8031163 NRC0614.06 0 1.2.3-Trichloropropane ND 47.7 ug/kg 50.0 95% 14 - 143 5 50 8031163 NRC0614.06 0 1.2.4-Trimethylbenzene ND 43.2 ug/kg 50.0 80% 10 - 166 34 50 8031163 NRC0614.06 0 Vinyl chloride ND 60.6 ug/kg 50.0 803163 NRC0614.06 0 Surrogate: J.2-Dichloroethane-d4 52.0 ug/kg 50.0 8031163	03/15/08 01:47							50.0			51.9	ND	1,2,3-Trichlorobenzene
1,1.2-Trichloroethane ND 57.3 ug/kg 50.0 115% 34 - 140 7 41 8031163 NRC0614.06 0 1,1,1-Trichloroethane ND 61.6 ug/kg 50.0 123% 36 - 150 3 39 8031163 NRC0614.06 0 Trichloroethane ND 56.0 ug/kg 50.0 112% 31 - 150 0.2 42 8031163 NRC0614.06 0 1;clahorothoromethane ND 55.8 ug/kg 50.0 103% 20 - 158 19 50 8031163 NRC0614.06 0 1,2,4-Trichloroptopane ND 47.7 ug/kg 50.0 8031163 NRC0614.06 0 1,2,4-Trintehylbenzene ND 63.2 ug/kg 50.0 8031163 NRC0614.06 0 Vinyl chloride ND 66.6 ug/kg 50.0 104% 41 - 150 34 8031163 NRC0614.06 0 Sylenes, total ND 163 ug/kg 50.0 104% 41 - 150 30 8031163 NRC0614.06 0	03/15/08 01:47							50.0			47.2	ND	1,2,4-Trichlorobenzene
1,1,1-Trichloroethane ND 61.6 ug/kg 50.0 123% 36 - 150 3 39 8031163 NRC0614-06 0 Trichloroethene ND 56.0 ug/kg 50.0 112% 33 - 145 6 40 8031163 NRC0614-06 0 Trichloroethene ND 55.8 ug/kg 50.0 112% 31 - 150 0.2 42 8031163 NRC0614-06 0 1,2,3-Trichloropropane ND 47.7 ug/kg 50.0 108% 20 - 158 19 50 8031163 NRC0614-06 0 1,2,4-Trimehylbenzene ND 43.2 ug/kg 50.0 166 34 50 8031163 NRC0614-06 0 1,2,4-Trimehylbenzene ND 60.6 ug/kg 50.0 166 34 50 8031163 NRC0614-06 0 Surrogate: J.2-Dichloroethane-d4 S2.0 ug/kg 50.0 109% 16 - 159 13 48 8031163 NRC0614-06 0 Surrogate: J.2-Dichloroethane-d4 S2.0 ug/kg <t< td=""><td>03/15/08 01:47</td><td></td><td></td><td></td><td></td><td></td><td>115%</td><td>50.0</td><td></td><td></td><td>57.3</td><td>ND</td><td>1,1,2-Trichloroethane</td></t<>	03/15/08 01:47						115%	50.0			57.3	ND	1,1,2-Trichloroethane
Trichloroethene ND 56.0 ug/kg 50.0 112% 33.145 6 40 8031163 NRC0614.06 60 Trichloroefhoromethane ND 55.8 ug/kg 50.0 112% 31.150 0.2 42 8031163 NRC0614.06 60 1,3,5-Trinchlytopropane ND 47.7 ug/kg 50.0 95% 14.143 5 50 8031163 NRC0614.06 60 1,3,5-Trinchytbenzene ND 53.8 ug/kg 50.0 86% 10.166 34 50 8031163 NRC0614.06 60 1,2,4-Trimethytbenzene ND 60.6 ug/kg 50.0 121% 32.144 0.7 41 8031163 NRC0614.06 60 Viryl choride ND 60.6 ug/kg 50.0 109% 67.15 13 48 8031163 NRC0614.06 60 Surrogate: 1.2-Dichloroethane-d4 52.0 ug/kg 50.0 109% 57.148 8031163 NRC0614.06 60 Surrogate: 1-0ibromofluorobethane 53.5 ug/kg 50.0 1	03/15/08 01:47						123%	50.0			61.6	ND	1,1,1-Trichloroethane
Trichlorofluoromethane ND 55.8 ug/kg 50.0 112% 31 - 150 0.2 42 8031163 NRC0614-06 0 1,2,3-Trichloropropane ND 47.7 ug/kg 50.0 95% 14 - 143 5 50 8031163 NRC0614-06 0 1,3,5-Trinchylbenzene ND 53.8 ug/kg 50.0 86% 10 - 166 34 50 8031163 NRC0614-06 0 1,2,4-Trimethylbenzene ND 60.6 ug/kg 50.0 121% 32 - 144 0.7 41 8031163 NRC0614-06 0 Vinyl chloride ND 163 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: 1.2-Dichloroethane-d4 52.0 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: Toluene-d8 54.6 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: A-Bramofluorobenzene 49.8 ug/kg 50.0 107% 58 - 150 8031163 NRC0496-04 </td <td>03/15/08 01:47</td> <td></td> <td></td> <td>40</td> <td>6</td> <td>33 - 145</td> <td>112%</td> <td>50.0</td> <td></td> <td></td> <td>56.0</td> <td>ND</td> <td>Trichloroethene</td>	03/15/08 01:47			40	6	33 - 145	112%	50.0			56.0	ND	Trichloroethene
1,2,3-Trichloropropane ND 47.7 ug/kg 50.0 95% 14.143 5 50 8031163 NRC0614-06 0 1,3,5-Trimethylbenzene ND 53.8 ug/kg 50.0 108% 20 - 158 19 50 8031163 NRC0614-06 0 1,2,4-Trimethylbenzene ND 43.2 ug/kg 50.0 18% 10 - 166 34 50 8031163 NRC0614-06 0 Vinyl chloride ND 60.6 ug/kg 50.0 121% 32 - 144 0.7 41 8031163 NRC0614-06 0 Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 1-Diromethane 54.6 ug/kg 50.0 109% 52 -	03/15/08 01:47		8031163	42	0.2	31 - 150	112%	50.0	ug/kg		55.8	ND	Trichlorofluoromethane
1,3,5-Trimethylbenzene ND 53.8 ug/kg 50.0 108% 20 - 158 19 50 8031163 NRC0614-06 0 1,2,4-Trimethylbenzene ND 43.2 ug/kg 50.0 86% 10 - 166 34 50 8031163 NRC0614-06 0 Vinyl chloride ND 60.6 ug/kg 50.0 121% 32 - 144 0.7 41 8031163 NRC0614-06 0 Surrogate: <i>1,2-Dichloroethane-d4</i> 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Dibromofluoromethane 53.5 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Abromofluorobenzene 49.8 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: Abromofluorobenzene 49.8 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: Abromofluorobenzene 49.8 ug/kg 50.0 109% 52 - 163 12 45 8032601 NRC0496-04	03/15/08 01:47				5	14 - 143	95%	50.0			47.7	ND	1,2,3-Trichloropropane
1,2,4-Trimethylbenzene ND 43.2 ug/kg 50.0 86% 10 - 166 34 50 8031163 NRC0614-06 0 Vinyl chloride ND 60.6 ug/kg 50.0 121% 32 - 144 0.7 41 8031163 NRC0614-06 0 Xylenes, total ND 163 ug/kg 50.0 104% 41 - 150 13 48 8031163 NRC0614-06 0 Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Dibromofluoromethane 53.5 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: A-Bromofluorobenzene 49.8 ug/kg 50.0 109% 57 - 148 8031163 NRC0496-04 0 Benzene ND 42.5 ug/kg 50.0 100% 58 - 150 8032601 NRC0496-04 0 Bromobenzene ND 42.5 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0	03/15/08 01:47			50	19	20 - 158	108%	50.0			53,8	ND	1,3,5-Trimethylbenzene
Vinyl chloride ND 60.6 ug/kg 50.0 121% 32 - 144 0.7 41 8031163 NRC0614-06 0 Xylenes, total ND 163 ug/kg 150 109% 16 - 159 13 48 8031163 NRC0614-06 0 Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Dibromofluoromethane 53.5 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Jibromofluoromethane 53.5 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 109% 57 - 148 8031163 NRC0496-04 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 100% 58 - 150 8031163 NRC0496-04 0 Benzene ND 42.5 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC	03/15/08 01:47							50.0			43.2	ND	1,2,4-Trimethylbenzene
Xylenes, total ND 163 ug/kg 150 109% 16 - 159 13 48 8031163 NRC0614-06 0 Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Dibromofluoromethane 53.5 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: Toluene-d8 54.6 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 100% 58 - 150 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 100% 58 - 150 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene ND 42.5 ug/kg 50.0 85% 33 - 146 15 43 8032001 NRC0496-04 0 Benzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloro	03/15/08 01:47			41	0.7	32 - 144	121%	50.0			60.6	ND	Vinyl chloride
Surrogate: 1,2-Dichloroethane-d4 52.0 ug/kg 50.0 104% 41 - 150 8031163 NRC0614-06 0 Surrogate: Dibromofluoromethane 53.5 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: Toluene-d8 54.6 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 109% 58 - 150 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 109% 58 - 150 8031163 NRC0496-04 0 Benzene ND 42.5 ug/kg 50.0 85% 33 - 146 15 43 8032601 NRC0496-04 0 Bromobenzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0	03/15/08 01:47							150			163	ND	Xylenes, total
Surrogate: Dibromofluoromethane 53.5 ug/kg 50.0 107% 55 - 139 8031163 NRC0614-06 0 Surrogate: Toluene-d8 54.6 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 100% 58 - 150 8031163 NRC0614-06 0 Botacon 22.4 284 ug/kg 250 105% 32 - 163 12 45 8032601 NRC0496-04 0 Benzene ND 42.5 ug/kg 50.0 85% 33 - 146 15 43 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 85% 33 - 146 15 43 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 0 Bromochloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 </td <td>03/15/08 01:47</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50.0</td> <td></td> <td></td> <td>52.0</td> <td></td> <td>Surrogate: 1,2-Dichloroethane-d4</td>	03/15/08 01:47							50.0			52.0		Surrogate: 1,2-Dichloroethane-d4
Surrogate: Toluene-d8 54.6 ug/kg 50.0 109% 57 - 148 8031163 NRC0614-06 0 Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 100% 58 - 150 8031163 NRC0614-06 0 B032601-MSD1 Acctone 22.4 284 ug/kg 50.0 85% 33 - 146 15 43 8032601 NRC0496-04 0 Benzene ND 42.5 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromobenzene ND 41.4 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 0 Bromochloromethane ND 31.5 ug/kg 50.0 84% 31 - 149	03/15/08 01:47							50.0			53,5		Surrogate: Dibromofluoromethane
Surrogate: 4-Bromofluorobenzene 49.8 ug/kg 50.0 100% 58 - 150 8031163 NRC0614-06 0 B032601-MSD1 Acctone 22.4 284 ug/kg 250 105% 32 - 163 12 45 8032601 NRC0496-04 0 Benzene ND 42.5 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromobenzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 0 Bromodichloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 0 Bromodichloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 0 Bromoform ND 33.2 ug/kg 50.0 <td>03/15/08 01:47</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50.0</td> <td></td> <td></td> <td>54.6</td> <td></td> <td>Surrogate: Toluene-d8</td>	03/15/08 01:47							50.0			54.6		Surrogate: Toluene-d8
Acctone 22.4 284 uğ/kg 250 105% 32 - 163 12 45 8032601 NRC0496-04 4 Benzene ND 42.5 ug/kg 50.0 85% 33 - 146 15 43 8032601 NRC0496-04 4 Bromobenzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 6 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 6 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 6 Bromochloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 6 Bromoform ND 34.5 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 6 Bromoform ND 33.2 ug/kg 50.0 66%	03/15/08 01:47							50.0			49,8		Surrogate: 4-Bromofluorobenzene
Benzene ND 42.5 ug/kg 50.0 85% 33 - 146 15 43 8032601 NRC0496-04 0 Bromobenzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 0 Bromodichloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 0 Bromoform ND 34.5 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 0 Bromomethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 0 2-Butanone ND 218 ug/kg 250 87%													8032601-MSD1
Bromobenzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 0 Bromochloromethane ND 41.4 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 0 Bromodichloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 0 Bromodichloromethane ND 34.5 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 0 Bromoform ND 33.2 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 0 Bromomethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 0 2-Butanone ND 218 ug/kg 50.0	03/18/08 15:14	NRC0496-04	8032601	45	12	32 - 163	105%	250	uġ/kg		284	22.4	Acetone
Bromobenzene ND 40.7 ug/kg 50.0 81% 10 - 156 11 50 8032601 NRC0496-04 60 Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 60 Bromodichloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 60 Bromodichloromethane ND 34.5 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 60 Bromodethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 60 Bromomethane ND 218 ug/kg 250 87% 37 - 151 12 43 8032601 NRC0496-04 60 sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601	03/18/08 15:14	NRC0496-04	8032601	43	15	33 - 146	85%	50.0	ug/kg		42.5	ND	Benzene
Bromochloromethane ND 41.4 ug/kg 50.0 83% 43 - 138 15 32 8032601 NRC0496-04 0 Bromodichloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 0 Bromodichloromethane ND 34.5 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 0 Bromodichloromethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 0 Bromodichloromethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 0 2-Butanone ND 218 ug/kg 250 87% 37 - 151 12 43 8032601 NRC0496-04 0 sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 0 n-Butylbenzene ND 42.0 ug/kg	03/18/08 15:14		8032601	50	11	10 - 156	81%	50.0	ug/kg		40.7	ND	Bromobenzene
Bromodichloromethane ND 41.8 ug/kg 50.0 84% 31 - 149 16 37 8032601 NRC0496-04 6 Bromoform ND 34.5 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 6 Bromoform ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 6 Bromomethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 6 2-Butanone ND 218 ug/kg 250 87% 37 - 151 12 43 8032601 NRC0496-04 6 sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 6 n-Butylbenzene ND 42.0 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04	03/18/08 15:14	NRC0496-04	8032601	32	15	43 - 138	83%	50.0	ug/kg		41.4	ND	Bromochloromethane
Bromoform ND 34.5 ug/kg 50.0 69% 14 - 167 15 50 8032601 NRC0496-04 60 Bromomethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 60 2-Butanone ND 218 ug/kg 250 87% 37 - 151 12 43 8032601 NRC0496-04 60 sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 60 n-Butylbenzene ND 42.0 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 60 n-Butylbenzene ND 42.0 ug/kg 50.0 84% 10 - 168 15 50 8032601 NRC0496-04 60	03/18/08 15:14			37	16	31 - 149	84%	50.0			41.8	ND	Bromodichloromethane
Bromomethane ND 33.2 ug/kg 50.0 66% 16 - 172 16 50 8032601 NRC0496-04 0 2-Butanone ND 218 ug/kg 250 87% 37 - 151 12 43 8032601 NRC0496-04 0 sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 0 n-Butylbenzene ND 42.0 ug/kg 50.0 84% 10 - 168 15 50 8032601 NRC0496-04 0	03/18/08 15:14	NRC0496-04	8032601	50	15	14 - 167	69%	50.0	ug/kg		34.5	ND	Bromoform
2-Butanone ND 218 ug/kg 250 87% 37 - 151 12 43 8032601 NRC0496-04 0 sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 0 n-Butylbenzene ND 42.0 ug/kg 50.0 84% 10 - 168 15 50 8032601 NRC0496-04 0	03/18/08 15:14						66%	50.0			33.2	ND	Bromomethane
sec-Butylbenzene ND 42.3 ug/kg 50.0 85% 18 - 165 13 50 8032601 NRC0496-04 0 n-Butylbenzene ND 42.0 ug/kg 50.0 84% 10 - 168 15 50 8032601 NRC0496-04 0	03/18/08 15:14											ND	2-Butanone
n-Butylbenzene ND 42.0 ug/kg 50.0 84% 10-168 15 50 8032601 NRC0496-04	03/18/08 15:14							50.0			42.3	ND	sec-Butylbenzene
	03/18/08 15:14											ND	n-Butylbenzene
rer-Butyloenzene ND 42.3 ug/kg 50.0 85% 17 - 165 12 50 8032601 NRC0496-04 (03/18/08 15:14	NRC0496-04	8032601	50	12	17 - 165	85%	50.0	ug/kg		42,3	ND	tert-Butylbenzene
	03/18/08 15:14												Carbon disulfide

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

			IVI	atrix opike	Dah - 1							
Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPÐ	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds b	y EPA Method	8260B										
8032601-MSD1												
Carbon Tetrachloride	ND	39.6		ug/kg	50.0	79%	33 - 155	14	44	8032601	NRC0496-04	03/18/08 15:14
Chlorobenzene	ND	41.6		ug/kg	50.0	83%	23 - 147	16	44	8032601	NRC0496-04	03/18/08 15:14
Chlorodibromomethane	ND	36.0		ug/kg	50.0	72%	21 - 155	13	45	8032601	NRC0496-04	03/18/08 15:14
Chloroethane	ND	34.3		ug/kg	50.0	69%	44 - 155	17	50	8032601	NRC0496-04	03/18/08 15:14
Chloroform	ND	41.4		ug/kg	50.0	83%	39 - 140	18	36	8032601	NRC0496-04	03/18/08 15:14
Chloromethane	ND	26.2		ug/kg	50.0	52%	14 - 143	19	50	8032601	NRC0496-04	03/18/08 15:14
2-Chlorotoluene	ND	44.8		ug/kg	50.0	90%	21 - 154	12	50	8032601	NRC0496-04	03/18/08 15:14
4-Chlorotoluene	ND	44,5		ug/kg	50.0	89%	10 - 156	13	50	8032601	NRC0496-04	03/18/08 15:14
1,2-Dibromo-3-chloropropane	ND	49.2		ug/kg	50.0	98%	10 - 159	11	50	8032601	NRC0496-04	03/18/08 15:14
1,2-Dibromoethane (EDB)	ND	40.0		ug/kg	50.0	80%	19 - 151	14	50	8032601	NRC0496-04	03/18/08 15:14
Dibromomethane	ND	38.3		ug/kg	50.0	77%	32 - 147	17	45	8032601	NRC0496-04	03/18/08 15:14
1,4-Dichlorobenzene	ND	42.6		ug/kg	50.0	85%	10 - 152	16	50	8032601	NRC0496-04	03/18/08 15:14
1,3-Dichlorobenzene	ND	42.1		ug/kg	50.0	84%	10 - 153	16	50	8032601	NRC0496-04	03/18/08 15:14
1,2-Dichlorobenzene	ND	41.3		ug/kg	50.0	83%	10 - 155	16	50	8032601	NRC0496-04	03/18/08 15:14
Dichlorodifluoromethane	ND	16.0		ug/kg	50.0	32%	10 - 143	21	43	8032601	NRC0496-04	03/18/08 15:14
1,1-Dichloroethane	ND	41.0		ug/kg	50.0	82%	49 - 156	16	37	8032601	NRC0496-04	03/18/08 15:14
1,2-Dichloroethane	ND	39.0		ug/kg	50.0	78%	27 - 145	16	44	8032601	NRC0496-04	03/18/08 15:14
cis-1,2-Dichloroethene	ND	42.1		ug/kg	50.0	84%	39 - 143	16	35	8032601	NRC0496-04	03/18/08 15:14
1,1-Dichloroethene	ND	36.6		ug/kg	50.0	73%	42 - 145	20	41	8032601	NRC0496-04	03/18/08 15:14
trans-1,2-Dichloroethene	ND	38.3		ug/kg	50.0	77%	41 - 146	19	37	8032601	NRC0496-04	03/18/08 15:14
1,3-Dichloropropane	ND	38.6		ug/kg	50.0	. 77%	30 - 143	13	44	8032601	NRC0496-04	03/18/08 15:14
1,2-Dichloropropane	ND	38.8		ug/kg	50.0	78%	37 - 136	14	35	8032601	NRC0496-04	03/18/08 15:14
2,2-Dichloropropane	ND	38.6		ug/kg	50.0	77%	30 - 145	17	33	8032601	NRC0496-04	03/18/08 15:14
cis-1,3-Dichloropropene	ND	37.5		ug/kg	50.0	75%	29 - 149	17	43	8032601	NRC0496-04	03/18/08 15:14
trans-1,3-Dichloropropene	ND	35.6		ug/kg	50.0	71%	17 - 146	17	50	8032601	NRC0496-04	03/18/08 15:14
1,1-Dichloropropene	ND	40.2		ug/kg	50.0	80%	36 - 147	14	41	8032601	NRC0496-04	03/18/08 15:14
Ethylbenzene	ND	41.0		ug/kg	50.0	82%	16 - 160	17	48	8032601	NRC0496-04	03/18/08 15:14
Hexachlorobutadiene	ND	52.2		ug/kg	50.0	104%	10 - 191	9	50	8032601	NRC0496-04	03/18/08 15:14
2-Hexanone	ND	216		ug/kg	250	86%	19 - 154	14	50	8032601	NRC0496-04	03/18/08 15:14
Isopropylbenzene	ND	35.0		ug/kg	50.0	70%	t6 - 156	16	50	8032601	NRC0496-04	03/18/08 15:14
p-Isopropyltoluene	ND	39.4		ug/kg	50.0	79%	13 - 160	16	50	8032601	NRC0496-04	03/18/08 15:14
Methyl tert-Butyl Ether	ND	37.7		ug/kg	50.0	75%	30 - 136	14	45	8032601	NRC0496-04	03/18/08 15:14
Methylene Chloride	ND	38.5		ug/kg	50.0	77%	31 - 160	17	39	8032601	NRC0496-04	03/18/08 15:14
4-Methyl-2-pentanone	ND	214		ug/kg	250	85%	25 - 149	14	50	8032601	NRC0496-04	03/18/08 15:14
Naphthalene	ND	35.2		ug/kg	50.0	70%	10 - 151		50	803 2 60 I	NRC0496-04	03/18/08 15:14
n-Propylbenzene	ND	45.8		ug/kg	50.0	92%	17 - 158		50	8032601	NRC0496-04	03/18/08 15:14
Styrene	ND	9.56		ug/kg	50.0	19%	11 - 168		50	8032601	NRC0496-04	03/18/08 15:14
1,1,1,2-Tetrachloroethane	ND	38.7		ug/kg	50.0	77%	30 - 147		43	8032601	NRC0496-04	03/18/08 15:14
1,1,2,2-Tetrachloroethane	ND	39.4		ug/kg	50.0	79%	20 - 155		50	8032601	NRC0496-04	03/18/08 15:14
Tetrachloroethene	ND	45.0		ug/kg	50.0	90%	27 - 151		45	8032601	NRC0496-04	03/18/08 15:14
Toluene	ND	42.0		ug/kg	50.0	84%	30 - 145		44	8032601	NRC0496-04	03/18/08 15:14
				- O - B		0,70	15		••			

Tes - Δ

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404 à

l

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0496 Project Name: [none] Project Number: Received: 03/07/08 08:00

Atlanta Rush Project

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	260B										• • • • • • • • • • • • • • • • • • • •
8032601-MSD1												
1,2,3-Trichlorobenzene	ND	43.8		ug/kg	50.0	88%	10 - 158	0.7	50	8032601	NRC0496-04	03/18/08 15:14
1,2,4-Trichlorobenzene	ND	\$2.5		ug/kg	50.0	105%	10 - 160	19	50	8032601	NRC0496-04	03/18/08 15:14
1,1,2-Trichloroethane	ND	39.9		ug/kg	50.0	80%	34 - 140	13	41	8032601	NRC0496-04	03/18/08 15:14
1,1,1-Trichloroethane	ND	38.9		ug/kg	50.0	78%	36 - 150	17	39	8032601	NRC0496-04	03/18/08 15:14
Trichloroethene	ND	42.1		ug/kg	50.0	84%	33 - 145	16	40	8032601	NRC0496-04	03/18/08 15:14
Trichlorofluoromethane	ND	36.9		ug/kg	50.0	74%	31 - 150	14	42	8032601	NRC0496-04	03/18/08 15:14
1,2,3-Trichloropropane	ND	35.2		ug/kg	50.0	70%	14 - 143	9	50	8032601	NRC0496-04	03/18/08 15:14
1,3,5-Trimethylbenzene	ND	41.6		ug/kg	50.0	83%	20 - 158	13	50	8032601	NRC0496-04	03/18/08 15:14
1,2,4-Trimethylbenzene	ND	44.2		ug/kg	50.0	88%	10 - 166	15	50	8032601	NRC0496-04	03/18/08 15:14
Vinyl chloride	ND	29.9		ug/kg	50.0	60%	32 - 144	17	41	8032601	NRC0496-04	03/18/08 15:14
Xylenes, total	ND	129		ug/kg	150	86%	16 - 159	17	48	8032601	NRC0496-04	03/18/08 15:14
Surrogate: 1,2-Dichloroethane-d4		49.7		ug/kg	50.0	99%	41 - 150			8032601	NRC0496-04	03/18/08 15:14
Surrogate: Dibromofluoromethane		50.7		ug/kg	50.0	101%	55 - 139			8032601	NRC0496-04	03/18/08 15:14
Surrogate: Toluene-d8		52.4		ug/kg	50.0	l05%	57 - 148			8032601	NRC0496-04	03/18/08 15:14
Surrogate: 4-Bromofluorobenzene		\$3,4		ug/kg	50.0	107%	58 - 150			8032601	NRC0496-04	03/18/08 15:14
Polyaromatic Hydrocarbons by E	CPA 8270C											
8032330-MSD1									•			
Acenaphthene	ND	1,54		mg/kg dry	1.94	80%	28 - 117	15	33	8032330	NRC0496-04	03/15/08 05:49
Acenaphthylene	ND	1.64		mg/kg dry	1.94	85%	33 - 113	14	38	8032330	NRC0496-04	03/15/08 05:49
Anthracene	ND	1.74		mg/kg dry	1.94	90%	31 - 131	12	32	8032330	NRC0496-04	03/15/08 05:49
Benzo (a) anthracene	ND	1.73		mg/kg dry	1.94	89%	29 - 124	12	26	8032330	NRC0496-04	03/15/08 05:49
Benzo (a) pyrene	ND	1.76		mg/kg dry	1.94	91%	30 - 127	13	31	8032330	NRC0496-04	03/15/08 05:49
Benzo (b) fluoranthene	ND	1.98		mg/kg dry	1.94	102%	26 - 128	24	37	8032330	NRC0496-04	03/15/08 05:49
Benzo (g,h,i) perylene	ND	1.68		mg/kg dry	1.94	87%	21 - 122	10	28	8032330	NRC0496-04	03/15/08 05:49
Benzo (k) fluoranthene	ND	1,50		mg/kg dry	1.94	78%	20 - 130	2	35	8032330	NRC0496-04	03/15/08 05:49
Chrysene	ND	1.62		mg/kg dry	1.94	84%	30 - 119	11	31	8032330	NRC0496-04	03/15/08 05:49
Dibenz (a,h) anthracene	ND	1.76		mg/kg dry	1.94	91%	27 - 122	11	32	8032330	NRC0496-04	03/15/08 05:49
Fluoranthene	0.0419	1.87		mg/kg dry	1.94	95%	23 - 132	11	36	8032330	NRC0496-04	03/15/08 05:49
Fluorene	ND	1.73		mg/kg dry	1.94	89%	38 - 110	14	35	8032330	NRC0496-04	03/15/08 05:49
Indeno (1,2,3-cd) pyrene	ND	1.74		mg/kg dry	1.94	90%	24 - 122	12	28	8032330	NRC0496-04	03/15/08 05:49
Naphthalene	ND	1.48		mg/kg dry	1.94	76%	14 - 117	15	34	8032330	NRC0496-04	03/15/08 05:49
Phenanthrene	ND	1.69		mg/kg dry	1.94	87%	21 - 130	14	33	8032330	NRC0496-04	03/15/08 05:49
Рутепе	ND	1.58		mg/kg dry	1.94	82%	24 - 133	10	36	8032330	NRC0496-04	03/15/08 05:49
Surrogate: Terphenyl-d14		1.34		mg/kg dry	1.94	69%	26 - 128			8032330	NRC0496-04	03/15/08 05:49
Surrogate: 2-Fluorobiphenyl		1.26		mg/kg dry	1.94	65%	19 - 109			8032330	NRC0496-04	03/15/08 05:49

Semivolatile Organic Compounds by EPA Method 8270C 8031212-MSD1

1

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.												
Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compou	nds by EPA Meti	nod 8270C								••••	• • • • • • • • • • • • • • • • • • • •	
8031212-MSD1												
Acenaphthene	ND	1.29		mg/kg dry	2.02	64%	28 - 117	11	33	8031212	NRC0611-02	03/10/08 19:35
Acenaphthylene	ND	1.28		mg/kg dry	2.02	63%	33 - 113	15	38	8031212	NRC0611-02	03/10/08 19:35
Anthracene	ND	1.39		mg/kg dry	2.02	69%	31 - 131	6	32	8031212	NRC0611-02	03/10/08 19:35
Benzo (a) anthracene	0,129	1.51		mg/kg dry	2.02	68%	29 - 124	6	26	8031212	NRC0611-02	03/10/08 19:35
Benzo (a) pyrene	0.110	1.55		mg/kg dry	2.02	71%	30 - 127	2	31	8031212	NRC0611-02	03/10/08 19:35
Benzo (b) fluoranthene	0.140	1.65		mg/kg dry	2.02	75%	26 - 128	3	37	8031212	NRC0611-02	03/10/08 19:35
Benzo (g,h,i) perylene	0.0911	1.53		mg/kg dry	2.02	71%	21 - 122	2	28	8031212	NRC0611-02	03/10/08 19:35
Benzo (k) fluoranthene	0.224	1.40		mg/kg dry	2.02	58%	20 - 130	10	35	8031212	NRC0611-02	03/10/08 19:35
4-Bromophenyl phenyl ether	ND	1.06		mg/kg dry	2.02	52%	30 - 106	18	38	8031212	NRC0611-02	03/10/08 19:35
Butyl benzyl phthalate	ND	1.45		mg/kg dry	2.02	72%	40 - 131	12	37	8031212	NRC0611-02	03/10/08 19:35
Carbazole	ND	1.29		mg/kg dry	2.02	64%	37 - 116	11	31	8031212	NRC0611-02	03/10/08 19:35
4-Chloro-3-methylphenol	ND	1.10		mg/kg dry	2.02	55%	19 - 128	18	38	8031212	NRC0611-02	03/10/08 19:35
4-Chloroaniline	ND	1.02		mg/kg dry	2.02	50%	10 - 119	16	44	8031212	NRC0611-02	03/10/08 19:35
Bis(2-chloroethoxy)methane	ND	1.18		mg/kg dry	2.02	58%	30 - 110	12	34	8031212	NRC0611-02	03/10/08 19:35
Bis(2-chloroethyl)ether	ND	1.11		mg/kg dry	2.02	55%	36 - 106	13	38	8031212	NRC0611-02	03/10/08 19:35
Bis(2-chloroisopropyl)ether	ND	1.02		mg/kg dry	2.02	50%	34 - 109	11	40	8031212	NRC0611-02	03/10/08 19:35
2-Chloronaphthalene	ND	1.25		mg/kg dry	2.02	62%	31 - 107	13	38	8031212	NRC0611-02	03/10/08 19:35
2-Chlorophenol	ND	1.20		mg/kg dry	2.02	59%	32 - 119	8	40	8031212	NRC0611-02	03/10/08 19:35
4-Chlorophenyl phenyl ether	ND	1.11		mg/kg dry	2.02	55%	35 - 113	16	37	8031212	NRC0611-02	03/10/08 19:35
Chrysene	0.168	1.76		mg/kg dry	2.02	79%	30 - 119	4	31	8031212	NRC0611-02	03/10/08 19:35
Dibenz (a,h) anthracene	ND	1.25		mg/kg dry	2.02	62%	27 - 122	12	32	8031212	NRC0611-02	03/10/08 19:35
Dibenzofuran	ND	1.25		mg/kg dry	2.02	62%	33 - 121	14	35	8031212	NRC0611-02	03/10/08 19:35
Di-n-butyl phthalate	ND	1.25		mg/kg dry	2.02	62%	38 - 123	14	31	8031212		
1,4-Dichlorobenzene	ND	1.10			2.02	54%	26 - 109	3	41	8031212	NRC0611-02	03/10/08 19:35
1,2-Dichlorobenzene	ND	1.13		mg/kg dry	2.04						NRC0611-02	03/10/08 19:35
1,3-Dichlorobenzene	ND			mg/kg dry	2.04	55%	26 - 112	11	40	8031212	NRC0611-02	03/10/08 19:35
3.3-Dichlorobenzidine		1.11		mg/kg dry		55%	26 - 110	5	41	8031212	NRC0611-02	03/10/08 19:35
	ND	0.835		mg/kg dry	2.02	41%	10 - 112	19	48	8031212	NRC0611-02	03/10/08 19:35
2,4-Dichlorophenol	ND	1.20		mg/kg dry	2.02	59%	28 - 118	14	32	8031212	NRC0611-02	03/10/08 19:35
Diethyl phthalate	ND	1.03		mg/kg dry	2.02	51%	29 - 122	19	37	8031212	NRC0611-02	03/10/08 19:35
2,4-Dimethylphenol	ND	1.28		mg/kg dry	2.02	63%	10 - 128	14	50	8031212	NRC0611-02	03/10/08 19:35
Dimethyl phthalate	ND	1.13		mg/kg dry	2.02	56%	31 - 118	15	39	8031212	NRC0611-02	03/10/08 19:35
4,6-Dinitro-2-methylphenol	ND	0.448	R	mg/kg dry	2.02	22%	10 - 136	63	45	8031212	NRC0611-02	03/10/08 19:35
2,4-Dinitrophenol	ND	0.386	R	mg/kg dry	2.02	19%	10 - 148	57	50	8031212	NRC0611-02	03/10/08 19:35
2,6-Dinitrotoluene	ND	1.32		mg/kg dry	2.02	65%	28 - 125	12	37	8031212	NRC0611-02	03/10/08 19:35
2,4-Dinitrotoluene	ND	1.20		mg/kg dry	2.02	59%	30 - 119	18	41	8031212	NRC0611-02	03/10/08 19:35
Di-n-octyl phthalate	ND	1.38		mg/kg dry	2.02	68%	31 - 137	16	34	8031212	NRC0611-02	03/10/08 19:35
Bis(2-ethylhexyl)phthalate	ND	1.39		mg/kg dry	2.02	69%	38 - 125	16	38	8031212	NRC0611-02	03/10/08 19:35
Fluoranthene	0.486	2.64		mg/kg dry	2.02	106%	23 - 132	15	36	8031212	NRC0611-02	03/10/08 19:35
Fluorene	ND	1.26		mg/kg dry	2.02	62%	38 - 110	14	35	8031212	NRC0611-02	03/10/08 19:35
Hexachlorobenzene	ND	1.17		mg/kg dry	2.02	58%	35 - 120	16	37	8031212	NRC0611-02	03/10/08 19:35
Hexachlorobutadiene	ND	1.32		mg/kg dry	2.02	65%	28 - 113	8	35	8031212	NRC0611-02	03/10/08 19:35

1

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0496 Project Name: [none] Project Number: Received: 03/07/08 08:00

Atlanta Rush Project

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compoun	ds by EPA Meth	nod 8270C								•••••		
8031212-MSD1		·										
Hexachlorocyclopentadiene	ND	0.809		mg/kg dry	2.02	40%	10 - 123	32	36	8031212	NRC0611-02	03/10/08 19:35
Hexachloroethane	ND	1.09		mg/kg dry	2.02	54%	20 - 120	· 6	42·	8031212	NRC0611-02	03/10/08 19:35
Indeno (1,2,3-cd) pyrene	0.0776	1.46		mg/kg dry	2.02	69%	24 - 122	3	28	8031212	NRC0611-02	03/10/08 19:35
Isophorone	ND	1.15		mg/kg dry	2.02	57%	23 - 108	11	33	8031212	NRC0611-02	03/10/08 19:35
2-Methylnaphthalene	ND	1.16		mg/kg dry	2.02	57%	26 - 116	15	33	8031212	NRC0611-02	03/10/08 19:35
2-Methylphenol	ND	1.13		mg/kg dry	2.02	56%	23 - 122	10	43	8031212	NRC0611-02	03/10/08 19:35
3/4-Methylphenol	ND	1.20		mg/kg dry	2.02	59%	23 - 138	15	47	8031212	NRC0611-02	03/10/08 19:35
Naphthalene	ND	1.23		mg/kg dry	2.02	61%	. 14 - 117	10	34	8031212	NRC0611-02	03/10/08 19:35
3-Nitroaniline	ND	1.07		mg/kg dry .	2.02	53%	27 - 124	15	41	8031212	NRC0611-02	03/10/08 19:35
2-Nitroaniline	ND	1.22		mg/kg dry	2.02	60%	35 - 122	16	33	8031212	NRC0611-02	03/10/08 19:35
4-Nitroaniline	ND	1.07		mg/kg dry	2.02	53%	25 - 124	17	35	8031212	NRC0611-02	03/10/08 19:35
Nitrobenzene	ND	1.19		mg/kg dry	2.02	59%	19 - 105	. 8	36	8031212	NRC0611-02	03/10/08 19:35
4-Nitrophenol	ND	1.04		mg/kg dry	2.02	51%	14 - 144	16	39	8031212	NRC0611-02	03/10/08 19:35
2-Nitrophenol	ND	1.22		mg/kg dry	2.02	60%	23 - 119	16	37	8031212	NRC0611-02	03/10/08 19:35
N-Nitrosodiphenylamine	ND	1.28		mg/kg dry	2.02	63%	37 - 144	14	32	8031212	NRC0611-02	03/10/08 19:35
N-Nitrosodi-n-propylamine	ND	0.961		mg/kg dry	2.02	47%	28 - 121	16	41	8031212	NRC0611-02	03/10/08 19:35
Pentachlorophenol	ND	1.06		mg/kg dry	2.02	53%	13 - 149	20	41	8031212	NRC0611-02	03/10/08 19:35
Phenanthrene	0.396	2.48		mg/kg dry	2.02	103%	21 - 130	19	33	8031212	NRC0611-02	03/10/08 19:35
Phenol	ND	1.12		mg/kg dry	2.02	56%	31 - 116	14	40	8031212	NRC0611-02	03/10/08 19:35
Pyrene	0.466	2.83		mg/kg dry	2.02	117%	24 - 133	19	36	8031212	NRC0611-02	03/10/08 19:35
Pyridine	ND	0.307	R	mg/kg dry	2.02	15%	10 - 103	59	50	8031212	NRC0611-02	03/10/08 19:35
1,2,4-Trichlorobenzene	ND	1.22		mg/kg dry	2.02	60%	27 - 102	10	34	8031212	NRC0611-02	03/10/08 19:35
1-Methylnaphthaiene	ND	1.16		mg/kg dry	2.02	57%	10 - 121	11	34	8031212	NRC0611-02	03/10/08 19:35
2,4,6-Trichlorophenol	ND	1.25		mg/kg dry	2.02	62%	32 - 122	21	41	8031212	NRC0611-02	03/10/08 19:35
2,4,5-Trichlorophenol	NĐ	1.26		mg/kg dry	2.02	62%	30 - 122	21	39	8031212	NRC0611-02	03/10/08 19:35
Surrogate: Terphenyl-d14		1.13		mg/kg dry	2.02	56%	26 - 128			8031212	NRC0611-02	03/10/08 19:35
Surrogate: 2,4,6-Tribromophenol		1.11		mg/kg dry	2.02	55%	20 - 132			-8031212	NRC0611-02	03/10/08 19:35
Surrogate: Phenol-d5		1.10		mg/kg dry	2.02	54%	23 - 113			8031212	NRC0611-02	03/10/08 19:35
Surrogate: 2-Fluorobiphenyl		1.04		mg/kg dry	2.02	52%	19 - 109			8031212	NRC0611-02	03/10/08 19:35
Surrogate: 2-Fluorophenol		1.00		mg/kg dry	2.02	49%	19 - 105			8031212	NRC0611-02	03/10/08 19:35
Surrogate: Nitrobenzene-d5		1.07		mg/kg dry	2.02	53%	22 - 104			8031212	NRC0611-02	03/10/08 19:35

TestAmerica Nashville

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	[none]
Attn	Carl Dawes	Received:	03/07/08 08:00

CERTIFICATION SUMMARY

Method	Matrix	АІНА	Nelac	Georgia
SW846 8260B	Soil	N/A	x	
SW846 8270C	Soil	N/A	х	
SW-846	Soil			

Page 46 of 47

TestAmericu

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Attn	Carl Dawes	Received:	03/07/08 08:00	
	Chicago,, IL 60602	Project Number:	[none]	
	70 West Madison, Suite 4250	· Project Name:	Atlanta Rush Project	
Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0496	

DATA QUALIFIERS AND DEFINITIONS

not
nits.

METHOD MODIFICATION NOTES

estAmerica	
Nashville, TN COOLER RECEIPT	NRC0496
Coolar Received/Opened On 03:06/08 @ 05:00	
1. Tracking #(last 4 digits, FedEx)	
Courier:FED-EX IR Gun IDA01124	
2. Temperature of rep. sample or temp blank when opened 9.3 Degrees Celsius	\sim
3. If item #2 temperature is 0°C or less, was the representative sample or temp blank froz	en? YES (NO.).NA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	CUNI/
5. Were the seals intact, signed, and dated correctly?	ESNONA
6. Were custody papers inside cooler?	KESLNONA
I certify that I opened the cooler and answered questions 1-6 (initial)	(Dy
7. Were custody seals on containers: YES 🔞 and Intact	YESNO
Were these signed and dated correctly?	YESNO(NA)
3. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert F	aper Other None
9. Cooling process: (ice lce-pack lce (direct contact) Dr	y ice Other None
10. Did all containers arrive in good condition (unbroken)?	MESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	(TESNONA
12. Did all container labels and tags agree with custody papers?	E. NONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YES (NO) NA
14. Was there a Trip Slank in this cooler? YES. NONA If multiple coolers, see	quence #
certify that I unloaded the cooler and answered questions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH le	evel YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	(ES)NONA
If preservation in-house was needed, record standard ID of preservative used t	· · · · · · · · · · · · · · · · · · ·
16. Was residual chlorine present?	YESNONA
I certify that I checked for chloring and pH as per SOP and answered questions 15-16 (in	
17. Were custody papers properly filled out (ink, signed, etc)?	KESNONA
18. Did you sign the custody papers in the appropriate place?	(ESNONA
19. Were correct containers used for the analysis requested?	(ESNONA
20. Was sufficient amount of sample sent in each container?	ISI (YESNONA
I certify that I entered this project into LIMS and answered guestions 17-20 (intial)	
<u>I certify that I attached a label with the unique LIMS number to each container (intial)</u>	4
21. Were there Non-Conformance issues at login? YES(10) Was a PIPE generated?	(ESHN9#
	:1

ī.

HIS - Hooken in stopment Cooler Receipt Form.doc - .

...

. .

معرمين والمعروفين

Revised 9.6.91

1

1

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: Attn:	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes	Work Order: Project Name: Project Nbr: P/O Nbr:	NRC0462 Atlanta Rush Project 1782-308-02
	· · · · · · · · · · · · · · · · · · ·	Date Received:	03/06/08
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
EB-1	(4-6)	NRC0462-01	03/05/08 13:35
EB-1	(8-10)	NRC0462-02	03/05/08 14:10
EB-7	(6-7.5)	NRC0462-04	03/05/08 08:20
EB-8	(6-8)	NRC0462-07	03/05/08 09:40
EB-9	(9-11)	NRC0462-10	03/05/08 11:50

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Georgia Certification Number: Florida cert E87358

The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

Roxanne L. Connor

Roxanne Connor

Program Manager - Conventional Accounts

1

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

				Dilution	Analysis		
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0462-01 (EB-)	1 (4-6) - Soil) Samn	led: 03/05/08 13:35			•		
General Chemistry Parameters							
% Dry Solids	82.9	%	0.500	1	03/17/08 10:35	SW-846	8032352
Semivolatile Organic Compounds	by EPA Method 8270	2					
Acenaphthene	ND	- mg/kg dry	0.397	1	03/16/08 17:54	SW046 92700	001016
Acenaphthylene	ND	mg/kg dry	0.397			SW846 8270C	8032357
Anthracene	ND	mg/kg dry	0.397	1	03/16/08 17:54 03/16/08 17:54	SW846 8270C	8032357 8032357
Benzo (a) anthracene	ND	mg/kg dry	0.397	, 1		SW846 8270C	
Benzo (a) pyrene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Benzo (b) fluoranthene	ND		0.397	1	03/16/08 17:54	SW846 8270C	8032353
Benzo (g,h,i) perylene	ND	mg/kg dry		1	03/16/08 17:54	SW846 8270C	8032353
Benzo (k) fluoranthene	ND	mg/kg dry mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032353
4-Bromophenyl phenyl ether	ND		0.397 0.397	1	03/16/08 17:54	SW846 8270C	8032357
Butyl benzyl phthalate	ND	mg/kg dry		1	03/16/08 17:54	SW846 8270C	803235
Carbazole	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032353
4-Chloro-3-methylphenol	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
4-Chloroaniline	ND	ing/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Bis(2-chloroethyl)ether		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Bis(2-chloroisopropyi)ether	ND ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
2-Chloronaphthalene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
2-Chlorophenol	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032353
4-Chlorophenyl phenyl ether	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Chrysene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Dibenz (a,h) anthracene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Dibenzofuran	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
Di-n-butyl phthalate	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
1,4-Dichlorobenzene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
1,2-Dichlorobenzene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
1,3-Dichlorobenzene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
3,3-Dichlorobenzidine		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235
•	ND	mg/kg dry	0.796	1	03/16/08 17:54	SW846 8270C	803235
2,4-Dichlorophenol Diethyl phthalate	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
••	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
2,4-Dimethylphenol Dimethyl phthalate	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
2,4-Dinitrophenol	ND	mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
2,6-Dinitrotoluene	ND	mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
2,4-Dinitrotoluene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Di-n-octyl phthalate	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Bis(2-ethylhexyl)phthalate	0.414	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Fluoranthene Fluorene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Hexachlorobenzene	ND	mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	803235

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ł

Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRC0462 Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

ANALYTICAL REPORT								
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0462-01 (EB-1 ((4-6) - Soil) - cor	nt. Sample	ed: 03/05/08 13:3	5	• • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	
Semivolatile Organic Compounds by	EPA Method 827	DC - cont.		-				
Hexachlorobutadiene	ND		mg/kg dry	0.397	1	02/16/00 17.64	011/04/04/2020	
Hexachlorocyclopentadiene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Hexachloroethane	ND		mg/kg dry	0.397		03/16/08 17:54	SW846 8270C	8032357
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Isophorone	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
2-Methylnaphthalene	ND		mg/kg dry		1	03/16/08 17:54	SW846 8270C	8032357
2-Methylphenol	ND		,	0.397	l	03/16/08 17:54	SW846 8270C	8032357
3/4-Methylphenol	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Naphthalene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
3-Nitroaniline	ND		mg/kg dry	0.397	L	03/16/08 17:54	SW846 8270C	8032357
2-Nitroaniline	ND		mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
4-Nitroaniline			mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
Nitrobenzene	ND		mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
4-Nitrophenol	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
2-Nitrophenol	ND		mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
-	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
N-Nitrosodiphenylamine	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
N-Nitrosodi-n-propylamine	ND		mg/kg dry	0.397	I	03/16/08 17:54	SW846 8270C	8032357
Pentachlorophenol	ND		mg/kg dry	0.994	I	03/16/08 17:54	SW846 8270C	8032357
Phenanthrene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
Phenol	ND		mg/kg dry	0.397	I	03/16/08 17:54	SW846 8270C	8032357
Pyrene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
1-Methylnaphthalene	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
2,4,6-Trichlorophenol	ND		mg/kg dry	0.397	1	03/16/08 17:54	SW846 8270C	8032357
2,4,5-Trichlorophenol	ND		mg/kg dry	0.994	1	03/16/08 17:54	SW846 8270C	8032357
Surr: Terphenyl-d14 (26-128%)	61 %					03/16/08 17:54	SW846 8270C	8032357
Surr: 2,4,6-Tribromophenol (20-132%)	59 %					03/16/08 17:54	SW846 8270C	8032357
Surr: Phenol-d5 (23-113%)	56 %					03/16/08 17:54	SW846 8270C	8032357
Surr: 2-Fluorobiphenyl (19-109%)	55 %					03/16/08 17:54	SW846 8270C	8032357
Surr: 2-Fluorophenol (19-105%)	54 %					03/16/08 17:54	SW846 8270C	8032357
Surr: Nitrobenzene-d5 (22-104%)	54 %					03/16/08 17:54	SW846 8270C	8032357

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

Analyte Result Sample ID: NRC0462-02 (EB-1 (8-10) - Soil General Chemistry Parameters % Dry Solids 98.2 Volatile Organic Compounds by EPA Method 82d Acetone 0.0525 Benzene ND Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromomethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Sec-Butylbenzene ND n-Butylbenzene ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorotoluene ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,2-Dibromoethane ND ND	50B	Units 5/08 14:10 % mg/kg dry mg/kg dry	MRL 0.500 0.0490 0.00196 0	Dilution Factor	Analysis Date/Time 03/10/08 11:49 03/13/08 16:50 03/13/08 16:50	Method SW-846 SW846 8260B SW846 8260B	Batch 8030957 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
General Chemistry Parameters % Dry Solids 98.2 Volatile Organic Compounds by EPA Method 82d Acetone 0.0525 Benzene ND Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromoform ND Bromodichloromethane ND ScoreButylbenzene ND n-Butylbenzene ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND ND ND ND ND ND </th <th>50B</th> <th>% mg/kg dry mg/kg dry</th> <th>0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196</th> <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>03/13/08 16:50 03/13/08 16:50</th> <th>SW846 8260B SW846 8260B</th> <th>8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987</th>	50B	% mg/kg dry mg/kg dry	0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
General Chemistry Parameters % Dry Solids 98.2 Volatile Organic Compounds by EPA Method 82d Acetone 0.0525 Benzene ND Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromoform ND Bromodichloromethane ND ScoreButylbenzene ND n-Butylbenzene ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND ND ND ND ND ND </td <td>50B</td> <td>% mg/kg dry mg/kg dry</td> <td>0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>03/13/08 16:50 03/13/08 16:50</td> <td>SW846 8260B SW846 8260B</td> <td>8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987</td>	50B	% mg/kg dry mg/kg dry	0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
% Dry Solids 98.2 Volatile Organic Compounds by EPA Method 82d Acetone 0.0525 Benzene ND Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromoform ND Bromothane ND Scc-Butylbenzene ND n-Butylbenzene ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND ND ND ND ND 1,2-Dibromoethane ND ND ND		mg/kg dry mg/kg dry	0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Method 820 Acetone 0.0525 Benzene ND Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromoform ND Bromoform ND Scc-Butylbenzene ND carbon disulfide ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND 4-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,4-Dichlorobenzene ND ND ND ND ND Scarbon Tetrachloride ND Chlorotoluene ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,4-Dichlorob		mg/kg dry mg/kg dry	0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Acetone0.0525BenzeneNDBromobenzeneNDBromochloromethaneNDBromochloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromodichloromethaneNDBromomethaneNDBromomethaneNDScc-ButylbenzeneNDscc-ButylbenzeneNDcarbon disulfideNDCarbon disulfideNDChlorobenzeneNDChlorodibromomethaneNDChlorotofurneNDChlorotofurneNDChlorotolueneND1,2-Dibromo-3-chloropropaneND1,4-DichtorobenzeneND1,3-DichlorobenzeneND1,2-DiblorobenzeneND1,2-DiblorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND		mg/kg dry mg/kg dry	0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Benzene ND Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromonethane ND Bromomethane ND 2-Butanone ND scc-Butylbenzene ND -RButylbenzene ND carbon disulfide ND Carbon disulfide ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chloroform ND Chlorotoluene ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,4-Dichlorobenzene ND		mg/kg dry mg/kg dry	0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
BromobenzeneNDBromochloromethaneNDBromochloromethaneNDBromodichloromethaneNDBromooformNDBromomethaneND2-ButanoneNDscc-ButylbenzeneNDn-ButylbenzeneNDCarbon disulfideNDCarbon disulfideNDChlorobenzeneNDChlorodibromomethaneNDChlorodibromomethaneNDChlorodibromomethaneNDChlorodibromomethaneNDChlorotolueneND2-ChlorotolueneND1,2-Dibromo-3-chloropropaneND1,4-DichlorobenzeneND1,3-DichlorobenzeneND1,2-DibromoethaneND1,2-DibromoethaneND1,2-DibromoethaneND1,2-DibromoethaneND1,2-DibromoethaneND1,2-DibromoethaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND		mg/kg dry mg/kg dry	0.00196 0.00196 0.00196 0.00196 0.00196 0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Bromochloromethane ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND 2-Butanone ND scc-Butylbenzene ND n-Butylbenzene ND Carbon disulfide ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry mg/kg dry	0.00196 0.00196 0.00196 0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	H 1 1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Bromodichloromethane ND Bromoform ND Bromoform ND Bromomethane ND 2-Butanone ND scc-Butylbenzene ND n-Butylbenzene ND carbon disulfide ND Carbon disulfide ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dibromoethane (EDB) ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry mg/kg dry	0.00196 0.00196 0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196		03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Bromoform ND Bromomethane ND 2-Butanone ND scc-Butylbenzene ND n-Butylbenzene ND carbon disulfide ND Carbon disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND 1,2-Diblorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry mg/kg dry	0.00196 0.0490 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Bromomethane ND 2-Butanone ND 2-Butanone ND scc-Butylbenzene ND n-Butylbenzene ND carbon disulfide ND Carbon disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.00196 0.0490 0.00196 0.00196 0.00196 0.00490 0.00196 0.00196 0.00196	1 1 1 1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987
2-Butanone ND scc-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Carbon disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorotoluene ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0490 0.00196 0.00196 0.00196 0.00490 0.00196 0.00196 0.00196	1 1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987
scc-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Carbon disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.00196 0.00196 0.00196 0.00490 0.00196 0.00196 0.00196	1 1 1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987
n-Butylbenzene ND tert-Butylbenzene ND Carbon disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chloroform ND Chloroform ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.00196 0.00196 0.00490 0.00196 0.00196 0.00196	1 1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987
tert-Butylbenzene ND Carbon disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chloroform ND Chloroform ND Chloroform ND Chloroform ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.00196 0.00490 0.00196 0.00196 0.00196	1 1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987
Carbon disulfideNDCarbon TetrachlorideNDChlorobenzeneNDChlorodibromomethaneNDChlorodibromomethaneNDChloroformNDChloroformNDChloroformNDChlorotolueneND2-ChlorotolueneND1,2-Dibromo-3-chloropropaneND1,2-Dibromoethane (EDB)NDDibromomethaneND1,4-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.00490 0.00196 0.00196 0.00196	1 1 1	03/13/08 16:50 03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B SW846 8260B	8031987 8031987
Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chloroform ND Chloroform ND Chloroform ND Chloroform ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.00196 0.00196 0.00196	1 1 1	03/13/08 16:50 03/13/08 16:50	SW846 8260B SW846 8260B	8031987 8031987
Chlorobenzene ND Chlorodibromomethane ND Chlorodibromomethane ND Chlorotothane ND Chloroform ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND	1	mg/kg dry mg/kg dry mg/kg dry	0.00196 0.00196	1 1	03/13/08 16:50	SW846 8260B SW846 8260B	8031987
Chlorodibromomethane ND Chlorodibromomethane ND Chlorotethane ND Chloroform ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dibronobenzene ND	1	mg/kg dry mg/kg dry	0.00196	1		SW846 8260B	
Chloroethane ND Chloroform ND Chloroform ND 2-Chlorotoluene ND 2-Chlorotoluene ND 4-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dibromoethane ND	1	mg/kg dry			03/13/08 16:50		
Chloroform ND Chloroform ND Chloroform ND 2-Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND			0.00490	1			8031987
Chloromethane ND 2-Chlorotoluene ND 4-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND	1	mg/kg drv		1	03/13/08 16:50	SW846 8260B	8031987
2-Chlorotoluene ND 4-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND		J J	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
4-Chlorotoluene ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,4-Dichtorobenzene ND 1,3-Dichtorobenzene ND 1,2-Dichtorobenzene ND	;	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Dibromomethane ND 1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND	:	mg/kg dry	0.00490	1	03/13/08 16:50	SW846 8260B	8031987
1,4-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND	:	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
I,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND	1	mg/kg dry	0.00196	. 1	03/13/08 16:50	SW846 8260B	8031987
1,2-Dichlorobenzene ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
D'11 117 .		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Dichlorodifluoromethane ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,1-Dichloroethane ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2-Dichloroethane ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	
cis-1,2-Dichloroethene ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,1-Dichloroethene ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987 8031987
trans-1,2-Dichloroethene ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	
1,3-Dichioropropane ND		mg/kg dry	0.00196	1	03/13/08 16:50		8031987
1,2-Dichloropropane ND		mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
2,2-Dichloropropane ND		mg/kg dry	0.00196	1		SW846 8260B	8031987
cis-1,3-Dichloropropene ND		mg/kg dry	0.00196		03/13/08 16:50	SW846 8260B	8031987
trans-1,3-Dichloropropene ND		mg/kg dry	0.00196	1. 1	03/13/08 16:50	SW846 8260B	8031987
1,1-Dichloropropene ND		mg/kg dry		1	03/13/08 16:50	SW846 8260B	8031987
Ethylbenzene ND		mg/kg dry	0.00196 0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Hexachlorobutadiene ND		ALC/ NE ULY	0.00130	1	03/13/08 16:50	SW846 8260B	8031987

.

THE LEADER IN	ENVIRONMENTAL	TESTING
---------------	---------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

	e	Result	Flag	Units .	MRL	Dilution Factor	Analysis Date/Time	
	······	·····	Al	NALYTICAI	REPORT			
Aun	Carl Dawes		·····		Received:	03/06/08 08:00		
Client Attn	Weaver Boos Consultants LLC (14 70 West Madison, Suite 4250 Chicago,, 1L 60602 Carl Dawes	407793)			Work Order: Project Name: Project Number:	NRC0462 Atlanta Rush Pro 1782-308-02	ject	

Sample ID: NRC0462-02 (EB-1 (8-10) - Soil) - cont. Sampled: 03/05/08 14:10

Volatile Organic Compounds by EPA Method 8260B - cont.

ł

Volatile Organic Compounds by EPA	A Method 8260B - cont.						
2-Hexanone	ND	mg/kg dry	0.0490	1	03/13/08 16:50	SW047 0070D	0001007
Isopropylbenzene	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
p-Isopropyltoluene	ND	mg/kg dry	0.00196	. 1	03/13/08 16:50	SW846 8260B	
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Methylene Chloride	ND	mg/kg dry	0.00979	1		SW846 8260B	8031987
4-Methyl-2-pentanone	ND	mg/kg dry	0.0490	1	03/13/08 16:50	SW846 8260B	8031987
Naphthalene	0.0129	mg/kg dry	0.00490	1	03/13/08 16:50	SW846 8260B	8031987
n-Propylbenzene	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Styrene	ND	mg/kg dry	0.00196		03/13/08 16:50	SW846 8260B	8031987
1,1,1,2-Tetrachloroethane	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00198	1	03/13/08 16:50	SW846 8260B	8031987
Tetrachloroethene	ND	mg/kg dry		1	03/13/08 16:50	SW846 8260B	8031987
Toluene	0.00275	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2,4-Trichlorobenzene	ND	• •	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,1,2-Trichloroethane	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,1,1-Trichloroethane	ND	ing/kg dry	0.00490	1.	03/13/08 16:50	SW846 8260B	8031987
Trichloroethene	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Trichlorofluoromethane	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2,3-Trichloropropane	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Vinyl chloride	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Xylenes, total	ND	mg/kg dry	0.00196	1	03/13/08 16:50	SW846 8260B	8031987
Surr: 1,2-Dichloroethane-d4 (41-150%)	105 %	mg/kg dry	0.00490	1	03/13/08 16:50	SW846 8260B	8031987
Surr: Dibromofluoromethane (55-139%)	111 %				03/13/08 16:50	SW846 8260B	8031987
Surr: Toluene-d8 (57-148%)	114 %				03/13/08 16:50	SW846 8260B	8031987
Surr: 4-Bromofluorobenzene (58-150%)	116 %				03/13/08 16:50	SW846 8260B	8031987
Semivolatile Organic Compounds by	EPA Method 8270C				03/13/08 16:50	SW846 8260B	8031987
Acenaphthene	4.62	mg/kg dry	3.35	10	02/00/00 00 75		
Acenaphthylene	1.90	mg/kg dry	0.335	10	03/08/08 23:53	SW846 8270C	8030981
Anthracene	12.2	mg/kg dry	3.35	1	03/13/08 13:40	SW846 8270C	8030981
Benzo (a) anthracene	30.4	mg/kg dry		10	03/08/08 23:53	SW846 8270C	8030981
Benzo (a) pyrene	24.5	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	803 0 981
Benzo (b) fluoranthene	33.6	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	8030981
Benzo (g,h,i) perylene	15.0	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	8030981
Benzo (k) fluoranthene	11.8		3.35	10	03/08/08 23:53	SW846 8270C	8030981
4-Bromophenyl phenyl ether	ND	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	8030981
Butyl benzyl phthalate	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Carbazole	5.97	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
4-Chloro-3-methylphenol	ND	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	8030981
4-Chloroaniline	ND	mg/kg dry	0.335	l	03/13/08 13:40	SW846 8270C	8030981
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
		mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981

Method

Batch

THE LEADER IN ENVIRONMENTAL TESTING

۲.

÷

• ,

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

				Dilution	Analysis		
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0462-02 (EB	-1 (8-10) - Soil) - co	ont. Sampled: 03/05/08 14:1	10		•••••••••••••••••	••••••	• • • • • • • • • •
Semivolatile Organic Compounds							
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.335	1	02/12/08 12.40	SW046 00200	002000
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
2-Chloronaphthalene	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	803098
2-Chlorophenol	ND	mg/kg dry	0.335	1	03/13/08 13:40 03/13/08 13:40	SW846 8270C	803098
4-Chlorophenyl phenyl ether	ND	mg/kg dry	0.335	1		SW846 8270C	8030981
Chrysene	26.6	mg/kg dry	3.35	10	03/13/08 13:40 03/08/08 23:53	SW846 8270C	803098
Dibenz (a,h) anthracene	1.59	mg/kg dry	0.335	10		SW846 8270C	8030981
Dibenzofuran	3.05	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Di-n-butyl phthalate	0.459	mg/kg dry	0.335		03/13/08 13:40	SW846 8270C	8030981
1,4-Dichlorobenzene	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
1,2-Dichlorobenzene	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
1,3-Dichlorobenzene	ND	mg/kg dry	0.335		03/13/08 13:40	SW846 8270C	8030981
3,3-Dichlorobenzidine	ND		0.333	1	03/13/08 13:40	SW846 8270C	8030981
2,4-Dichlorophenol	ND	mg/kg dry mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Diethyl phthalate	ND			1	03/13/08 13:40	SW846 8270C	8030981
2,4-Dimethylphenol	ND	mg/kg dry mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Dimethyl phthalate	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
4,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
2,4-Dinitrophenol	ND	mg/kg dry	0.837	1	03/13/08 13:40	SW846 8270C	8030981
2,6-Dinitrotoluene	0.884	mg/kg dry	0.837	1	03/13/08 13:40	SW846 8270C	8030981
2,4-Dinitrotoluene	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Di-n-octyl phthalate	ND	mg/kg dry mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Bis(2-ethylhexyl)phthalate	ND		0.335	1	03/13/08 13:40	SW846 8270C	8030981
Fluoranthene	68.9	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Fluorene	5.40	mg/kg dry	16.7	50	03/09/08 07:59	SW846 8270C	8030981
Hexachlorobenzene	ND	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	8030981
Hexachlorobutadiene	ND	mg/kg dry	0.335 0.335	1	03/13/08 13:40	SW846 8270C	8030981
Hexachlorocyclopentadiene	ND	mg/kg dry mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Hexachloroethane	ND			1	03/13/08 13:40	SW846 8270C	8030981
Indeno (1,2,3-cd) pyrene	14.8	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Isophorone	ND	mg/kg dry	3.35	10	03/08/08 23:53	SW846 8270C	8030981
2-Methylnaphthalene	1.72	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
2-Methylphenol	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
3/4-Methylphenol	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
Naphthalene	2.73	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
3-Nitroaniline	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
2-Nitroaniline	ND	mg/kg dry	0.837	1	03/13/08 13:40	SW846 8270C	8030981
4-Nitroaniline	ND	mg/kg dry	0.837	1	03/13/08 13:40	SW846 8270C	8030981
Nitrobenzene	ND	mg/kg dry	0.837	1	03/13/08 13:40	SW846 8270C	8030981
4-Nitrophenol		mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
2-Nitrophenol	ND	mg/kg dry	0.837	I	03/13/08 13:40	SW846 8270C	8030981
N-Nitrosodiphenylamine	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
N-Nitrosodi-n-propylamine	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981
и-инозон-п-рюругащие	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	8030981

.

70 West Madison, Suite 4250 Chicago,, IL 60602 Attn Carl Dawes	(1407793)		Work Order: Project Name: Project Number: Received:	NRC0462 Atlanta Rush Pr 1782-308-02 03/06/08 08:00	roject		. é
		ANALYTICA	LREPORT				
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batcl
Sample ID: NRC0462-02 (EB-1 (8-10) - Soil) - co	ont. Sampled: 03/05/08	14:10		,	• • • • • • • • • • • • • • • • • • • •	•••••
Semivolatile Organic Compounds by 1	EPA Method 8270	C - cont.					,
Pentachlorophenol	ND	mg/kg dry	0.837	· 1	03/13/08 13:40	SW846 8270C	803098
Phenanthrene	46.6	mg/kg dry	16.7	50	03/09/08 07:59	SW846 8270C	803098
Phenol	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	803098
Pyrene	47.0	mg/kg dry	16.7	50	03/09/08 07:59	SW846 8270C	803098
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	803098
l-Methylnaphthalene	1.28	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	803098
2,4,6-Trichlorophenol	ND	mg/kg dry	0.335	1	03/13/08 13:40	SW846 8270C	803098
2,4,5-Trichlorophenol	ND	mg/kg dry	0.837	1	03/13/08 13:40	SW846 8270C	803098
urr: Terphenyl-d14 (26-128%) urr: 2,4,6-Tribromophenol (20-132%)	44 %				03/13/08 13:40	SW846 8270C	803098
urr: 2,4,0-1110romophenoi (20-132%) urr: Phenol-d5 (23-113%)	48 %				03/13/08 13:40	SW846 8270C	803098
urr: 2-Fluorobiphenyl (19-109%)	50 % 50 %				03/13/08 13:40	SW846 8270C	803098
urr: 2-Fluorophenol (19-105%)	54 %		· ·		03/13/08 13:40	SW846 8270C	803098
urr: Nitrobenzene-d5 (22-104%)	57%	۰.,			03/13/08 13:40 03/13/08 13:40	SW846 8270C SW846 8270C	803098 803098
	85.3				00110100 11 10		0000000
Volatile Organic Compounds by EPA	Method 8260B	%	0.500	1	03/10/08 11:49	SW-846	803095
Volatile Organic Compounds by EPA	Method 8260B 0.0563	mg/kg dry	0.0536	1	03/10/08 11:49	SW-846 SW846 8260B	
Volatile Organic Compounds by EPA Acetone lenzene	Method 8260B 0.0563 ND			1			8030957 8031987 8031987
Volatile Organic Compounds by EPA Accetone Jenzene Bromobenzene	Method 8260B 0.0563 ND ND	mg/kg dry mg/kg dry mg/kg dry	0.0536	1	03/13/08 20:16	SW846 8260B .	8031987 8031987
Volatile Organic Compounds by EPA acetone enzene romobenzene romochloromethane	Method 8260B 0.0563 ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214	1 1 1 1	03/13/08 20:16 03/13/08 20:16	SW846 8260B . SW846 8260B	8031987
Volatile Organic Compounds by EPA Accetone Benzene Bromobenzene Bromochloromethane Fromodichloromethane	Method 8260B 0.0563 ND ND ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214	1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Benzene Bromobenzene Bromochloromethane Fromodichloromethane Fromodichloromethane	Method 8260B 0.0563 ND ND ND ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214	1 1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA acetone enzene fromobenzene fromochloromethane fromodichloromethane fromodichloromethane fromoform fromomethane	Method 8260B 0.0563 ND ND ND ND ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214	1 1 1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA acetone enzene fromobenzene fromochloromethane fromodichloromethane fromoform fromomethane enumethane -Butanone	Method 8260B 0.0563 ND ND ND ND ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214	1 1 1 1 1 1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Renzene Formobenzene Formochloromethane romodichloromethane romoform romomethane Butanone sc-Butylbenzene	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.0536 0.00214	1 1 1 1 1 1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA acetone enzene formobenzene formochloromethane romodichloromethane romoform formomethane -Butanone ec-Butylbenzene Butylbenzene	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.0536 0.00214 0.00214	1 1 1 1 1 1 1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane Butanone ecc-Butylbenzene Butylbenzene art-Butylbenzene	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.0536 0.00214 0.00214 0.00214	1 1 1 1 1 1 1 1 1 1 1 1	03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
% Dry Solids Volatile Organic Compounds by EPA Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Butanone ecc-Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromomethane Butanone ec-Butylbenzene Butylbenzene arbon disulfide	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Renzene Formobenzene Formochloromethane formodichloromethane formodichloromethane formomethane Butanone ec-Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00536 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Renzene Formobenzene Formochloromethane formodichloromethane formoform form formomethane -Butanone ecc-Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00536 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA sectone enzene romobenzene romochloromethane romodichloromethane romoform romorethane Butanone sc-Butylbenzene Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hlorocthane	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00536 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA sectone enzene romobenzene romochloromethane romodichloromethane romoform romorethane Butanone sc-Butylbenzene Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloroothane	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA sectone enzene romobenzene romochloromethane romodichloromethane romoform romorethane Butanone sc-Butylbenzene Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloroothane	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA actione enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone cc-Butylbenzene Butylbenzene rt-Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloroothane chlorootoluene	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA actione enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone cc-Butylbenzene Butylbenzene rt-Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloroothane Chlorotoluene Chlorotoluene 2-Dibromo-3-chloropropane	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Renzene Formobenzene Formochloromethane formodichloromethane formodichloromethane formomethane Butanone ec-Butylbenzene Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloroothane Chlorotoluene 2-Dibromo-3-chloropropane 2-Dibromoethane (EDB)	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA Acetone Renzene Formobenzene Formochloromethane formodichloromethane formodichloromethane formomethane Butanone ec-Butylbenzene Butylbenzene rt-Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hlorothane hlorotofuene Chlorotoluene 2-Dibromo-3-chloropropane 2-Dibromoethane (EDB) ibromomethane	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987
Volatile Organic Compounds by EPA actione enzene romobenzene romochloromethane romodichloromethane romodichloromethane romoform romomethane Butanone ex-Butylbenzene Butylbenzene rt-Butylbenzene arbon disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloroothane Chlorotoluene Chlorotoluene 2-Dibromo-3-chloropropane 2-Dibromoethane (EDB)	Method 8260B 0.0563 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg dry mg/kg dry	0.0536 0.00214		03/13/08 20:16 03/13/08 20:16	SW846 8260B SW846 8260B	8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987 8031987

(. .

TestAmericu

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

× .

Client Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
Chicago,, IL 60602	Project Number:	1782-308-02
Attn Carl Dawes	Received:	03/06/08 08:00

		ANALYTICAL RE	PORT				
Analyte	Result Fl	ag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0462-04 (EB-7 (6	-7.5) - Soil) - cont. S	ampled: 03/05/08 08:	20				
Volatile Organic Compounds by EPA I		,					
1,3-Dichlorobenzene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	9021007
1,2-Dichlorobenzene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987 8031987
Dichlorodifluoromethane	ND	mg/kg dry	0.00214	ı I	03/13/08 20:16	SW846 8260B	8031987
1,1-Dichloroethane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	
1,2-Dichloroethane	ND	mg/kg dry	0.00214	I I	03/13/08 20:16	SW846 8260B	8031987
cis-1,2-Dichloroethene	ND	mg/kg dry	0.00214	1	03/13/08 20:10	SW846 8260B	8031987
1,1-Dichloroethene	ND	mg/kg dry	0.00214	1	03/13/08 20:16		8031987
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B SW846 8260B	8031987
1,3-Dichloropropane	ND	mg/kg dry	0.00214	1	03/13/08 20:16		8031987
1,2-Dichloropropane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
2,2-Dichloropropane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
trans-1,3-Dichloropropene	ND	mg/kg dry	0.00214	. 1		SW846 8260B	8031987
I,1-Dichloropropene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Ethylbenzene	ND	mg/kg dry	0.00214	I	03/13/08 20:16	SW846 8260B	8031987
Hexachlorobutadiene	ND	mg/kg dry	0.00214		03/13/08 20:16	SW846 8260B	8031987
2-Hexanone	ND	mg/kg dry		1	03/13/08 20:16	SW846 8260B	8031987
Isopropylbenzene	ND		0.0536 0.00214	1	03/13/08 20:16	SW846 8260B	8031987
p-lsopropyltoluene	ND	mg/kg dry mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Methylene Chloride	ND	mg/kg dry		1	03/13/08 20:16	SW846 8260B	8031987
4-Methyl-2-pentanone	ND	mg/kg dry	0.0107 0.0536	1	03/13/08 20:16	SW846 8260B	8031987
Naphthalene	ND	mg/kg dry		1	03/13/08 20:16	SW846 8260B	8031987
n-Propylbenzene	ND	mg/kg dry	0.00536 0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Styrene	ND			1	03/13/08 20:16	SW846 8260B	8031987
1,1,1,2-Tetrachloroethane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Tetrachloroethene	ND	mg/kg dry	0.00214	l	03/13/08 20:16	SW846 8260B	8031987
Toluene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,1,2-Trichloroethane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031 9 87
1,1,1-Trichloroethane	ND	mg/kg dry	0.00536	1	03/13/08 20:16	SW846 8260B	8031987
Trichloroethene		mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Trichlorofluoromethane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,2,3-Triehloropropane	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Vinyl chloride	ND	mg/kg dry	0.00214	1	03/13/08 20:16	SW846 8260B	8031987
Xylenes, total	ND	mg/kg dry	0.00536	1	03/13/08 20:16	SW846 8260B	8031987
Surr: 1,2-Dichloroethane-d4 (41-150%)	107 %				03/13/08 20:16	SW846 8260B	8031987
Surr: Dibromofluoromethane (55-139%) Surr: Toluene-d8 (57-148%)	111 %				03/13/08 20:16	SW846 8260B	8031987
	116 %				03/13/08 20:16	SW846 8260B	8031987

THE LEADER IN ENVIRONMENTAL	TESTING
-----------------------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Attn	70 West Madison, Suite 4250 Chicago,, IL 60602			Work Order:NRC0462Project Name:Atlanta Rush ProjectProject Number:1782-308-02Received:03/06/08 08:00				
			ANALYTICA	L REPORT				
Analyte		Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample	ID: NRC0462-04 (E)	B-7 (6-7.5) - Soil) - co	nt Sampled: 02/05/0	0.00.70	••••••	• • • • • • • • • • • • • • • • • • • •		
Volatile	Organic Compounds by	y EPA Method 8260B - c	ont	0 08:20				
	romofluorobenzene (58-15		ont.		. ·			
			_			03/13/08 20:16	SW846 8260B	8031987
		ds by EPA Method 8270	С					
Acenapht		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Acenapht	-	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Anthrace		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	anthracene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Benzo (a)	• •	ND	mg/kg dry	0.388	I	03/13/08 14:03	SW846 8270C	8030981
	fluoranthene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	h,i) perylene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	fluoranthene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	bhenyl phenyl ether	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	zyl phthalate	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Carbazole		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	3-methylphenol	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
4-Chloroa		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	proethoxy)methane	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	proethyl)ether	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	proisopropyl)ether	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	aphthalene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
2-Chlorop		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
4-Chlorop	henyl phenyl ether	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Chrysene		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Dibenz (a,	h) anthracene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Dibenzofu		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Di-n-buty	phthalate	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
1,4-Dichle	orobenzene	ND	mg/kg dry	0.388	l	03/13/08 14:03	SW846 8270C	8030981
1,2-Dichlo	orobenzene	ND	mg/kg dry	0.388	l	03/13/08 14:03	SW846 8270C	8030981
	orobenzene	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
3,3-Dichlo	probenzidine	ND	mg/kg dry	0.778	1	03/13/08 14:03	SW846 8270C	8030981
2,4-Dichlo	•	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Diethyl ph		ND	mg/kg dry	0.388	· 1	03/13/08 14:03	SW846 8270C	8030981
2,4-Dimet		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Dimethyl	-	ND	mg/kg dry	0.388	1	03/13/08 14:03		8030981
	o-2-methylphenol	ND	mg/kg dry	0.971	1	03/13/08 14:03	SW846 8270C	8030981
2,4-Dinitro	•	ND	mg/kg dry	0.971	1	03/13/08 14:03	SW846 8270C	8030981
2,6-Dinitro		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
2,4-Dinitro		ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
Di-n-octyl	•	ND	mg/kg dry	0.388	1	03/13/08 14:03	SW846 8270C	8030981
	lhexyl)phthalate	ND	mg/kg dry	0.388	L	03/13/08 14:03	SW846 8270C	8030981
Fluoranthe	ene	0.467	mg/kg dry	0.388	· 1	03/13/08 14:03	SW846 8270C	8030981
Fluorene		ND	mg/kg dry	0.388	l	03/13/08 14:03	SW846 8270C	8030981
Hexachlor	obenzenc	ND	mg/kg dry	0.388	. 1	03/13/08 14:03	SW846 8270C	8030981

THE LEADER IN ENVIRONMENTAL TESTING

i,

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

ANALYTICAL REPORT Dilution Analysis Analyte Flag MRL Method Result Units Factor Date/Time Batch Sample ID: NRC0462-04 (EB-7 (6-7.5) - Soil) - cont. Sampled: 03/05/08 08:20 Semivolatile Organic Compounds by EPA Method 8270C - cont. Hexachlorobutadiene ND 0.388 mg/kg dry 1 03/13/08 14:03 SW846 8270C 8030981 Hexachlorocyclopentadiene ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 Hexachloroethane ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 Indeno (1,2,3-cd) pyrene ND mg/kg dry 0.388 ł 03/13/08 14:03 SW846 8270C 8030981 Isophorone ND 03/13/08 14:03 0.388 mg/kg dry 1 SW846 8270C 8030981 2-Methylnaphthalene ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 2-Methylphenol ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 3/4-Methylphenol ND mg/kg dry 0.388 SW846 8270C 1 03/13/08 14:03 8030981 Naphthalene ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 3-Nitroaniline ND mg/kg dry 0.971 1 03/13/08 14:03 SW846 8270C 8030981 2-Nitroaniline ND mg/kg dry 0.971 1 03/13/08 14:03 SW846 8270C 8030981 4-Nitroaniline ND mg/kg dry 0.971 03/13/08 14:03 1 SW846 8270C 8030981 Nitrobenzene ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 4-Nitrophenol ND mg/kg dry 0.971 1 03/13/08 14:03 SW846 8270C 8030981 2-Nitrophenol ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 N-Nitrosodiphenylamine ND mg/kg dry 0.388 03/13/08 14:03 1 SW846 8270C 8030981 N-Nitrosodi-n-propylamine ND 0.388 mg/kg dry 1 03/13/08 14:03 SW846 8270C 8030981 Pentachlorophenol ND mg/kg dry 0.971 1 03/13/08 14:03 SW846 8270C 8030981 Phenanthrene 0.429 mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 Phenol ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 Pyrene ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 1,2,4-Trichlorobenzene ND mg/kg dry 0.388 t 03/13/08 14:03 SW846 8270C 8030981 1-Methylnaphthalene ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 2,4,6-Trichlorophenol ND mg/kg dry 0.388 1 03/13/08 14:03 SW846 8270C 8030981 2,4,5-Trichlorophenol ND mg/kg dry 0.971 1 03/13/08 14:03 SW846 8270C 8030981 Surr: Terphenyl-d14 (26-128%) 54% 03/13/08 14:03 SW846 8270C 8030981 Surr: 2,4,6-Tribromophenol (20-132%) 60 % 03/13/08 14:03 SW846 8270C 8030981 Surr: Phenol-d5 (23-113%) 56 % 03/13/08 14:03 SW846 8270C 8030981 Surr: 2-Fluorobiphenyl (19-109%) 53 % 03/13/08 14:03 SW846 8270C 8030981 Surr: 2-Fluorophenol (19-105%) 54 % SW846 8270C 03/13/08 14:03 8030981 Surr: Nitrobenzene-d5 (22-104%) 55% 03/13/08 14:03 SW846 8270C 8030981

THE LEADER IN	ENVIRONMENTAL	TESTING
---------------	---------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462	
	70 West Madison, Suite 4250 Chicago,, IL 60602	Project Name:	Atlanta Rush Project	
		Project Number:	1782-308-02	
Attn	Carl Dawes	. Received:	03/06/08 08:00	

Analyte	Result	Flag Units	MRL	Dilution	Analysis	3/1-41	-
	Result	Flag Units		Factor	Date/Time	Method	Batc
Sample ID: NRC0462-07 (EB-	8 (6-8) - Soil) Sam	pled: 03/05/08 09:40			•		
General Chemistry Parameters							
% Dry Solids	87.6	%	0.500	1	03/10/08 11:49	SW-846	803095
Volatile Organic Compounds by E	PA Method 8260B			-		011-040	005075
Acetone	ND	a +-					
Benzene	ND	mg/kg dry	0.0548	1	03/13/08 02:50	SW846 8260B	80309
Bromobenzene	ND	mg/kg dry	0.00219	I	03/13/08 02:50	SW846 8260B	80309
Bromochloromethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
Bromodichloromethane	ND	mg/kg dry	0.00219	l	03/13/08 02:50	SW846 8260B	80309
Bromoform		mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
Bromomethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
2-Butanone	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
ec-Butylbenzene	ND	mg/kg dry	0.0548	1	03/13/08 02:50	SW846 8260B	803099
1-Butylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
ert-Butylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
Carbon disulfide	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
Carbon Tetrachloride	ND	mg/kg dry	0.00548	1	03/13/08 02:50	SW846 8260B	80309
Chlorobenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
Chlorodibromomethane	ND	mg/kg dry	0.00219	. 1	03/13/08 02:50	SW846 8260B	80309
	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
Chloroethane	ND	mg/kg dry	0.00548	1	03/13/08 02:50	SW846 8260B	80309
Chloroform	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
Chloromethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
-Chlorotoluene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
-Chlorotoluene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	80309
,2-Dibromo-3-chloropropane	. ND	mg/kg dry	·0.00548	1.	03/13/08 02:50	SW846 8260B	80309
,2-Dibromoethane (EDB)	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
Dibromomethane	ND	. mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
,4-Dichlorobenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
,3-Dichlorobenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
,2-Dichlorobenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
Dichlorodifluoromethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
,1-Dichloroethane	' ND	mg/kg dry	0.00219	·1	03/13/08 02:50	SW846 8260B	803099
,2-Dichloroethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
is-1,2-Dichloroethene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
,1-Dichloroethene	ND	mg/kg dry	0.00219	I	03/13/08 02:50	SW846 8260B	803099
ans-1,2-Dichloroethene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
,3-Dichloropropane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
2-Dichloropropane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
2-Dichloropropane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
s-1,3-Dichloropropene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
ans-1,3-Dichloropropene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
l-Dichloropropene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099
thylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	
exachlorobutadiene	ND	mg/kg dry	0.00548	1	03/13/08 02:50	SW846 8260B	803099 803099

٤

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

ANALYTICAL REPORT									
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch		
Sample ID: NRC0462-07 (EB-8 (6-	·8) - Soil) - cont.	Sampled: 03/05/08 09:40)						
Volatile Organic Compounds by EPA N									
2-Hexanone	ND	mg/kg dry	0.0548	1	03/13/08 02:50	SW846 8260B	8030997		
Isopropylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030997		
p-Isopropyltoluene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030991		
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030997		
Methylene Chloride	ND	mg/kg dry	0.0110	1	03/13/08 02:50	SW846 8260B	803099		
4-Methyl-2-pentanone	ND	mg/kg dry	0.0548	1	03/13/08 02:50	SW846 8260B	8030997		
Naphthalene	ND	mg/kg dry	0.00548	1	03/13/08 02:50	SW846 8260B	8030997		
n-Propylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030992		
Styrene	ND	mg/kg dry	0.00219	i	03/13/08 02:50	SW846 8260B	8030997		
I, I, 1, 2-Tetrachloroethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030993		
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030991		
Tetrachloroethene	ND	mg/kg dry	0.00219	I	03/13/08 02:50	SW846 8260B	8030991		
Toluene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030991		
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	8030993		
1,1,2-Trichloroethane	ND	mg/kg dry	0.00548	1	03/13/08 02:50	SW846 8260B	803099		
1,1,1-Trichloroethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
Frichloroethene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
Trichlorofluoromethane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
1,2,3-Trichloropropane	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
Vinyl chloride	ND	mg/kg dry	0.00219	1	03/13/08 02:50	SW846 8260B	803099		
Xylenes, total	ND	mg/kg dry	0.00548	1	03/13/08 02:50	SW846 8260B	8030991		
Surr: 1,2-Dichloroethane-d4 (41-150%)	107 %				03/13/08 02:50	SW846 8260B	803099		
Surr: Dibromofluoromethane (55-139%)	108 %				03/13/08 02:50	SW846 8260B	803099		
Surr: Toluene-d8 (57-148%)	117 %				03/13/08 02:50	SW846 8260B	803099		
Surr: 4-Bromofluorobenzene (58-150%)	129 %				03/13/08 02:50	SW846 8260B	803099		
Semivolatile Organic Compounds by E	PA Method 82700								
Acenaphthene	ND	mg/kg dry	0.371	l	03/13/08 14:25	SW846 8270C	803098		
Acenaphthylene	NÐ	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Anthracene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Benzo (a) anthracene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Benzo (a) pyrene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Benzo (b) fluoranthene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Benzo (g,h,i) perylene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Benzo (k) fluoranthene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
4-Bromophenyl phenyl ether	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Butyl benzyl phthalate	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Carbazole	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
4-Chloro-3-methylphenol	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
4-Chloroaniline	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		
Bis(2-chloroethoxy)methane	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098		

TestAmericu THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, Th	37204 * 800-765-0980 * Fax 615-726-3404
--	---

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250		
		Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

America				Dilution	Analysis		
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0462-07.(EB-8	8 (6-8) - Soil) - coi	nt. Sampled: 03/05/08 09:40					
Semivolatile Organic Compounds I							
Bis(2-chloroethyl)ether	ND	mg/kg dry	0.371	,		011046 00000	
Bis(2-chloroisopropyl)ether	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
2-Chloronaphthalene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
2-Chlorophenol	ND	mg/kg dry	0.371	1	03/13/08 14:25 03/13/08 14:25	SW846 8270C	803098
-Chlorophenyl phenyl ether	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
Chrysene	ND	mg/kg dry	0.371	1. 1	03/13/08 14:25	SW846 8270C	803098
Dibenz (a,h) anthracene	ND	mg/kg dry	0.371	i I	03/13/08 14:25	SW846 8270C	803098
Dibenzofuran	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
Di-n-butyl phthalate	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
,4-Dichlorobenzene	ND	mg/kg dry	0.371			SW846 8270C	8030981
,2-Dichlorobenzene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
,3-Dichlorobenzene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
,3-Dichlorobenzidine	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
,4-Dichlorophenol	ND	mg/kg dry	0.744		03/13/08 14:25	SW846 8270C	8030981
Diethyl phthalate	ND	mg/kg dry		1	03/13/08 14:25	SW846 8270C	8030981
4-Dimethylphenol	ND	mg/kg dry	0.371 0.371	1	03/13/08 14:25	SW846 8270C	803098
Dimethyl phthalate	ND	mg/kg dry	0.371	1 1	03/13/08 14:25	SW846 8270C	803098
,6-Dinitro-2-methylphenol	ND	mg/kg dry	0.371		03/13/08 14:25	SW846 8270C	803098
,4-Dinitrophenol	ND	mg/kg dry	0.929	1	03/13/08 14:25	SW846 8270C	803098
,6-Dinitrotoluene	ND	mg/kg dry	0.929	1	03/13/08 14:25	SW846 8270C	803098
,4-Dinitrotoluene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
Di-n-octyl phthalate	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
is(2-ethylhexyl)phthalate	ND	mg/kg dry	0.371		03/13/08 14:25	SW846 8270C	8030981
luoranthene	0.454	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
luorene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
Iexachlorobenzene	, ND	mg/kg dry	0.371	1	03/13/08 14:25 03/13/08 14:25	SW846 8270C	8030981
Iexachlorobutadiene	ND	mg/kg dry	0.371			SW846 8270C	8030981
lexachlorocyclopentadiene	ND	mg/kg dry	0.371	1.	03/13/08 14:25	SW846 8270C	8030981
lexachloroethane	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
ideno (1,2,3-cd) pyrene	ND	mg/kg dry		1	03/13/08 14:25	SW846 8270C	8030981
sophorone	ND	mg/kg dry	0.371 0.371	1	03/13/08 14:25	SW846 8270C	8030981
Methylnaphthalene	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
Methylphenol	ND	mg/kg dry		1	03/13/08 14:25	SW846 8270C	8030981
/4-Methylphenol	ND		0.371	1	03/13/08 14:25	SW846 8270C	8030981
aphthalene	ND	mg/kg dry mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
Nitroaniline	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	8030981
Nitroaniline	ND		0.929	1	03/13/08 14:25	SW846 8270C	8030981
Nitroaniline	ND	mg/kg dry	0.929	, I ,	03/13/08 14:25	SW846 8270C	8030981
itrobenzene	ND	mg/kg dry	0.929	1	03/13/08 14:25	SW846 8270C	8030981
Nitrophenol	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
Nitrophenol	ND ND	mg/kg dry	0.929	1	03/13/08 14:25	SW846 8270C	803098
-Nitrosodiphenylamine		mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098
Nitrosodi-n-propylamine	ND	mg/kg dry	0.371	1	03/13/08 14:25	SW846 8270C	803098

¥

70 West Madison, Suite 4250 Chicago,, IL 60602			Work Order: Project Name: Project Number: Received:	NRC0462 Atlanta Rush Project 1782-308-02 03/06/08 08:00				
		A	NALYTICA	L REPORT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0462-07 (EB	-8 (6-8) - Soil) - con	it. Sample	d: 03/05/08	09:40		•		
Semivolatile Organic Compound	s by EPA Method 8270	0C - cont.						
Pentachlorophenol	· ND		mg/kg dry	0.929) 1	03/13/08 14:25	SW846 8270C	8030981
Phenanthrene	ND		mg/kg dry	0.37	1 1	03/13/08 14:25	SW846 8270C	8030981
Phenol	ND		mg/kg dry	0.37	1 1	03/13/08 14:25	SW846 8270C	8030981
Pyrene	0.379		mg/kg dry	0.37	1	03/13/08 14:25	SW846 8270C	8030981
1,2,4-Trichlorobenzene	ND		mg/kg dry	0.37	1 1	03/13/08 14:25	SW846 8270C	8030981
1-Methylnaphthalene	ND		mg/kg dry	0.37	1 1	03/13/08 14:25	SW846 8270C	8030981
2,4,6-Trichlorophenol	. ND		mg/kg dry	0.37	l 1	03/13/08 14:25	SW846 8270C	8030981
2,4,5-Trichlorophenol	ND		mg/kg dry	0.92	9 1	03/13/08 14:25	SW846 8270C	8030981
Surr: Terphenyl-d14 (26-128%)	74 %		000			03/13/08 14:25	SW846 8270C	803098
Surr: 2,4,6-Tribromophenol (20-1329	6) 79%					03/13/08 14:25	SW846 8270C	803098
Surr: Phenol-d5 (23-113%)	66 %					03/13/08 14:25	SW846 8270C	803098
Surr: 2-Fluorobiphenyl (19-109%)	64 %					03/13/08 14:25	SW846 8270C	803098
Surr: 2-Fluorophenol (19-105%)	65 %					03/13/08 14:25	SW846 8270C	803098
Surr: Nitrobenzene-d5 (22-104%)	63 %					03/13/08 14:25	SW846 8270C	803098

Sample ID: NRC0462-10 (EB-9 (9-11) - Soil) Sampled: 03/05/08 11:50

General Chemistry Parameters	B-7 (7-11) - 50h/ Sumple						
% Dry Solids	73.6	%	0.500	1	03/10/08 11:49	SW-846	8030957
Volatile Organic Compounds by	FPA Method 8260B						
Acetone	0.171	mg/kg dry	0.0521	1	03/13/08 03:20	SW846 8260B	8030997
Benzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Bromobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Bromochloromethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Bromodichloromethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Bromoform	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Bromomethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
2-Butanone	ND	mg/kg dry	0.0521	1	03/13/08 03:20	SW846 8260B	8030997
sec-Butylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
n-Butylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
tert-Butylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Carbon disulfide	ND	mg/kg dry	0.00521	1	03/13/08 03:20	SW846 8260B	8030997
Carbon Tetrachloride	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	803099 7
Chlorobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Chlorodibromomethane	ND	mg/kg dry	0.00208	L	03/13/08 03:20	SW846 8260B	8030997
Chloroethane	ND	mg/kg dry	0.00521	1	03/13/08 03:20	SW846 8260B	8030997
Chloroform	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Chloromethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
2-Chlorotoluene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
4-Chlorotoluene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2-Dibromo-3-chloropropane	ND	mg/kg dry	0.00521	1	03/13/08 03:20	SW846 8260B	8030997
1,2-Dibromoethane (EDB)	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	80 3099 7
Dibromomethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,4-Dichlorobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997

THE LEADER	IN	ENVIRONMENTAL	TESTING
------------	----	---------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

í

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

ANALYTICAL REPORT							
				Dilution	Analysis		
Analyte	Result	Flag Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0462-10 (EB-9 (9)-11) - Soil) - co	nt. Sampled: 03/05/08 11:5	0				
Volatile Organic Compounds by EPA			•				
1,3-Dichlorobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2-Dichlorobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Dichlorodifluoromethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,1-Dichloroethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2-Dichloroethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
cis-1,2-Dichloroethene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,1-Dichloroethene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
trans-1,2-Dichloroethene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,3-Dichloropropane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2-Dichloropropane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
2,2-Dichloropropane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
cis-1,3-Dichloropropene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
trans-1,3-Dichloropropene	ND	mg/kg dry	0.00208		03/13/08 03:20	SW846 8260B	8030997
1,1-Dichloropropene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Ethylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20		
Hexachlorobutadiene	ND	mg/kg dry	0.00521	1	03/13/08 03:20	SW846 8260B SW846 8260B	8030997 8030997
2-Hexanone	ND	mg/kg dry	0.0521	1	03/13/08 03:20	SW846 8260B	8030997
Isopropylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
p-lsopropyltoluene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Methyl tert-Butyl Ether	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Methylene Chloride	ND	mg/kg dry	0.0104	1	03/13/08 03:20	SW846 8260B	8030997
4-Methyl-2-pentanone	ND	mg/kg dry	0.0521	1	03/13/08 03:20	SW846 8260B	
Naphthalene	ND	mg/kg dry	0.00521	1	03/13/08 03:20	SW846 8260B	8030997 8030997
n-Propylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Styrene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,1,1,2-Tetrachloroethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,1,2,2-Tetrachloroethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Tetrachloroethene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Toluene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2,3-Trichlorobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2,4-Trichlorobenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,1,2-Trichloroethane	ND	mg/kg dry	0.00521	1	03/13/08 03:20	SW846 8260B	8030997
1,1,1-Trichloroethane	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
Trichloroethene	ND	mg/kg dry	0.00208	1	03/13/08 03:20		
Trichlorofluoromethane	ND	mg/kg dry	0.00208	- 1	03/13/08 03:20	SW846 8260B SW846 8260B	8030997 8030997
1,2,3-Trichloropropane	ND	mg/kg dry	0.00208	1	03/13/08 03:20		
1,3,5-Trimethylbenzene	ND	mg/kg dry	0.00208	1	03/13/08 03:20	SW846 8260B	8030997
1,2,4-Trimethylbenzene	ND	mg/kg dry	0.00208	1		SW846 8260B	8030997
Vinyl chloride	ND	mg/kg dry	0.00208	1	03/13/08 03:20 03/13/08 03:20	SW846 8260B	8030997
Xylenes, total	ND	mg/kg dry	0.00208			SW846 8260B	8030997
Surr: 1,2-Dichloroethane-d4 (41-150%)	90 %	ing/kg uly	0.00521	I	03/13/08 03:20	SW846 8260B	8030997
Surr: Dibromofluoromethane (55-139%)	90 % 102 %				03/13/08 03:20	SW846 8260B	8030997
Surr: Toluene-d8 (57-148%)	117 %				03/13/08 03:20 03/13/08 03:20	SW846 8260B SW846 8260B	8030997 8030997

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, 1L 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

					Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NRC0462-10 (EB-9 (9	-11) - Soil) - co	nt. Sample	d: 03/05/08 11:	50				
Volatile Organic Compounds by EPA								
Surr: 4-Bromofluorobenzene (58-150%)	137 %	Joint				03/13/08 03:20	SW846 8260B	803099
- , ,						03/13/00 03.20	57/040 82000	0030997
Semivolatile Organic Compounds by E		IC .						
Acenaphthene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Acenaphthylene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Anthracene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Benzo (a) anthracene	0.686		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Benzo (a) pyrene	0.617		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Benzo (b) fluoranthene	0.606		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Benzo (g,h,i) perylene	ND		mg/kg dry	0.446	l	03/13/08 14:48	SW846 8270C	8030981
Benzo (k) fluoranthene	0.568		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
4-Bromophenyl phenyl ether	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Butyl benzyl phthalate	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Carbazole	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
4-Chloro-3-methylphenol	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
4-Chloroaniline	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Bis(2-chloroethoxy)methane	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Bis(2-chloroethyl)ether	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Bis(2-chloroisopropyl)ether	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2-Chloronaphthalene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2-Chlorophenol	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Chrysene	0.655		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Dibenz (a,h) anthracene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Dibenzofuran	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Di-n-butyl phthalate	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
1,4-Dichlorobenzene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
1,2-Dichlorobenzene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
1,3-Dichlorobenzene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
3,3-Dichlorobenzidine	ND		mg/kg dry	0.894	1	03/13/08 14:48	SW846 8270C	8030981
2,4-Dichlorophenol	ND		mg/kg dry	0.446	- 1	03/13/08 14:48	SW846 8270C	8030981
Diethyl phthalate	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2,4-Dimethylphenol	ND		mg/kg dry	0.446	-	03/13/08 14:48	SW846 8270C	8030981
Dimethyl phthalate	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
4,6-Dinitro-2-methylphenol	ND		mg/kg dry	1.12	1	03/13/08 14:48	SW846 8270C	8030981
2,4-Dinitrophenol	ND		mg/kg dry	1.12	1	03/13/08 14:48	SW846 8270C	8030981
2,6-Dinitrotoluene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2,4-Dinitrotoluene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Di-n-octyl phthalate	ND		mg/kg dry	0.446	1			
Bis(2-ethylhexyl)phthalate	ND			0.446		03/13/08 14:48	SW846 8270C	8030981
Fluoranthene			mg/kg dry		1	03/13/08 14:48	SW846 8270C	803098
Fluorene	1.55 ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	803098
	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Hexachlorobenzene	ND		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	803098

THE LEADER IN	ENVIRONMENTAL	TESTING	
	CHANNEL MINEL	169111403	

,

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250	Work Order: Project Name:	NRC0462 Atlanta Rush Project
Attn	Chicago,, IL 60602 Carl Dawes	Project Number:	1782-308-02
		Received:	03/06/08 08:00

		ANALYTICAL R	EPORT				`
Analyte	Result	Flag Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NRC0462-10 (EB-9 (9-11) - Soil) - ce	ont. Sampled: 03/05/08 11	:50				
Semivolatile Organic Compounds by	EPA Method 827	0C - cont.					
Hexachlorobutadiene	ND	mg/kg dry	0.446	I	03/13/08 14:48	011/04/00000	
Hexachlorocyclopentadiene	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Hexachioroethane	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Indeno (1,2,3-cd) pyrene	ND	mg/kg dry	0.446			SW846 8270C	8030981
Isophorone	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2-Methylnaphthalene	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2-Methylphenol	ND	mg/kg dry	0.446	l	03/13/08 14:48	SW846 8270C	8030981
3/4-Methylphenol	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Naphthalene	ND			1	03/13/08 14:48	SW846 8270C	8030981
3-Nitroaniline	ND	mg/kg dry mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2-Nitroaniline	ND	•••	1.12 [.]	1	03/13/08 14:48	SW846 8270C	8030981
4-Nitroaniline	ND	mg/kg dry	1.12	1	03/13/08 14:48	SW846 8270C	8030981
Nitrobenzene	ND	mg/kg dry	1.12	1	03/13/08 14:48	SW846 8270C	8030981
4-Nitrophenol	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2-Nitrophenol	ND	mg/kg dry	1.12	l	03/13/08 14:48	SW846 8270C	8030981
N-Nitrosodiphenylamine		mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
N-Nitrosodi-n-propylamine	ND ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Pentachlorophenol		mg/kg dry	0.446	I	03/13/08 14:48	SW846 8270C	8030981
Phenanthrene	ND	mg/kg dry	1.12	1	03/13/08 14:48	SW846 8270C	8030981
Phenol	1.20	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
Pyrene	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
1,2,4-Trichlorobenzene	1.07	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
I-Methylnaphthalene	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2,4,6-Trichlorophenol	ND	mg/kg dry	0.446	1	03/13/08 14:48	SW846 8270C	8030981
2,4,5-Trichlorophenol	ND	mg/kg dry	1.12	1	03/13/08 14:48	SW846 8270C	8030981
Surr: Terphenyl-d14 (26-128%)	48 %	•			03/13/08 14:48	SW846 8270C	8030981
Surr: 2,4,6-Tribromophenol (20-132%) Surr: Phenol-d5 (23-113%)	58 %				03/13/08 14:48	SW846 8270C	8030981
Surr: 2-Fluorobiphenyl (19-109%)	50 %				03/13/08 14:48	SW846 8270C	8030981
Surr: 2-Fluorophenol (19-105%)	48 % 52 %				03/13/08 14:48	SW846 8270C	8030981
Surr: Nitrobenzene-d5 (22-103%)	52 % 50 %				03/13/08 14:48	SW846 8270C	8030981
	JU %				03/13/08 14:48	SW846 8270C	8030981

TestAmeric J

THE LEADER IN ENVIRONMENTAL TESTING

4

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Metho d
Semivolatile Organic Compounds by	EPA Method 827	0C			•••••••••••••••••••••••••••••••••••••••		
SW846 8270C	8032357	NRC0462-01	30.34	1.00	03/15/08 10:50	6DS	EPA 3550B
SW846 8270C	8030981	NRC0462-02	30.40	1.00	03/07/08 10:47	MSR	EPA 3550B
SW846 8270C	8030981	NRC0462-02RE1	30.40	1.00	03/07/08 10:47	MSR	EPA 3550B
SW846 8270C	8030981	NRC0462-02RE2	30.40	1.00	03/07/08 10:47	MSR	EPA 3550B
SW846 8270C	8030981	NRC0462-04	30.17	1.00	03/07/08 10:47	MSR	EPA 3550B
SW846 8270C	8030981	NRC0462-07	30.70	1.00	03/07/08 10:47	MSR	EPA 3550B
SW846 8270C	8030981	NRC0462-10	30.40	1.00	03/07/08 10:47	MSR	EPA 3550B
Volatile Organic Compounds by EPA	A Method 8260B						
SW846 8260B	8030997	NRC0462-02	5.96	5.00	03/05/08 14:10	NKN	EPA 5035
SW846 8260B	8030997	NRC0462-02RE1	1.47	5.00	03/05/08 14:10	NKN	EPA 5035
SW846 8260B	8031987	NRC0462-02RE2	5.20	5.00	03/05/08 14:10	NKN	EPA 5035
SW846 8260B	8030997	NRC0462-04	5.49	5.00	03/05/08 08:20	NKN	EPA 5035
SW846 8260B	803 1987	NRC0462-04RE1	5.47	5.00	03/05/08 08:20	NKN	EPA 5035
SW846 8260B	8030997	NRC0462-07	5.21	5.00	03/05/08 09:40	NKN	EPA 5035
SW846 8260B	8030997	NRC0462-10	6.52	5.00	03/05/08 11:50	NKN	EPA 5035

THE LEADER IN	ENVIRONMENTAL	TESTING
---------------	---------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, IL 60602

Attn

Carl Dawes

Work Order: NRC0462 Project Name: Project Number: Received:

Atlanta Rush Project 1782-308-02 03/06/08 08:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds b	y EPA Method 8260B		••••••••••••••••		• • • • • • • • • • • • • • • • • • • •	•••••
8030997-BLK1		•				
Acetone	<0.0250	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Benzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Bromobenzene	<0.000670	. mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Bromochloromethane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Bromodichloromethane	<0.000670	. mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Bromoform	<0.000530	. mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Bromomethane	<0.00157	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
2-Butanone	<0.00500	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
sec-Butylbenzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
n-Butylbenzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
tert-Butylbenzene	<0.000670	mg/kg wet	8030997	8030997-BLKI	03/13/08 01:22	
Carbon disulfide	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Carbon Tetrachloride	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Chlorobenzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Chlorodibromomethane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Chloroethane .	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Chloroform	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Chloromethane	<0.000880	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
2-Chlorotoluene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
4-Chlorotoluene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2-Dibromo-3-chloropropane	<0.00100	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2-Dibromoethane (EDB)	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Dibromomethane	<0.000540	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,4-Dichlorobenzene	<0.000640	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,3-Dichlorobenzene	<0.000530	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2-Dichlorobenzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Dichlorodifluoromethane	<0.000930	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,1-Dichloroethane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2-Dichloroethane	<0.000800	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
cis-1,2-Dichloroethene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
t,1-Dichloroethene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
rans-1,2-Dichloroethene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,3-Dichloropropane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
,2-Dichloropropane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
2.2-Dichloropropane	<0.000420	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
is-1,3-Dichloropropene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
rans-1,3-Dichloropropene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
,1-Dichloropropene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
thylbenzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
lexachlorobutadiene	<0.000630	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
-Hexanone	<0.00407	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	•

3

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Volatile Organic Compounds by	EPA Method 8260B					
8030997-BLK1						
Isopropylbenzene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
p-Isopropyltoluene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Methyl tert-Butyl Ether	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Methylene Chloride	<0.00348	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
4-Methyl-2-pentanone	<0.00426	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Naphthalene .	<0.00151	ing/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
n-Propylbenzene	<0.000530	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Styrene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,1,1,2-Tetrachloroethane	<0.000500	mg/kg wet	803099 7	8030997-BLK1	03/13/08 01:22	
1,1,2,2-Tetrachloroethane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Tetrachloroethene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Toluene	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2,3-Trichlorobenzene	<0.000660	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2,4-Trichlorobenzene	<0.000650	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,1,2-Trichloroethane	<0.00102	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,1,1-Trichloroethane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Trichloroethene	<0.000280	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Trichlorofluoromethane	<0.000670	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,2,3-Trichloropropane	<0.000550	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
1,3,5-Trimethylbenzene	<0.000670	mg/kg wet	8030997	8030997-BLKI	03/13/08 01:22	
1,2,4-Trimethylbenzene	<0.00127	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Vinyl chloride	<0.000710	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Xylenes, total	<0.00172	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Diisopropyl Ether	<0.00100	mg/kg wet	8030997	8030997-BLK1	03/13/08 01:22	
Surrogate: 1,2-Dichloroethane-d4	107%		8030997	8030997-BLK1	03/13/08 01:22	
Surrogate: Dibromofluoromethane	109%		8030997	8030997-BLK1	03/13/08 01:22	
Surrogate: Toluene-d8	113%		8030997	8030997-BLK1	03/13/08 01:22	
Surrogate: 4-Bromofluorobenzene	114%		8030997	8030997-BLK1	03/13/08 01:22	
8031987-BLK1						
Acetone	<0.0250	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Benzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Bromobenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Bromochloromethane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Bromodichloromethane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Bromoform	<0.000530	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Bromomethane	<0.00157	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
2-Butanone	<0.00500	mg/kg wet	8031987	8031987-BLKI	03/13/08 15:19	
sec-Butylbenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
n-Butylbenzene	<0.000670	mg/kg wet	8031987	8031987-BLKI	03/13/08 15:19	
tert-Butylbenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Attn	Weaver Boos Consultants LLC 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes	(1407793)			Work Order: Project Name: Project Number: Received:	NRC0462 Atlanta Rush Proj 1782-308-02 03/06/08 08:00	ect ·	
			PROJECI	COUALITY CO Blank - Co	ONTROL DAT. nt.	A .		
Analyte		Blank Value		· · ·		<u> </u>		<u> </u>
• • • • • • • • •			Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	· · · · · · · · · · · · · · · · · · ·
	Organic Compounds by EPA	Method 8260B						
031987				· .				
Carbon dis	sulfide	<0.000670		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	•
Carbon Te	etrachloride	<0.000670		ma/ka wet	8031087	2021007 DI VI	02/12/09 15.10	

Carbon disuitide	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Carbon Tetrachloride	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Chlorobenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Chlorodibromomethane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Chloroethane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Chloroform	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Chloromethane	<0.000880	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
2-Chlorotoluene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
4-Chlorotoluene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,2-Dibromo-3-chloropropane	. <0.00100	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,2-Dibromoethane (EDB)	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Dibromomethane	<0.000540	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,4-Dichlorobenzene	<0.000640	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,3-Dichlorobenzene	<0.000530	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,2-Dichlorobenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Dichlorodifluoromethane	<0.000930	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,1-Dichloroethane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,2-Dichloroethane	<0.000800	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
cis-1,2-Dichloroethene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,1-Dichloroethene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
trans-1,2-Dichloroethene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,3-Dichloropropane	<0.000670	tng/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,2-Dichloropropane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
2,2-Dichloropropane	<0.000420	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
cis-1,3-Dichloropropene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
trans-1,3-Dichloropropene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,1-Dichloropropene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Ethylbenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Hexachlorobutadiene	<0.000630	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
2-Hexanone	<0.00407	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Isopropylbenzene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
p-Isopropyltoluene	<0.000670	tng/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Methyl tert-Butyl Ether	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08. 15:19	
Methylene Chloride	<0.00348	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
4-Methyl-2-pentanone	<0.00426	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	•
Naphthalene	<0.00151	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
n-Propylbenzene	<0.000530	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Styrene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,1,1,2-Tetrachloroethane	<0.000500	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
1,1,2,2-Tetrachloroethane	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19	
Tetrachloroethene	<0.000670	mg/kg wet	8031987	8031987-BLK1	03/13/08.15:19	

ć

•

1.

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

nalyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
olatile Organic Compounds by	EPA Method 8260B				•	
131987-BLK1						
oluene	<0.000670		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
2,3-Trichlorobenzene	<0.000660		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
2,4-Trichlorobenzene	<0.000650		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
,2-Trichloroethane	<0.00102	·	mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
1-Trichloroethane	<0.000670		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
chloroethene	<0.000280		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
ichlorofluoromethane	<0.000670		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
2,3-Trichloropropane	<0.000550		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
3,5-Trimethylbenzene	<0.000670		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
2,4-Trimethylbenzene	<0.00127		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
nyl chloride	<0.000710		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
ylenes, total	<0.00172		mg/kg wet	8031987	8031987-BLK1	03/13/08 15:19
rogate: 1,2-Dichloroethane-d4	109%			8031987	8031987-BLK1	03/13/08 15:19
rogate: Dibromofluoromethane	113%			8031987	8031987-BLK1	03/13/08 15:19
rogate: Toluene-d8	114%			8031987	8031987-BLK1	03/13/08 15:19
ogate: 4-Bromofluorobenzene	114%			8031987	8031987-BLK1	03/13/08 15:19
0981-BLK1 enaphthene	<0.0310		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
cenaphthylene	<0.0320		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
thracene	<0.0330		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
izo (a) anthracene	<0.0380		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
nzo (a) pyreno	<0.0290		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
nzo (b) fluoranthene	<0.0320		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
nzo (g,h,i) perylene	<0.0290		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
enzo (k) fluoranthene	<0.0290		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
Bromophenyl phenyl ether	<0.111		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
ityl benzyl phthalate	<0.0890		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
urbazole	<0.165		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
Chloro-3-methylphenol	<0.100		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
Chloroaniline	<0.289		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
s(2-chloroethoxy)methane	<0.111		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
s(2-chloroethyl)ether	<0.135		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
s(2-chloroisopropyl)ether	< 0.102		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
Chloronaphthalene	<0.0680		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
Chlorophenol	<0.109		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
Chlorophenyl phenyl ether	<0.111		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
hrysene	<0.0390		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
ibenz (a,h) anthracene	<0.0310		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48
idenz (a,n) aninracene	<0.0510		mg/kg wet	0050501	COSCION BELL	

THE LEADER IN	ENVIRONMENTAL	TESTING
---------------	---------------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ClientWeaver Boos Consultants LLC (1407793)Work Order:NRC046270 West Madison, Suite 4250Project Name:Atlanta Rush ProjectChicago,, IL 60602Project Number:1782-308-02AttnCarl DawesReceived:03/06/08 08:00

Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Semivolatile Organic Compou	nds by EPA Method 8270C	•••••••••••••••••••••••••••••••••••••••			• • • • • • • • • • • • • • • • • • • •	
8030981-BLK1					· · · ·	
Di-n-butyl phthalate	<0.0860	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
1,4-Dichlorobenzene	<0.115	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
1,2-Dichlorobenzene	<0.0880	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
1,3-Dichlorobenzene	<0.0800	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
3,3-Dichlorobenzidine	<0.270	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2,4-Dichlorophenol	<0.0870	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Diethyl phthalate	<0.0500	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2,4-Dimethylphenol	<0.281	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	•
Dimethyl phthalate	<0.0880	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
4,6-Dinitro-2-methylphenol	<0.0910	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2,4-Dinitrophenol	<0.135	mg/kg wet	8030981	8030981-BLKI	03/13/08 11:48	
2,6-Dinitrotoluene	<0.111	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2,4-Dinitrotoluene	<0.0880	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	•
Di-n-octyl phthalate	<0.132	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Bis(2-ethylhexyl)phthalate	<0.111	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Fluoranthene	<0.0340	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Fluorene	<0.0390	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Hexachlorobenzene	<0.0830	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	*
Hexachlorobutadiene	<0.108	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Hexachlorocyclopentadiene	<0.111	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Hexachloroethane	<0.105	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Indeno (1,2,3-cd) pyrene	<0.0310	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Isophoron e	. <0.100	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2-Methylnaphthalene	<0.0330	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2-Methylphenol	<0.0990	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
3/4-Methylphenol	<0.145	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Naphthalene	<0.0410	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
3-Nitroaniline	<0.110	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2-Nitroaniline	<0.111	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	•
4-Nitroaniline	<0.275	mg/kg wet .	8030981	8030981-BLK1	03/13/08 11:48	
Nitrobenzene	<0.106	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
4-Nitrophenol	<0.276	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2-Nitrophenol	<0.197	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
N-Nitrosodiphenylamine	<0.109	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
N-Nitrosodi-n-propylamine	<0.122	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Pentachlorophenol	<0.0740	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Phenanthrene	<0.0340	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Phenol	<0.0690	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Pyrene	<0.0410	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Pyridine	<0.0940	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
1,2,4-Trichlorobenzene	<0.111	mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Semivolatile Organic Compound	is by EPA Method 827	0C					
8030981-BLK1							
i-Methylnaphthalene	<0.0320		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2,4,6-Trichlorophenol	<0.0870		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
2,4,5-Trichlorophenol	<0.0680		mg/kg wet	8030981	8030981-BLK1	03/13/08 11:48	
Surrogate: Terphenyl-d14	74%			8030981	8030981-BLK1	03/13/08 11:48	
Surrogate: 2,4,6-Tribromophenol	67%			8030981	8030981-BLK1	03/13/08 11:48	
Surrogate: Phenol-d5	72%			8030981	8030981-BLK1	03/13/08 11:48	
Surrogate: 2-Fluorobiphenyl	67%		•	8030981	8030981-BLK1	03/13/08 11:48	
Surrogate: 2-Fluorophenol	71%			8030981	8030981-BLK1	03/13/08 11:48	
Surrogate: Nitrobenzene-d5	74%			8030981	8030981-BLKI	03/13/08 11:48	
8032357-BLK1							
Acenaphthene	<0.0310		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Acenaphthylene	<0.0320		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Anthracene	<0.0330		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Benzo (a) anthracene	<0.0380		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Benzo (a) pyrene	<0.0290		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Benzo (b) fluoranthene	<0.0320		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Benzo (g,h,i) perylene	<0.0290		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Benzo (k) fluoranthene	<0.0290		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
4-Bromophenyl phenyl ether	<0.111		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Butyl benzyl phthalate	<0.0890		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Carbazole	<0.165		mg/kg wet.	8032357	8032357-BLK1	03/16/08 15:00	
4-Chloro-3-methylphenol	<0.100		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
4-Chloroaniline	<0.289		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Bis(2-chloroethoxy)methane	<0.111		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Bis(2-chloroethyl)ether	<0.135		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Bis(2-chloroisopropyl)ether	<0.102	•	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
2-Chloronaphthalene	<0.0680		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
2-Chlorophenol	<0.109		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
4-Chlorophenyl phenyl ether	<0.111		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Chrysene	<0.0390		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Dibenz (a,h) anthracene	<0.0310		mg/kg wet	8032357	8032357-BLKI	03/16/08 15:00	
Dibenzofuran	<0.0890		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Di-n-butyl phthalate	<0.0860		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
1,4-Dichlorobenzene	<0.115		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
1,2-Dichlorobenzene	<0.0880		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
1,3-Dichlorobenzene	<0.0800		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
3,3-Dichlorobenzidine	<0.270		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
2,4-Dichlorophenol	<0.0870		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	
Diethyl phthalate	<0.0500		mg/kg wet	8032357	8032357-BLKI	03/16/08 15:00	
2,4-Dimethylphenol	<0.281		mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00	

1

tAr

Tes

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

(

			2960 Fost	2960 Foster Creighton Noad Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404						
		93)		Work Order: Project Name: Project Number: Received:	NRC0462 Atlanta Rush Proj 1782-308-02 03/06/08 08:00	ect				
		PRO	JECT QUALITY Blank - (`A					
Analyte	Blar	ık Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time				
Semivolatile Organ	ic Compounds by EPA I	Method 8270C		•••••••••••••••		······································				
8032357-BLK1										
Dimethyl phthalate	<	0.0880	- mg/kg wet	8032357	8032357-BLKI	03/16/08 15:00				
4,6-Dinitro-2-methylphe	nol <	0190.0	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
2,4-Dinitrophenol	<	0.135	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
2,6-Dinitrotoluene	<	(0.111	mg/kg wet	8032357	8032357-BLK	03/16/08 15:00				
2,4-Dinitrotoluene	<	0.0880	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Di-n-octyl phthalate	, <	0.132	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Bis(2-ethylhexyl)phthala	ite <	0.111	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Fluoranthene	<	0.0340	mg/kg.wet	8032357	8032357-BLK1	03/16/08 15:00				
Fluorene	<	0.0390	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Hexachlorobenzene	. </td <td>0.0830</td> <td>mg/kg wet</td> <td>8032357</td> <td>8032357-BLK1</td> <td>03/16/08 15:00</td>	0.0830	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Hexachlorobutadiene	<	0.108	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Hexachlorocyclopentadi	ene <	0.111	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Hexachloroethane	<	0.105	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Indeno (1,2,3-cd) pyrene	: </td <td>0.0310</td> <td>mg/kg wet</td> <td>8032357</td> <td>8032357-BLK1</td> <td>03/16/08 15:00</td>	0.0310	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Isophorone	、	0.100	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
2-Methylnaphthalene	<	0.0330	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
2-Methylphenol	<(0.0990	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
3/4-Methylphenol	<	0.145	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00				
Manhthalana										

2-montymuphenene	~0.0330	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
2-Methylphenol	<0.0990	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
3/4-Methylphenol	<0.145	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Naphthalene	<0.0410	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
3-Nitroaniline	<0.110	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
2-Nitroaniline	<0.111	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
4-Nitroaniline	<0.275	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Nitrobenzene	<0,106	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
4-Nitrophenol	<0.276	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
2-Nitrophenol	<0.197	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
N-Nitrosodiphenylamine	<0.109	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
N-Nitrosodi-n-propylamine	<0.122	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Pentachlorophenol	<0.0740	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Phenanthrene	<0.0340	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Phenol ·	<0.0690	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Pyrene	<0.0410	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Pyridine	<0.0940	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
1,2,4-Trichlorobenzene	<0,111	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
1-Methylnaphthalene	<0.0320	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
2,4,6-Trichlorophenol	<0.0870	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
2,4,5-Trichlorophenol	<0.0680	mg/kg wet	8032357	8032357-BLK1	03/16/08 15:00
Surrogate: Terphenyl-d14	89%		8032357	8032357-BLK1	03/16/08 15:00
Surrogate: 2,4,6-Tribromophenol	68%		8032357	8032357-BLK1	03/16/08 15:00
Surrogate: Phenol-d5	75%		8032357	8032357-BLK1	03/16/08 15:00
Surrogate: 2-Fluorobiphenyl	76%		8032357	8032357-BLK1	03/16/08 15:00
Surrogate: 2-Fluorophenol	71%		8032357	8032357-BLK1	03/16/08 15:00

ŧ.

THE LEADER IN ENVIRONMENTAL TESTING

Ę

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Semivolatile Organic Compounds by						
8032357-BLK1 Surrogate: Nitrobenzene-d5	73%			8032357	8032357-BLK1	03/16/08 15:00

<u>TestAmericu</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Attn	Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602 Carl Dawes	Work Order: Project Name: Project Number: Received:	NRC0462 Atlanta Rush Project 1782-308-02 03/06/08 08:00
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA Duplicate									
Analyte	Orig. Val.	Duplicate	Q	Units	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
General Chemistry Parameters 8030957-DUP1 % Dry Solids	75.6	75.7		%	0.1	20	8030957	NRC0191-02	03/10/08 11:49

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ъ

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 8260B		- <i></i>	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • •			•••••
8030997-BS1								
Acetone	250	238		ug/kg	95%	49 - 150	8030997	03/12/08 23:55
Benzene	50.0	50.8		ug/kg	102%	76 - 130	8030997	03/12/08 23:55
Bromobenzene	50.0	51.5		ug/kg	103%	80 - 128	8030997	03/12/08 23:55
Bromochloromethane	50.0	54.1		ug/kg	108%	70 - 135	8030997	03/12/08 23:55
Bromodichloromethane	50.0	54.1		ug/kg	108%	78 - 135	8030997	03/12/08 23:55
Bromoform	50.0	50.7		ug/kg	101%	67 - 143	8030997	03/12/08 23:55
Bromomethane	50.0	42.2		ug/kg	84%	58 - 150	8030997	03/12/08 23:5
2-Butanone	250	263		ug/kg	105%	61 - 143	8030997	03/12/08 23:5:
sec-Butyibenzene	50.0	56.0		ug/kg	112%	80 - 134	8030997	03/12/08 23:5:
n-Butylbenzene	50.0	56.5		ug/kg	113%	71 - 141	8030997	03/12/08 23:5
tert-Butylbenzene	50.0	56.6		ug/kg	113%	79 - 132	8030997	03/12/08 23:5:
Carbon disulfide	50.0	47.4		ug/kg	95%	70 - 134	8030997	03/12/08 23:5
Carbon Tetrachloride	50.0	54.2		ug/kg	108%	75 - 137	8030997	03/12/08 23:5:
Chlorobenzene	50.0	53.7		ug/kg	107%	80 - 121	8030997	03/12/08 23:5:
Chlorodibromomethane	50.0	55.5		ug/kg	111%	77 - 130	8030997	03/12/08 23:5
Chloroethane	50.0	41.0		ug/kg	82%	62 - 149	8030997	03/12/08 23:5
Chloroform	50.0	50.7		ug/kg	101%	75 - 130	8030997	03/12/08 23:5
Chloromethane	50.0	34.7		ug/kg	69%	35 - 130	8030997	03/12/08 23:5
2-Chlorotoluene	50.0	55.1		ug/kg	110%	80 - 131	8030997	03/12/08 23:5
4-Chlorotoluene	50.0	53.9		ug/kg	108%	80 - 129	8030997	03/12/08 23:5
1,2-Dibromo-3-chloropropane	50.0	55.2		ug/kg	110%	62 - 142	8030997	03/12/08 23:5
1,2-Dibromoethane (EDB)	50,0	54.3		ug/kg	109%	81 - 130	8030997	03/12/08 23:5
Dibromomethane	50.0	53.6		ug/kg	107%	77 - 133	8030997	03/12/08 23:5
1,4-Dichlorobenzene	50.0	54.7		ug/kg	109%	75 - 128	8030997	03/12/08 23:5
1,3-Dichlorobenzene	50.0	55.4		ug/kg	111%	79 - 128	8030997	03/12/08 23:5
1,2-Dichlorobenzene	50.0	56.2		ug/kg	112%	80 - 130	8030997	03/12/08 23:5
Dichlorodifluoromethane	50,0	27.3		ug/kg	55%	11 - 129	8030997	03/12/08 23:5
1,1-Dichloroethane	50.0	51.2		ug/kg	102%	68 - 150	8030997	03/12/08 23:5
1,2-Dichloroethane	50.0	53.4		ug/kg	107%	72 - 132	8030997	03/12/08 23:5
cis-1,2-Dichloroethene	50.0	52.6		ug/kg	105%	77 - 132	8030997	03/12/08 23:5
1,1-Dichloroethene	50.0	48.4		ug/kg	97%	75 - 133	8030997	03/12/08 23:5
trans-1,2-Dichloroethene	50.0	52.1		ug/kg	104%	79 - 133	8030997	03/12/08 23:5
1,3-Dichloropropane	50.0	52.6		ug/kg	105%	80 - 125	8030997	03/12/08 23:5
1,2-Dichloropropane	50.0	49.6		ug/kg	99%	75 - 124	8030997	03/12/08 23:5
2,2-Dichloropropane	50.0	49.9		ug/kg	100%	59 - 144	8030997	03/12/08 23:5
cis-1,3-Dichloropropene	50.0	52.0		ug/kg	104%	80 - 137	8030997	03/12/08 23:5
trans-1,3-Dichloropropene	50,0	52.0		ug/kg	104%	75 - 133	8030997	03/12/08 23:5
1,1-Dichloropropene	50.0	53.6		ug/kg	107%	76 - 133	8030997	03/12/08 23:5
Ethylbenzene	50.0	54.4		ug/kg	109%	80 - 128	8030997	03/12/08 23:5
Hexachlorobutadiene	50.0	57.7		ug/kg	115%	60 - 150	8030997	03/12/08 23:5
2-Hexanone	250	271		ug/kg	108%	63 - 149 ·	8030997	03/12/08 23:5

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ſ

Weaver Boos Consultants LLC (1407793) Client

70 West Madison, Suite 4250 Chicago,, IL 60602

Attn

Carl Dawes

Work Order: NRC0462 Project Name: Project Number: Received:

Atlanta Rush Project 1782-308-02 03/06/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Volutio Organic Compounds by EPA Method 8260B BO3097-B31 Inopoin/Rusane 50.0 48.7 up/kg 974 74-131 80.0997 00/1208 23:55 P-longrey/Induce 50.0 48.8 up/kg 1014 65.144 80.0997 00/1208 23:55 Methylane Choide 50.0 50.6 up/kg 1014 65.144 80.0997 00/1208 23:55 Methylane Choide 50.0 50.6 up/kg 1014 65.144 80.0997 00/1208 23:55 Naphintene 50.0 55.9 up/kg 104.6 61.144 80.0997 00/1208 23:55 1.1.2.4-Tenchorochane 50.0 55.9 up/kg 1145 60.129 80.0997 00/1208 23:55 1.1.2.4-Tenchorochane 50.0 53.0 up/kg 1144 80.0997 00/1208 23:55 1.1.2.4-Tenchorochane 50.0 53.1 up/kg 104.4 80.0997 00/1208 23:55 1.1.2.4-Tenchorochane 50.0 53.1 up/kg 104.4 80.09	Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
BC3Coord-Cis1 Sinth of the second secon	Volatile Organic Compounds by E.	PA Method 8260B				• • • • • • • • • • • • • •	•••••		
p-lospopytolatane 30.0 34.7 49.78 47.11 80.0097 60.1208 23:55 Methyl int-Rungi Eller 30.0 48.8 up/kg 1074 61.14 80.0997 60.1208 23:55 Methylen Chiché 30.0 50.6 up/kg 1074 64.142 83.0997 60.1208 23:55 A-Methylen Chiché 30.0 56.0 up/kg 1075 64.142 83.0997 60.1208 23:55 u-Progylenzane 30.0 56.0 up/kg 10956 63.144 80.0997 60.1208 23:55 Syrane 30.0 55.9 up/kg 10456 80.131 80.30997 60.1208 23:55 L1,2-Tottaklorochane 30.0 55.9 up/kg 10456 80.131 80.30997 60.1208 23:55 L1,2-Tottaklorochane 30.0 52.1 up/kg 10454 80.13997 60.1208 23:55 L2,3-Tottaklorochane 30.0 52.1 up/kg 10454 80.1997 60.1208 23:55 L3,2-Tottaklorochane 50.0 53.0 <thu< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thu<>									
p-Isoperybolikation50.054.7ug/kg109%75.13380.09970.01/20823.55Methyltens Chleride50.030.6ug/kg101%67.13080.30970.01/20823.55Methyltens Chleride50.030.6ug/kg101%67.1480.30970.01/20823.55Methyltens Chleride50.053.1ug/kg106%67.1480.30970.01/20823.55n-Proxyblextase50.055.5ug/kg106%67.1480.30970.01/20823.551,1.2Tettachkoroethane50.055.9ug/kg112%80.12980.30970.01/20823.551,1.2Tettachkoroethane50.053.0ug/kg112%76.12880.09970.01/20823.55Tolsens50.053.0ug/kg104%76.12880.09970.01/20823.551,2.2-Trichikoroethane50.052.1ug/kg104%76.12880.09970.01/20823.551,2.3-Trichikoroethane50.051.2ug/kg113%46.15880.30970.01/20823.551,2.3-Trichikoroethane50.051.2ug/kg104%80.15780.30970.01/20823.551,1.1.Trikhoroethane50.051.2ug/kg104%76.13880.30970.01/20823.551,1.1.Trikhoroethane50.051.0ug/kg104%76.13880.30970.01/20823.551,1.1.Trikhoroethane50.053.0<	Isopropylbenzene	50.0	48.7		ug/kg	97%	74 - 131	8030997	03/12/08 23:55
Methyine Chioria 50.0 64.8 ug/kg 99% 67-130 6010997 00.1208 2135 4-Methyle Chioria 230 267 ug/kg 107% 64-142 8030997 00.1208 2135 Nephathate 50.0 53.1 ug/kg 107% 63-144 8030997 00.1208 2135 Syrcen 50.0 55.9 ug/kg 114% 80-141 8030997 00.1208 2135 L1,1.2-Teachkoroethane 50.0 55.9 ug/kg 114% 80-144 8030997 00.1208 2135 1.2.2-Teachkoroethane 50.0 53.0 ug/kg 114% 80-145 8030997 00.1208 2135 1.2.3-Teichkoroethane 50.0 53.0 ug/kg 115% 61-165 8030997 00.1208 2355 1.2.3-Teichkoroethane 50.0 53.1 ug/kg 115% 61-165 803097 00.1208 2355 1.2.3-Teichkoroethane 50.0 51.2 ug/kg 115% 61-165 803097 00.1208 2355 1.2.4-Teichkoroethane	p-Isopropyltoluene	50,0	54.7						
Methyle Chloride 500 50.6 ug/kg 1014/s 61.142 8030971 09/1208 23:53 Naphbalane 50.0 53.1 ug/kg 100% 61.142 8030971 09/1208 23:53 Naphbalane 50.0 53.1 ug/kg 100% 61.142 8030971 09/1208 23:55 Naphbalane 50.0 55.9 ug/kg 112% 80.1997 09/1208 23:55 1,1,2-Törachloroethane 50.0 53.0 ug/kg 112% 80.128 8030997 09/1208 23:55 1,1,2-Törachloroethane 50.0 53.0 ug/kg 101/4 80.13997 09/1208 23:55 Tolknes 50.0 53.0 ug/kg 101/4 80.13997 09/1208 23:55 1,2-Törlohroetnane 50.0 53.3 ug/kg 101/4 80.13997 09/1208 23:55 1,1-Törlohroetnane 50.0 51.2 ug/kg 101/4 80.13997 09/1208 23:55 1,1-Törlohroetnane 50.0 52.2 ug/kg 109/4 76.131 8030997 09/1208 23:55 1,1-Törlohroetnane 50.0 52.0	Methyl tert-Butyl Ether	50.0	48.8						
4-Methyl-2-pentanone 250 267 ug/kg 107% 64.1-42 803097 00/208 21:55 n-Propyllenzee 50.0 54.6 ug/kg 100% 63.1-44 801097 00/208 21:55 Styree 50.0 56.9 ug/kg 116% 80.1-44 801097 00/1208 21:55 Styree 50.0 55.9 ug/kg 112% 80.1-42 801097 00/1208 21:55 1,1,2-2-Turnchloreedhane 50.0 55.9 ug/kg 112% 76.1-28 803097 00/1208 21:55 1,2,2-Turnchloreedhane 50.0 52.1 ug/kg 113% 64.1-38 803097 00/1208 21:55 1,2,2-Turnchloreedhane 50.0 52.1 ug/kg 113% 64.1-38 803097 00/1208 21:55 1,2,2-Turnchloreedhane 50.0 52.2 ug/kg 104% 80.1-27 803097 00/1208 21:55 1,4,2-Trinchloreedhane 50.0 52.2 ug/kg 104% 61.13 803097 00/1208 21:55 1,4,2-Trinchloreechane 50.0 50.2 ug/kg 104% 61.3 803097	Methylene Chloride	50.0	50.6						
Naphalache30053.1up/kg106%63.14480309700/1208 23:55n-Propylbarzace50.056.9ug/kg114%80.1497801099700/1208 23:551.1,1.2.7 tranchlonoethace50.055.9ug/kg112%80.129803099700/1208 23:551.1,1.2.7 tranchlonoethace50.055.9ug/kg112%80.129803099700/1208 23:55Tetachloroethace50.055.9ug/kg106%71.13980309700/1208 23:55Tolace50.057.6ug/kg104%61.13680309700/1208 23:551.2.4. Trichloroethace50.051.2ug/kg117%61.13680309700/1208 23:551.2.4. Trichloroethace50.051.2ug/kg107%81.14580309700/1208 23:551.4.2. Trichloroethace50.051.2ug/kg104%76.13480309700/1208 23:551.4.2. Trichloroethace50.051.2ug/kg104%76.13180309700/1208 23:551.4.3. Trichloropropace50.051.2ug/kg104%76.13180309700/1208 23:551.3.5. Trichloropropace50.051.3ug/kg176%65.13080309700/1208 23:551.3.5. Trichloropropace50.051.3ug/kg176%65.13080309700/1208 23:551.3.5. Trichloropropace50.051.6ug/kg176%85.13480309700/1208 23:551.3.5. Trichloropropace <td>4-Methyl-2-pentanone</td> <td>250</td> <td>267</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4-Methyl-2-pentanone	250	267						
n-Progyblezze 50.0 54.6 ug/kg 10995 80.11 801097 03/1208 23:55 Styrens 50.0 55.9 ug/kg 1145 80.144 800097 03/1208 23:55 1.1.3.2-Tetrachlorochane 50.0 55.9 ug/kg 1165 7.51.3 803097 03/1208 23:55 1.2.3.2-Tetrachlorochane 50.0 55.9 ug/kg 1164 80.1997 03/1208 23:55 Tokachlorochane 50.0 57.6 ug/kg 1155 64.156 80.3997 03/1208 23:55 1.3.2-Trichlorochenzene 50.0 57.6 ug/kg 1175 58.14 80.3997 03/1208 23:55 1.4.2-Trichlorochenzene 50.0 52.2 ug/kg 1045 76.13 80.3997 03/1208 23:55 1.1.2-Trichlorochenae 50.0 52.2 ug/kg 1045 76.13 80.3997 03/1208 23:55 1.1.2-Trichlorochenae 50.0 53.0 ug/kg 1045 76.13 80.3997 03/1208 23:55 1.1.2-Trichlorochenae	Naphthalene	50.0	53.1						
Syream 50.0 56.9 ug/kg 114% 80.144 803097 01/12/08 23:55 1.1.1.2.Tetrachlorochane 50.0 53.9 ug/kg 112% 76.128 803097 01/12/08 23:55 1.1.2.3.Tetrachlorochane 50.0 55.9 ug/kg 112% 76.128 803097 01/12/08 23:55 Tobene 50.0 52.1 ug/kg 117% 58.145 803097 01/12/08 23:55 1.2.4.Trichlorobenzane 50.0 57.6 ug/kg 117% 58.145 803097 01/12/08 23:55 1.4.Trichlorobenzane 50.0 57.2 ug/kg 107% 58.145 803097 01/12/08 23:55 1.1.Trichlorobenzane 50.0 57.2 ug/kg 107% 75.131 803097 01/12/08 23:55 1.1.Trichlorobenzane 50.0 47.2 ug/kg 107% 75.131 803097 01/12/08 23:55 1.3.Trichloropropane 50.0 47.2 ug/kg 107% 76.133 803097 01/12/08 23:55 1.3.A.T	n-Propylbenzene	50.0	54.6						
1,1,1.2-Tetrachloroethane 50.0 55.9 ug/kg 112% 80.129 803097 03/1208 23:55 1,1,2,2-Tetrachloroethane 50.0 55.9 ug/kg 104% 80-128 803097 03/1208 23:55 Tolane 50.0 52.1 ug/kg 111% 56.4 803097 03/1208 23:55 1,2,3-Trichloroethane 50.0 57.6 ug/kg 117% 58.4 803097 03/1208 23:55 1,2,4-Trichloroethane 50.0 57.2 ug/kg 104% 80-127 803097 03/1208 23:55 1,1,1-Trichloroethane 50.0 52.2 ug/kg 104% 76-134 8030997 03/1208 23:55 1,1,1-Trichloroethane 50.0 52.2 ug/kg 104% 76-134 8030997 03/1208 23:55 1,2,3-Trichloroethane 50.0 52.2 ug/kg 104% 76-134 8030997 03/1208 23:55 1,2,3-Trichloroethane 50.0 53.0 ug/kg 104% 76-134 8030997 03/1208 23:55 1,2,3-Trichloroethane 50.0 53.8 ug/kg 104% 76-135	Styrene	50.0	56.9						
1.1.2.2-Tetrackhoredhane 50.0 53.0 ug/kg 106% 73 - 130 8030997 03/1208 23:55 Tetrachkoroedhane 50.0 52.1 ug/kg 112% 76 - 128 8030997 03/1208 23:55 1.2.4 - Trichkorobenzene 50.0 57.6 ug/kg 113% 64 - 126 8030997 03/1208 23:55 1.2.4 - Trichkorobenzene 50.0 58.3 ug/kg 117% 58 - 145 6030997 03/1208 23:55 1.1.4 - Trichkorobenzene 50.0 52.2 ug/kg 104% 76 - 134 8030997 03/1208 23:55 1.1.4 - Trichkorobenzene 50.0 52.2 ug/kg 104% 76 - 134 8030997 03/1208 23:55 1.2.4 - Trinkohrobenzene 50.0 52.0 ug/kg 104% 76 - 134 8030997 03/1208 23:55 1.2.4 - Trinkohrobenzene 50.0 43.5 ug/kg 110% 78 - 133 8030997 03/1208 23:55 1.3.5 - Trinkohrobenzene 50.0 55.0 ug/kg 110% 78 - 135 8030997 03/1208 23:55 1.3.4 - Trinkohrobenzene 50.0 54.8 <t< td=""><td>1,1,1,2-Tetrachloroethane</td><td>50.0</td><td>55.9</td><td></td><td></td><td>- +</td><td></td><td></td><td></td></t<>	1,1,1,2-Tetrachloroethane	50.0	55.9			- +			
Tetrahlorechane 50.0 55.9 ug/kg 112% 76-128 803097 0.11208 23:S Toluene 50.0 52.1 ug/kg 104% 80-125 8030977 0.11208 23:S 1,2,3-Trithlorochance 50.0 55.3 ug/kg 115% 64-136 8030977 0.11208 23:S 1,1,2-Trithlorochane 50.0 52.2 ug/kg 102% 80-127 8030977 0.11208 23:S 1,1,1-Trithlorochane 50.0 52.2 ug/kg 103% 61-134 8030977 0.11208 23:S 1,1,3-Trithlorochane 50.0 54.6 ug/kg 104% 76-134 8030977 0.11208 23:S 1,2,3-Trithlorophane 50.0 47.2 ug/kg 87% 63-139 8030977 0.11208 23:S 1,2,3-Trithlorophane 50.0 54.8 ug/kg 10% 76-138 8030977 0.11208 23:S 1,2,3-Trithlorophane 50.0 54.8 ug/kg 10% 76-138 8030997 0.11208 23:S 1,2,3-Trithlorophan	1,1,2,2-Tetrachloroethane	50.0	53.0						
Toluene 50.0 52.1 ug/kg 104% 80-125 803097 031/208 21.55 1.2.3-Trichlorobenzene 50.0 57.6 ug/kg 117% 58-145 8030977 031/208 21.55 1.2.4-Trichlorobenzene 50.0 53.3 ug/kg 117% 58-145 8030977 031/208 23.55 1.1.1-Trichlorobenzene 50.0 52.2 ug/kg 104% 76-114 8030977 031/208 23.55 Trichlorobentane 50.0 52.2 ug/kg 104% 76-134 8030977 031/208 23.55 Trichlorobentane 50.0 43.5 ug/kg 87% 66-129 8030977 031/208 23.55 1.2.3-Trichloropropane 50.0 47.2 ug/kg 110% 76-135 8030977 031/208 23.55 Vily chloride 50.0 38.8 ug/kg 106% 79-132 8030977 031/208 23.55 Surrogutz 150 63.0 93.6 117%	Tetrachloroethene	50.0	55.9						
1,2,3-Trichlorobenzene 50,0 57,6 ug/kg 115%, 64 - 136 803097 001/208 23:55 1,2,4-Trichlorobenzene 50,0 51,2 ug/kg 117%, 58 - 145 803097 001/208 23:55 1,1,1-Trichlorobenzene 50,0 51,2 ug/kg 102%, 80 - 127 803097 001/208 23:55 1,1,1-Trichlorobetne 50,0 52,2 ug/kg 109%, 75 - 131 803097 001/208 23:55 1,2,3-Trichlorooptne 50,0 43,5 ug/kg 109%, 75 - 131 803097 001/208 23:55 1,2,3-Trichlorooptne 50,0 43,5 ug/kg 10%, 78 - 133 803097 001/208 23:55 1,2,4-Trinhethylbenzene 50,0 43,8 ug/kg 10%, 78 - 133 803097 001/208 23:55 1,2,4-Trinhethylbenzene 50,0 38,8 ug/kg 10%, 78 - 133 803097 001/208 23:55 1,2,4-Trinhethylbenzene 50,0 58,5 117%, 41 - 150 8030997 001/208 23:55 Ving choride 50,0 57,0 114%, 55 - 139 80	Toluene	50,0	52.1						
1.2.4 Trickhorogenzene 50.0 58.3 ug/kg 117% 58.145 80.0097 00/1208 23:55 1,1.2-Trickhorogenzene 50.0 52.2 ug/kg 102% 80.107 80.0097 00/1208 23:55 Trickhorogenzene 50.0 52.2 ug/kg 104% 76-134 80.0097 00/1208 23:55 Trickhorogenze 50.0 43.5 ug/kg 104% 75-131 80.0097 00/1208 23:55 1,2.3-Trickhorogropane 50.0 47.2 ug/kg 10% 76-135 80.0097 00/1208 23:55 1,3.5-Triankhylbenzene 50.0 55.0 ug/kg 110% 76-135 80.0097 00/1208 23:55 1,3.5-Triankhylbenzene 50.0 54.8 ug/kg 110% 76-135 80.0097 00/1208 23:55 Yylenes, tolal 150 162 ug/kg 10% 76-135 80.0097 00/1208 23:55 Surrogate: 1.2-Dichloroethane-d4 50.0 58.5 117% 41 -150 80.0097 00/1208 23:55 Surrogate: 1.2-Dichloroethane-d4 50.0 57.0 58.15 111% 58.158	1,2,3-Trichlorobenzene	50.0	57.6		-				
1,1.2.Trichloroethane 50.0 51.2 ug/kg 102% 80.127 80.0997 03/1208 23:55 1,1.1.Trichloroethane 50.0 52.2 ug/kg 104% 76.134 80.0997 03/1208 23:55 Trichloroethane 50.0 54.6 ug/kg 109% 75.131 80.0997 03/1208 23:55 Trichloroethane 50.0 43.5 ug/kg 104% 76.134 80.0997 03/1208 23:55 1,2.3.Trichloroptopane 50.0 47.2 ug/kg 94% 66.129 80.0997 03/1208 23:55 1,3.4.Trintehylbenzene 50.0 55.0 ug/kg 110% 76.133 80.0997 03/1208 23:55 Xj4.Trintehylbenzene 50.0 54.8 ug/kg 106% 79.130 80.0997 03/1208 23:55 Xj4rens, tolal 150 162 ug/kg 108% 79.130 80.0997 03/1208 23:55 Surrogate: 1.2-Dichloroethane-44 50.0 58.5 117% 41.150 80.0997 03/1208 23:55 Surrogate: 1.2-Dichloroethane-48 50.0 55.3 1114% 55.139 80.0997	1,2,4-Trichlorobenzene	50.0	58.3						
1,11-Trichbroethane 50,0 52,2 ug/kg 104% 76-134 803097 03/1208 23:55 Trichboroethane 50,0 43.5 ug/kg 109% 75-131 803097 03/1208 23:55 1,2,3-Trichlotopropane 50,0 43.5 ug/kg 87% 63-130 803097 03/1208 23:55 1,2,3-Trichlotopropane 50,0 47.2 ug/kg 10% 78-133 803097 03/1208 23:55 1,2,4-Trimethylbenzene 50,0 55.0 ug/kg 110% 78-133 803097 03/1208 23:55 1,2,4-Trimethylbenzene 50,0 55.0 ug/kg 10% 78% 58-134 803097 03/1208 23:55 Xylenes, total 150 162 ug/kg 10% 78% 58-134 803097 03/1208 23:55 Surrogate: 1,2-Dichloroethane-d4 50,0 55.3 117% 41-150 803097 03/1208 23:55 Surrogate: 1,2-Dichloroethane-d4 50,0 55.3 117% 41-150 8031987 03/1308 13:29 <tr< td=""><td>1,1,2-Trichloroethane</td><td>50.0</td><td>51.2</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	1,1,2-Trichloroethane	50.0	51.2						
Trichloroethene 50.0 54.6 ug/kg 10% 75 - 131 803097 03/12/88 23:55 Trichlorofthoroethene 50.0 43.5 ug/kg 87% 63 - 130 8030997 03/12/08 23:55 1,2.3-Trichloroppane 50.0 47.2 ug/kg 94% 66 - 129 8030997 03/12/08 23:55 1,3.5-Trimethylbenzene 50.0 55.0 ug/kg 110% 76 - 135 8030997 03/12/08 23:55 1,3.5-Trimethylbenzene 50.0 54.8 ug/kg 10% 76 - 135 8030997 03/12/08 23:55 Virletchoride 50.0 38.8 ug/kg 10% 76 - 135 8030997 03/12/08 23:55 Surrogate: 1.3-Dichloroethane-d4 50.0 58.5 117% 41 + 150 8030997 03/12/08 23:55 Surrogate: Dibromofluoromethane 50.0 55.3 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: Tolknoroethane-d4 50.0 55.3 114% 55 - 139 8030997 03/12/08 23:55 Surrogat	1,1,1-Trichloroethane	50.0	52.2						
Trichlorofluoromethane 50.0 43.5 ug/kg 87% 63 - 130 8030997 03/12/08 23:55 1,2,3-Trichloropropane 50.0 47.2 ug/kg 94% 66 - 129 8030997 03/12/08 23:55 1,3,5-Trimethylbenzene 50.0 55.0 ug/kg 110% 78 - 133 8030997 03/12/08 23:55 1,2,4-Trimethylbenzene 50.0 54.8 ug/kg 110% 76 - 135 8030997 03/12/08 23:55 Vinyl chloride 50.0 38.8 ug/kg 108% 78 - 134 8030997 03/12/08 23:55 Sylenes, total 150 162 ug/kg 108% 79 - 130 8030997 03/12/08 23:55 Surrogate: 1,2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: Tohuen-d8 50.0 55.3 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: A-Bromofluoromethane 50.0 55.3 114% 55 - 148 8030997 03/12/08 13:29 Benzene <td>Trichloroethene</td> <td>50.0</td> <td>54.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Trichloroethene	50.0	54.6						
1,2,3-Trichlocopropane 50.0 47.2 ug/kg 94% 66 - 129 803097 03/12/08 23:55 1,3,5-Triinethylbenzene 50.0 55.0 ug/kg 110% 78 - 133 8030997 03/12/08 23:55 1,2,4-Triinethylbenzene 50.0 54.8 ug/kg 110% 76 - 135 8030997 03/12/08 23:55 Vinyl chloride 50.0 38.8 ug/kg 10% 76 - 135 8030997 03/12/08 23:55 Xylenes, total 150 162 ug/kg 10% 79 - 130 8030997 03/12/08 23:55 Surrogate: 1,2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: Tolurong/luoromethane 50.0 57.0 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: A-Brong/luorobenzene 50.0 53.3 117% 58 - 150 8030997 03/12/08 23:55 Surrogate: A-Brong/luorobenzene 50.0 53.3 111% 58 - 150 8030997 03/12/08 23:25 Boronochlor	Trichlorofluoromethane	50.0	43,5		-				
1,3,5-Trimethylbenzene 50.0 55.0 ug/kg 110% 78 - 133 8030997 03/12/08 23:55 1,2,4-Trimethylbenzene 50.0 54.8 ug/kg 110% 76 - 135 8030997 03/12/08 23:55 Vinyl chloride 50.0 38.8 ug/kg 78% 58 - 134 8030997 03/12/08 23:55 Xylenes, total 150 162 ug/kg 10% 76 - 132 8030997 03/12/08 23:55 Surrogate: 1,2-Dichloroethane-d4 50.0 48.6 ug/kg 97% 69 - 132 8030997 03/12/08 23:55 Surrogate: 1,2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: Dibromofluoromethane 50.0 56.4 113% 57 - 148 8030997 03/12/08 23:55 Surrogate: -4-Bromofluorobenzene 50.0 51.1 ug/kg 104% 49 - 150 8031987 03/13/08 13:29 Bornochloromethane 50.0 51.1 ug/kg 104% 49 - 150	1,2,3-Trichloropropane	50.0	47.2						
1.2.4-Trimethylbenzene 50.0 54.8 ug/kg 110% 76 - 135 8030997 03/12/08 23:55 Vinyl chloride 50.0 38.8 ug/kg 78% 58 - 134 8030997 03/12/08 23:55 Xylenes, total 150 162 ug/kg 108% 79 - 130 8030997 03/12/08 23:55 Diisopropyl Ether 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: 1.2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: 1.2-Dichloroethane 50.0 56.4 113% 57 - 148 8030997 03/12/08 23:55 Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8030997 03/12/08 23:55 Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8031987 03/13/08 13:29 Benzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromochoromethane 50.0 5	1,3,5-Trimethylbenzene	50.0	55.0		-				
Vinyl chloride50.038.8ug/kg78%58 - 13480309703/12/0823:55Xylenes, total150162ug/kg108%79 - 13080309703/12/0823:55Diisopropyl Ether50.048.6ug/kg97%69 - 13280309703/12/0823:55Surrogate: 1,2-Dichloroethane-d450.058.5117%41 - 15080309703/12/0823:55Surrogate: Dibromofluoromethane50.057.0114%55 - 13980309703/12/0823:55Surrogate: d-Bromofluorobenzene50.056.4113%57 - 148803099703/12/0823:55Surrogate: 4-Bromofluorobenzene50.055.3111%58 - 150803099703/12/0823:55Bornecklore250260ug/kg104%49 - 150803198703/13/0813:29Benzene50.051.1ug/kg102%76 - 130803198703/13/0813:29Bromochloromethane50.053.0ug/kg99%80 - 128803198703/13/0813:29Bromochoromethane50.053.0ug/kg99%80 - 128803198703/13/0813:29Bromochoromethane50.053.0ug/kg99%67 - 130803198703/13/0813:29Bromochoromethane50.053.0ug/kg107%78 - 135803198703/13/0813:29Bromochoromethane50.045.8ug/kg99%67 - 143 </td <td>1,2,4-Trimethylbenzene</td> <td>50.0</td> <td>54.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2,4-Trimethylbenzene	50.0	54.8						
Xylenes, total 150 162 ug/kg 108% 79 - 130 8030997 03/12/08 23:55 Diisopropyl Ether 50.0 48.6 ug/kg 97% 69 - 132 803097 03/12/08 23:55 Surrogate: 1.2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 803097 03/12/08 23:55 Surrogate: Dibromofluoromethane 50.0 57.0 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: 7-148 8030997 03/12/08 23:55 Surrogate: 4-Bromofluoromethane 50.0 56.4 113% 57 - 148 8030997 03/12/08 23:55 Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8031987 03/13/08 13:29 Benzene 50.0 51.1 ug/kg 104% 49 - 150 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.5	Vinyl chloride	50.0	38.8						
Disopropyl Ether 50.0 48.6 ug/kg 97% 69 - 132 8030997 03/12/08 23:55 Surrogate: 1,2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: Dibromofluoromethane 50.0 57.0 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: Toluene-d8 50.0 56.4 113% 57 - 148 8030997 03/12/08 23:55 Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8030997 03/12/08 23:55 Bottome-d8 50.0 55.3 111% 58 - 150 8030997 03/12/08 32:29 Bottome-d9 50.0 260 ug/kg 104% 49 - 150 8031987 03/13/08 13:29 Bromobenzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.5 ug/kg <t< td=""><td>Xylenes, total</td><td>150</td><td>162</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Xylenes, total	150	162						
Surrogate: 1.2-Dichloroethane-d4 50.0 58.5 117% 41 - 150 8030997 03/12/08 23:55 Surrogate: Dibromofluoromethane 50.0 57.0 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: Totuene-d8 50.0 56.4 113% 57 - 148 8030997 03/12/08 23:55 Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8030997 03/12/08 23:55 Bottome data 50.0 55.3 111% 58 - 150 8030997 03/12/08 23:55 Bottome data 250 260 ug/kg 104% 49 - 150 8031987 03/13/08 13:29 Benzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.5 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.5 ug/kg <	Diisopropyl Ether	50.0	48.6						
Surrogate: Dibromofluoromethane 50.0 57.0 114% 55 - 139 8030997 03/12/08 23:55 Surrogate: Toluene-d8 50.0 56.4 113% 57 - 148 8030997 03/12/08 23:55 Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8030997 03/12/08 23:55 Both Starrogate: 4-Bromofluorobenzene 50.0 25.3 111% 58 - 150 8030997 03/12/08 23:55 Both Starrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 8031987 03/12/08 23:55 Both Starrogate: 4-Bromofluorobenzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08	Surrogate: 1,2-Dichloroethane-d4	50.0	58.5		20				
Surrogate: Total Solution Solution	Surrogate: Dibromofluoromethane	50.0	57.0						
Surrogate: 4-Bromofluorobenzene 50.0 55.3 111% 58 - 150 B030997 03/12/08 23:55 B031987-BS1 Acetone 250 260 ug/kg 104% 49 - 150 8031987 03/13/08 13:29 Benzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromobenzene 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 45.8 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromoderm 50.0 45.8 ug/kg 92% 58 - 150 8031987 03/13/08 13:29 Bromoderm 50.0 51.5 <th< td=""><td>Surrogate: Toluene-d8</td><td>50.0</td><td>56.4</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Surrogate: Toluene-d8	50.0	56.4						
8031987-BS1 Acetone 250 260 ug/kg 104% 49 - 150 8031987 03/13/08 13:29 Benzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromobenzene 50.0 49.6 ug/kg 99% 80 - 128 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08 13:29 Bromoderme 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 45.8 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 <t< td=""><td>Surrogate: 4-Bromofluorobenzene</td><td>50.0</td><td>55,3</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Surrogate: 4-Bromofluorobenzene	50.0	55,3						
Acetone250260ug/kg104%49 - 150803198703/13/0813:29Benzene50.051.1ug/kg102%76 - 130803198703/13/0813:29Bromobenzene50.049.6ug/kg99%80 - 128803198703/13/0813:29Bromochloromethane50.053.0ug/kg106%70 - 135803198703/13/0813:29Bromodichloromethane50.053.5ug/kg107%78 - 135803198703/13/0813:29Bromodenzene50.049.7ug/kg99%67 - 143803198703/13/0813:29Bromodenae50.049.7ug/kg99%67 - 143803198703/13/0813:29Bromomethane50.045.8ug/kg92%58 - 150803198703/13/0813:29Bromomethane50.0268ug/kg107%61 - 143803198703/13/0813:29sec-Butylbenzene50.051.5ug/kg103%80 - 134803198703/13/0813:29n-Butylbenzene50.051.5ug/kg103%80 - 134803198703/13/0813:29n-Butylbenzene50.051.5ug/kg103%80 - 134803198703/13/0813:29n-Butylbenzene50.050.9ug/kg102%71 - 141803198703/13/0813:29n-Butylbenzene50.050.9ug/kg102%71 - 141803198703/13	•					*/V	00 100	0000077	JI1200 23,33
Benzene50.051.1ug/kg104%49 - 150803198703/13/0813:29Bromobenzene50.051.1ug/kg102%76 - 130803198703/13/0813:29Bromochloromethane50.049.6ug/kg99%80 - 128803198703/13/0813:29Bromochloromethane50.053.0ug/kg106%70 - 135803198703/13/0813:29Bromodichloromethane50.053.5ug/kg107%78 - 135803198703/13/0813:29Bromodethane50.049.7ug/kg99%67 - 143803198703/13/0813:29Bromomethane50.045.8ug/kg92%58 - 150803198703/13/0813:292-Butanone250268ug/kg107%61 - 143803198703/13/0813:29sec-Butylbenzene50.051.5ug/kg103%80 - 134803198703/13/0813:29n-Butylbenzene50.050.9ug/kg102%71 - 141803198703/13/0813:29	8031987-BS1								
Benzene 50.0 51.1 ug/kg 102% 76 - 130 8031987 03/13/08 13:29 Bromobenzene 50.0 49.6 ug/kg 99% 80 - 128 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 53.5 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromoform 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 45.8 ug/kg 92% 58 - 150 8031987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103%	Acetone	250	260		ug/kg	104%	49 - 150	8031987	03/13/08 13:29
Bromobenzene 50.0 49.6 ug/kg 99% 80 - 128 8031987 03/13/08 13:29 Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 45.8 ug/kg 92% 58 - 150 8031987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 10	Benzene	50.0	51.1		ug/kg	102%	76 - 130		
Bromochloromethane 50.0 53.0 ug/kg 106% 70 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08 13:29 Bromodichloromethane 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 45.8 ug/kg 92% 58 - 150 8031987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 n-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 tert-Butylbenzene 50.0 50.9 ug/kg	Bromobenzene	50.0	49.6			99%	80 - 128		•
Bromodichloromethane 50.0 53.5 ug/kg 107% 78 - 135 8031987 03/13/08 13:29 Bromoform 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 45.8 ug/kg 92% 58 - 150 8031987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 tert-Butylbenzene 50.0 50.9 ug/kg 103% 80 - 134 8031987 03/13/08 13:29	Bromochloromethane	50.0	53.0			106%			
Bromoform 50.0 49.7 ug/kg 99% 67 - 143 8031987 03/13/08 13:29 Bromomethane 50.0 45.8 ug/kg 92% 58 - 150 8031987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 8031987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 tert-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 8031987 03/13/08 13:29	Bromodichloromethane	50.0	53.5			107% ·	78 - 135		
Bromomethane 50.0 45.8 ug/kg 92% 58 - 150 803 1987 03/13/08 13:29 2-Butanone 250 268 ug/kg 107% 61 - 143 803 1987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 803 1987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 803 1987 03/13/08 13:29	Bromoform	50,0	49.7						
2-Butanone 250 268 ug/kg 107% 61 - 143 803 1987 03/13/08 13:29 sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 803 1987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 803 1987 03/13/08 13:29 tert-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 803 1987 03/13/08 13:29	Bromomethane	50.0	45.8						
sec-Butylbenzene 50.0 51.5 ug/kg 103% 80 - 134 8031987 03/13/08 13:29 n-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 8031987 03/13/08 13:29 tert-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 8031987 03/13/08 13:29	2-Butanone	250	268						
n-Butylbenzene 50.0 50.9 ug/kg 102% 71 - 141 8031987 03/13/08 13:29	sec-Butylbenzene	50.0	51.5						
tert-Butylhenzene 50.0 so o	n-Butylbenzene	50.0							
	tert-Butylbenzene	50,0	52.8		ug/kg	106%	79 - 132	8031987	03/13/08 13:29

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B			• • • • • • • • • • • • • • •			•••••	
8031987-BS1								
Carbon disulfide	50.0	48.2		ug/kg	96%	70 - 134	8031987	03/13/08 13:29
Carbon Tetrachloride	50.0	53,4		ug/kg	107%	75 - 137	8031987	03/13/08 13:29
Chlorobenzene	50.0	52.1		ug/kg	104%	80 - 121	8031987	03/13/08 13:29
Chlorodibromomethane	50.0	53.3		ug/kg	107%	77 - 130	8031987	03/13/08 13:29
Chloroethane	50.0	43.8		ug/kg	88%	62 - 149	8031987	03/13/08 13:29
Chloroform	50.0	51.6		ug/kg	103%	75 - 130	8031987	03/13/08 13:29
Chloromethane	50.0	35.1		ug/kg	70%	35 - 130	8031987	03/13/08 13:29
2-Chlorotoluene	50.0	51.7		ug/kg	103%	80 - 131	8031987	03/13/08 13:29
4-Chlorotoluene	50.0	51.0		ug/kg	102%	80 - 129	8031987	03/13/08 13:29
1,2-Dibromo-3-chloropropane	50.0	52.1		ug/kg	104%	62 - 142	8031987	03/13/08 13:29
1,2-Dibromoethane (EDB)	50.0	52.5		ug/kg	104%	81 - 130	8031987	03/13/08 13:29
Dibromomethane	50.0	53.7		ug/kg	107%	77 - 133	8031987	03/13/08 13:29
1,4-Dichlorobenzene	50.0	52.1		ug/kg	107%	75 - 128	8031987	03/13/08 13:29
1,3-Dichlorobenzene	50.0	51.1		ug/kg	102%	75 - 128 79 - 128	8031987	03/13/08 13:29
1,2-Dichlorobenzene	50.0	53.3		ug/kg	102%	80 - 130	8031987	03/13/08 13:29
Dichlorodifluoromethane	50.0	24.1		ug/kg	· 48%	11 - 129	8031987	03/13/08 13:29
I,1-Dichloroethane	50.0	53.6		ug/kg	107%	68 - 150	8031987	03/13/08 13:29
1,2-Dichloroethane	50.0	54.5		ug/kg ug/kg	107%	72 - 130	8031987	03/13/08 13:29
cis-1,2-Dichloroethene	50.0	53,5		ug/kg	107%	77 - 132	8031987	03/13/08 13:29
1,1-Dichloroethene	50.0	47.7		ug/kg	95%	75 - 132	8031987	03/13/08 13:29
trans-1,2-Dichloroethene	50.0	53,8		ug/kg	108%	75 - 133 79 - 133	8031987	03/13/08 13:29
1,3-Dichloropropane	50.0	52.2		ug/kg	108%	80 - 125	8031987	03/13/08 13:29
1,2-Dichloropropane	50.0	50.7			104%	75 - 124	8031987	03/13/08 13:29
2,2-Dichloropropane	50.0	51.9		ug/kg	101%	73 - 124 59 - 144		
cis-1,3-Dichloropropene	50.0	50.4		ug/kg	104%	39 - 144 80 - 137	8031987	03/13/08 13:29
trans-1,3-Dichloropropene	50.0	50.4		ug/kg			8031987	03/13/08 13:29
1,1-Dichloropropene				ug/kg	101%	75 - 133	8031987	03/13/08 13:29
Ethylbenzene	50.0	52.0		ug/kg	104%	76 - 133	8031987	03/13/08 13:29
Hexachlorobutadiene	50.0	51.1		ug/kg	102%	80 - 128	8031987	03/13/08 13:29
2-Hexanone	50.0	52.8		ug/kg	106%	60 - 150	8031987	03/13/08 13:29
	250	263		ug/kg	105%	63 - 149	8031987	03/13/08 13:29
Isopropylbenzene	50.0	44.8		ug/kg	90%	74 - 131	8031987	03/13/08 13:29
p-Isopropyltoluene	50.0	50.1		ug/kg	100%	75 - 133	8031987	03/13/08 13:29
Methyl tert-Butyl Ether	50.0	48.0		ug/kg	96%	67 - 130	8031987	03/13/08 13:29
Methylene Chloride	50.0	51.8		ug/kg	104%	65 - 144	8031987	03/13/08 13:29
4-Methyl-2-pentanone	250	262		ug/kg	105%	64 - 142	8031987	03/13/08 13:29
Naphthalene	50.0	47.0		ug/kg	94%	63 - 144	8031987	03/13/08 13:29
n-Propylbenzene	50.0	49.6		ug/kg	99%	80 - 131	8031987	03/13/08 13:29
Styrene	50.0	54.6		ug/kg	109%	80 - 144	8031987	03/13/08 13:29
1,1,1,2-Tetrachloroethane	50.0	54.7		ug/kg	109%	80 - 129	8031987	03/13/08 13:29
1,1,2,2-Tetrachloroethane	50.0	52.4		ug/kg	105%	73 - 139	8031987	03/13/08 13:29
Tetrachloroethene	50.0	51.5		ug/kg	103%	76 - 128	8031987	03/13/08 13:29

TestAmericu THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ŧ

Client Weaver Boos Consulta 70 West Madison, Suit Chicago,, IL 60602 Attn Carl Dawes			Work Order: Project Name: Project Number: Received:	1782-)462 1a Rush Proje 308-02 /08 08:00	ect		
	PR	ROJECT QUALITY	CONTROL DA	ГА				
		LCS - (14	• 7			
Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds	by EPA Method 8260B	• • • • • • • • • • • • • • • • • • • •		••••	••••••		• • • • • • • • • • • •	
8031987-BS1								
Toluene	50.0	50.7		ug/kg	101%	80 - 125	8031987	03/13/08 13:29
1,2,3-Trichlorobenzene	50.0	50.9		ug/kg	102%	64 - 136	8031987	03/13/08 13:29
1,2,4-Trichlorobenzene	50.0	50,1		ug/kg	100%	58 - 145	8031987	03/13/08 13:29
1,1,2-Trichloroethane	50.0	49.9		ug/kg	100%	80 - 127	8031987	03/13/08 13:29
1,1,1-Trichloroethane	50.0	51.9		ug/kg	100%	76 - 134	8031987	03/13/08 13:29
Trichloroethene	50.0	51.6		ug/kg	103%	75 - 131	8031987	03/13/08 13:29
Trichlorofluoromethane	50.0	43.8		ug/kg	88%	63 - 130	8031987	03/13/08 13:29
1,2,3-Trichloropropane	50.0	46.4		ug/kg	93%	66 - 129	8031987	03/13/08 13:29
1,3,5-Trimethylbenzene	50.0	50.9		ug/kg	102%	78 - 133	8031987	03/13/08 13:29
1,2,4-Trimethylbenzene	50.0	50.0		ug/kg	100%	76 - 135	8031987	03/13/08 13:29
Vinyl chloride	50.0	39.1 .		ug/kg	78%	58 - 134	8031987	03/13/08 13:29
Xylenes, total	150	155		ug/kg	103%	79 - 130	8031987	03/13/08 13:29
Surrogate: 1,2-Dichloroethane-d4	50.0	55.7		-8-8	111%	41 - 150	8031987	03/13/08 13:29
Surrogate: Dibromofluoromethane	50.0	57.4			115%	55 - 139	8031987	03/13/08 13:29
Surrogate: Toluene-d8	50,0	56.2			112%	57 - 148	8031987	03/13/08 13:29
Surrogate: 4-Bromofluorobenzene	50.0	53.6			107%	58 - 150	8031987	03/13/08 13:29
Semivolatile Organic Compo	unds by EPA Method 8270C							
8030981-BS1								
Acenaphthene	1.67	1.37	ពរុ	g∕kg wet	82%	52 - 106	8030981	03/13/08 12:10
Acenaphthylene	1.67	1.50	៣រួ	g/kg wet	90%	53 - 109	8030981	03/13/08 12:10
Anthracene	1.67	1.52	mį	g/kg wet	91%	54 - 124	8030981	03/13/08 12:10
Benzo (a) anthracene	1.67	1.50	mį	g/kg wet	90%	53 - 111	8030981	03/13/08 12:10
Benzo (a) pyrene	1.67	1.53	m	g/kg wet	92%	52 - 122	8030981	03/13/08 12:10
Benzo (b) fluoranthene	1.67	1.78	mį	g/kg wet	107%	`48 - 115	8030981	03/13/08 12:10
Benzo (g,h,i) perylene	1.67	1.50	mį	g/kg wet	90%	46 - 114	8030981	03/13/08 12:10
Benzo (k) fluoranthene	1.67	1.22	mg	g∕kg wet	73%	41 - 121	8030981	03/13/08 12:10
4-Bromophenyl phenyl ether	1.67	1.32	mg	g/kg wet	79%	47 - 102	8030981	03/13/08 12:10
Butyl benzyl phthalate	1.67	1.68	mg	g/kg wet	101%	56 - 127	8030981	03/13/08 12:10
Carbazole	1.67	1.37	mg	/kg wet	82%	53 - 113	8030981	03/13/08 12:10
4-Chloro-3-methylphenol	1.67	1.61	mg	g/kg wet	96%	42 - 121	8030981	03/13/08 12:10
4-Chloroaniline	1.67	1.20	. mg	/kg wet	72%	40 - 112	8030981	03/13/08 12:10
Bis(2-chloroethoxy)methane	1.67	1.34	mg	/kg wet	80%	45 - 105	8030981	03/13/08 12:10
Bis(2-chloroethyl)ether	1.67	1.31	mg	g∕kg wet	78%	45 - 106	. 8030981	03/13/08 12:10
Bis(2-chloroisopropyl)ether	1.67	1.39	៣រួ	y/kg wet	84%	46 - 109	8030981	03/13/08 12:10
2-Chloronaphthalene	1.67	1.42	mg	⊮kg wet	85%	49 - 105	8030981	03/13/08 12:10
2-Chlorophenol	1.67	1.46	mg	/kg wet	87%	44 - 119	8030981	03/13/08 12:10
4-Chlorophenyl phenyl ether	1.67	1.44	mg	/kg wet	86%	53 - 110	8030981	03/13/08 12:10
Chrysene	. 1.67	1.42	mg	/kg wet	85%	49 - 113	8030981	03/13/08 12:10
Dibenz (a,h) anthracene	1.67	1.56	· mg	/kg wet	94%	47 - 117	8030981	03/13/08 12:10
Dibenzofuran	1.67	1.44		/kg wet	86%	55 - 111	8030981	03/13/08.12:1

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA

LCS	-	Cont.	

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C			• • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • •	
8030981-BS1	•							
Di-n-butyl phthalate	1.67	1.55		mg/kg wet	93%	54 - 150	8030981	03/13/08 12:10
1,4-Dichlorobenzene	1.67	1.40		mg/kg wet	84%	35 - 109	8030981	03/13/08 12:10
1,2-Dichlorobenzene	1.68	1.46		mg/kg wet	86%	36 - 112	8030981	03/13/08 12:10
1,3-Dichlorobenzene	1.67	1.42		mg/kg wet	85%	36 - 110	8030981	03/13/08 12:10
3,3-Dichlorobenzidine	1.67	1.30		mg/kg wet	78%	42 - 111	8030981	03/13/08 12:10
2,4-Dichlorophenol	1.67	1.59		mg/kg wet	95%	40 - 118	8030981	03/13/08 12:10
Diethyl phthalate	1.67	1.54		mg/kg wet	92%	43 - 122	8030981	03/13/08 12:10
2,4-Dimethylphenol	1.67	1.75		mg/kg wet	105%	31 - 128	8030981	03/13/08 12:10
Dimethyl phthalate	1.67	1.51		mg/kg wet	90%	54 - 111	8030981	03/13/08 12:10
4,6-Dinitro-2-methylphenol	1.67	1.52		mg/kg wet	91%	24 - 131	8030981	03/13/08 12:10
2,4-Dinitrophenol	1.67	1.55		mg/kg wet	93%	11 - 148	8030981	03/13/08 12:10
2,6-Dinitrotoluene	1.67	1.59		mg/kg wet	95%	51 - 119	8030981	03/13/08 12:10
2,4-Dinitrotoluene	1.67	1.53		mg/kg wet	92%	54 - 113	8030981	03/13/08 12:10
Di-n-octyl phthalate	1.67	1.63		mg/kg wet	98%	45 - 134	8030981	03/13/08 12:10
Bis(2-ethylhexyl)phthalate	1.67	1.57		mg/kg wet	94%	52 - 122	8030981	03/13/08 12:10
Fluoranthene	1.67	1.49		mg/kg wet	90%	52 - 113	8030981	03/13/08 12:10
Fluorene	1.67	1.53		mg/kg wet	92%	54 - 107	8030981	03/13/08 12:10
Hexachlorobenzene	1.67	1.53		mg/kg wet	92%	51 - 117	8030981	03/13/08 12:10
Hexachlorobutadiene	1.67	1.73		mg/kg wet	104%	38 - 117	8030981	03/13/08 12:10
Hexachlorocyclopentadiene	1.67	1.31		mg/kg wet	78%	14 - 123	8030981	03/13/08 12:10
Hexachloroethane	1.67	1.54		mg/kg wet	93%	40 - 114	8030981	03/13/08 12:10
Indeno (1,2,3-cd) pyrene	1.67	1.54		mg/kg wet	93%	47 - 115	8030981	03/13/08 12:10
Isophorone	1.67	1,45		mg/kg wet	87%	35 - 107	8030981	03/13/08 12:10
2-Methylnaphthalene	1.67	1.49		mg/kg wet	89%	42 - 112	8030981	03/13/08 12:10
2-Methylphenol	1.67	1.48		mg/kg wet	89%	44 - 119	8030981	03/13/08 12:10
3/4-Methylphenol	1.67	1.61		mg/kg wet	97%	49 - 129	8030981	03/13/08 12:10
Naphthalene	1.67	1.40		mg/kg wet	84%	34 - 107	8030981	03/13/08 12:10
3-Nitroaniline	1.67	1.29		mg/kg wet	77%	50 - 123	8030981	03/13/08 12:10
2-Nitroaniline	1.67	1.45		mg/kg wet	87%	54 - 120	8030981	03/13/08 12:10
4-Nitroaniline	1.67	1.36		mg/kg wet	82%	46 - 124	8030981	03/13/08 12:10
Nitrobenzene	1.67	1.41		mg/kg wet	85%	35 - 102	8030981	03/13/08 12:10
4-Nitrophenol	1.67	1.49		mg/kg wet	90%	32 - 138	8030981	03/13/08 12:10
2-Nitrophenol	1.67	1.56		mg/kg wet	94%	34 - 119	8030981	03/13/08 12:10
N-Nitrosodiphenylamine	1.67	1.44		mg/kg wet	87%	61 - 139	8030981	03/13/08 12:10
N-Nítrosodi-n-propylamine	1.67	1.41		mg/kg wet	84%	44 - 117	8030981	03/13/08 12:10
Pentachlorophenol	1.67	1.88		mg/kg wet	113%	38 - 141	8030981	03/13/08 12:10
Phenanthrene	1.67	1.41		mg/kg wet	84%	53 - 108	8030981	03/13/08 12:10
Phenol	1.67	1.39		mg/kg wet	84%	43 - 122	8030981	03/13/08 12:10
Pyrene	1.67	1.45		mg/kg wet	87%	54 - 113	8030981	03/13/08 12:10
Pyridine	1.67	1.10		mg/kg wet	66%	30 - 103	8030981	03/13/08 12:10
1,2,4-Trichlorobenzene	1.67	1.47		mg/kg wet	88%	35 - 102	8030981	03/13/08 12:10

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRC0462

1782-308-02

03/06/08 08:00

Atlanta Rush Project

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250 Chicago,, IL 60602

Attn

Carl Dawes

PROJECT QUALITY CONTROL DATA LCS - Cont,

Work Order:

Project Name:

Received:

Project Number:

Analyte	Known Val.	Analyzed Vai	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C	·····	• • • • • • • • • • • •	•••••				
8030981-BS1	•							
I-Methylnaphthalene	1.67	1.46		mg/kg wet	88%	36 - 100	8030981	03/13/08 12:10
2,4,6-Trichlorophenol	1.67	1.62		mg/kg wet	97%	50 - 122	8030981	03/13/08 12:10
2,4,5-Trichlorophenol	1.67	1.60		mg/kg wet	96%	45 - 122	8030981	03/13/08 12:10
Surrogate: Terphenyl-d14	1.67	1.23		mp/ng not	74%	26 - 128	8030981	03/13/08 12:10
Surrogate: 2,4,6-Tribromophenol	1.67	1.48			89%	20 - 120	8030981	03/13/08 12:10
Surrogate: Phenol-d5	1.67	1.26			76%	23 - 113	8030981	03/13/08 12:10
Surrogate: 2-Fluorobiphenyl	1.67	1.13			68%	19 - 109	8030981	03/13/08 12:10
Surrogate: 2-Fluorophenol	1.67	1.24	•		74%	19 - 105	8030981	03/13/08 12:10
Surrogate: Nitrobenzene-dS	1.67	1.27			76%	19 - 103 22 - 104	8030981	03/13/08 12:10
8032357-BS1								
Acenaphthene	1.67	1.34		mg/kg wet	81%	52 - 106	8032357	03/16/08 15:25
Acenaphthylene	1.67	·1.45		mg/kg wet	87%	53 - 109	8032357	03/16/08 15:25
Anthracene	1.67	1.39		mg/kg wet	83%	54 - 124	8032357	03/16/08 15:25
Benzo (a) anthracene	1.67	1.37		mg/kg wet	82%	53 - 111	8032357	03/16/08 15:25
Benzo (a) pyrene	1.67	1.31		mg/kg wet	79%	52 - 122	8032357	03/16/08 15:25
Benzo (b) fluoranthene	1.67	1.25		mg/kg wet	75%	48 - 115	8032357	03/16/08 15:25
Benzo (g,h,i) perylene	1.67	1.37		mg/kg wet	82%	46 - 114	8032357	03/16/08 15:25
Benzo (k) fluoranthene	1.67	1.26		mg/kg wet	76%	41 - 121	8032357	03/16/08 15:25
4-Bromophenyl phenyl ether	1.67	1.22		mg/kg wet	73%	47 - 102	8032357	03/16/08 15:25
Butyl benzyl phthalate	1.67	1.50		mg/kg wet	90%	56 - 127	8032357	03/16/08 15:25
Carbazole	1.67	1.28		mg/kg wet	77%	53 - 113	8032357	03/16/08 15:25
4-Chloro-3-methylphenol	1.67	1.31		mg/kg wet	79%	42 - 121	8032357	03/16/08 15:25
4-Chloroaniline	1.67	1.28		mg/kg wet	77%	40 - 112	8032357	03/16/08 15:25
Bis(2-chloroethoxy)methane	1.67	1.29		mg/kg wet	77%	45 - 105	8032357	03/16/08 15:25
Bis(2-chloroethyl)ether	1.67	1.16		mg/kg wet	69%	45 - 105	8032357	03/16/08 15:25
Bis(2-chloroisopropyl)ether	1.67	1.13		mg/kg wet	68%	46 - 109	8032357	03/16/08 15:25
2-Chloronaphthalene	1.67	1.33		mg/kg wet	80%	49 - 105	8032357	03/16/08 15:25
2-Chlorophenol	1.67	1.35		mg/kg wet	81%	49 - 103 44 - 119	8032357	03/16/08 15:25
4-Chiorophenyi phenyi ether	1.67	1.26		mg/kg wet	76%	53 - 110	8032357	03/16/08 15:25
Chrysene	1.67	1.43		mg/kg wet	86%	49 - 113	8032357	
Dibenz (a,h) anthracene	1.67	1.26		mg/kg wet	76%	49 - 113 47 - 117	8032357	03/16/08 15:25
Dibenzofuran	1.67	1.33		mg/kg wet	80%	55 - 111	8032357	03/16/08 15:25
Di-n-butyl phthalate	1.67	1.35	•		80%			03/16/08 15:25
1,4-Dichlorobenzene	1.67	1.19		mg/kg wet mg/kg wet		54 - 150 35 - 100	8032357	03/16/08 15:25
1,2-Dichlorobenzene	1.68	1.28			71% 76%	35 - 109	8032357	03/16/08 15:25
1,3-Dichlorobenzene	1.67	1.16		mg/kg wet	76%	36 - 112	8032357	03/16/08 15:25
3,3-Dichlorobenzidine	1.67	1.18		mg/kg wet	70%	36 - 110	8032357	03/16/08 15:25
2,4-Dichlorophenol	1.67	1.42		mg/kg wet	76%	42 - 111	8032357	03/16/08 15:2:
Diethyl phthalate	1.67			mg/kg wet	85%	40 - 118	8032357	03/16/08 15:2:
2,4-Dimethylphenol	1.07	1.21		mg/kg wet	73%	43 - 122	8032357	03/16/08 15:2:

1

THE LEADER IN ENVIRONMENTAL TESTING

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •		• • • • • • • • • • • • •	
8032357-BS1								
Dimethyl phthalate	1.67	1.38		mg/kg wet	83%	54 - 111	8032357	03/16/08 15:25
4,6-Dinitro-2-methylphenol	1.67	1.26		mg/kg wet	76%	24 - 131	8032357	03/16/08 15:25
2,4-Dinitrophenol	1.67	1.15		mg/kg wet	69%	11 - 148	8032357	03/16/08 15:25
2,6-Dinitrotoluene	1.67	1.51		mg/kg wet	90%	51 - 119	8032357	03/16/08 15:25
2,4-Dinitrotoluene	1.67	1.42		mg/kg wet	85%	54 - 113	8032357	03/16/08 15:25
Di-n-octyl phthalate	1.67	1.44		mg/kg wet	86%	45 - 134	8032357	03/16/08 15:25
Bis(2-ethylhexyl)phthalate	1.67	1.51		mg/kg wet	91%	52 - 122	8032357	03/16/08 15:25
Fluoranthene	1.67	1.35		mg/kg wet	81%	52 - 113	8032357	03/16/08 15:25
Fluorene	1.67	1.39		mg/kg wet	84%	54 - 107	8032357	03/16/08 15:25
Hexachlorobenzene	1.67	1.35		mg/kg wet	81%	51 - 117	8032357	03/16/08 15:25
Hexachlorobutadiene	1.67	1.38		mg/kg wet	83%	38 - 117	8032357	03/16/08 15:25
Hexachlorocyclopentadiene	1.67	1.08		ing/kg wet	65%	14 - 123	8032357	03/16/08 15:25
Hexachloroethane	1.67	1.19		ing/kg wet	71%	40 - 114	8032357	03/16/08 15:25
Indeno (1,2,3-cd) pyrene	1.67	1.33		mg/kg wet	80%	47 - 115	8032357	03/16/08 15:25
Isophorone	1.67	1.28		mg/kg wet	77%	35 - 107	8032357	03/16/08 15:25
2-Methylnaphthalene	1.67	1.24		mg/kg wet	75%	42 - 112	8032357	03/16/08 15:25
2-Methylphenol	1.67	1.35		mg/kg wet	81%	44 - 119	8032357	03/16/08 15:25
3/4-Methylphenol	1.67	1.54		mg/kg wet	92%	49 - 129	8032357	03/16/08 15:25
Naphthalene	1.67	1.26		mg/kg wet	75%	34 - 107	8032357	03/16/08 15:25
3-Nitroaniline	1.67	1.26		mg/kg wet	75%	50 - 123	8032357	03/16/08 15:25
2-Nitroaniline	1.67	1.41		mg/kg wet	85%	54 - 120	8032357	03/16/08 15:25
4-Nitroaniline	1.67	1.36		mg/kg wet	81%	46 - 124	8032357	03/16/08 15:25
Nitrobenzene	1.67	1.69		mg/kg wet	101%	35 - 102	8032357	03/16/08 15:25
4-Nitrophenol	1.67	1.34		mg/kg wet	81%	32 - 138	8032357	03/16/08 15:25
2-Nitrophenol	1.67	1.38		mg/kg wet	82%	34 - 119	8032357	03/16/08 15:25
N-Nitrosodiphenylamine	1.67	1.41		mg/kg wet	85%	61 - 139	8032357	03/16/08 15:25
N-Nitrosodi-n-propylamine	1.67	1.22		mg/kg wet	73%	44 - 117	8032357	03/16/08 15:25
Pentachlorophenol	1.67	1.27		mg/kg wet	76%	38 - 141	8032357	03/16/08 15:25
Phenanthrene	1.67	1.32		mg/kg wet	79%	53 - 108	8032357	03/16/08 15:25
Phenol	1.67	1.29		mg/kg wet	77%	43 - 122	8032357	03/16/08 15:25
Pyrene	1.67	1.48		mg/kg wet	89%	54 - 113	8032357	03/16/08 15:25
Pyridine	1.67	0,983		mg/kg wet	59%	30 - 103	8032357	03/16/08 15:25
1,2,4-Trichlorobenzene	1.67	1.34		mg/kg wet	80%	35 - 102	8032357	03/16/08 15:25
1-Methylnaphthalene	1.67	1.28	•	mg/kg wet	77%	36 - 100	8032357	03/16/08 15:25
2,4,6-Trichlorophenol	1.67	1.48		mg/kg wet	89%	50 - 122	8032357	03/16/08 15:25
2,4,5-Trichlorophenol	1.67	1.42		mg/kg wet	85%	45 - 122	8032357	03/16/08 15:25
Surrogate: Terphenyl-d14	1.67	1.14			69%	26 - 128	8032357	03/16/08 15:25
Surrogate: 2,4,6-Tribromophenol	1.67	1.24			74%	20 - 132	8032357	03/16/08 15:25
Surrogate: Phenol-d5	1.67	1.34			80%	23 - 113	8032357	03/16/08 15:25
Surrogate: 2-Fluorobiphenyl	1.67	1.15			69%	19 - 109	8032357	03/16/08 15:25
Surrogate: 2-Fluorophenol	1.67	1.24			74%	19 - 105	8032357	03/16/08 15:25

<u>TestAmericu</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

	· · · · ·	PROJECT QUALITY CONTROL DAT LCS - Cont.	A	
Attn	Carl Dawes	Received:	03/06/08 08:00	
	Chicago,, IL 60602	Project Number:	1782-308-02	
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project	
Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462	

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Method 8270C		• • • • • • • • • • • • • •					
8032357-BS1 Surrogate: Nitrobenzene-d5								
Surrogale: Milrobenzene-as	1.67	1.21			73%	22 - 104	8032357	03/16/08 15:25
		•						
• •								
,								
		· •						
								n

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

70 W	Vest Madison, Suite 4250	Work Order: Project Name:	NRC0462 Atlanta Rush Project	
· Chica	eago., IL 60602	Project Number:	1782-308-02	
Attn Carl	Dawes	Received:	03/06/08 08:00	

PROJECT QUALITY CONTROL DATA

LCS Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	y EPA Method 8	3260B									•••••	
8030997-BSD1												
Acetone		234		ug/kg	250	94%	49 - 150	1	45	8030997		03/13/08 00:24
Benzene		48.4		ug/kg	50.0	97%	76 - 130	5	43	8030997		03/13/08 00:24
Bromobenzene		48.3		ug/kg	50.0	97%	80 - 128	6	50	8030997		03/13/08 00:24
Bromochloromethane		51.7		ug/kg	50.0	103%	70 - 135	5	32	8030997		03/13/08 00:24
Bromodichloromethane		51.9		ug/kg	50.0	104%	78 - 135	4	37	8030997		03/13/08 00:24
Bromoform		49.6		ug/kg	50,0	99%	67 - 143	2	50	8030997		03/13/08 00:24
Bromomethane		40.6		ug/kg	50.0	81%	58 - 150	4	50	8030997		03/13/08 00:2
2-Butanone		253		ug/kg	250	101%	61 - 143	4	43	8030997		03/13/08 00:24
sec-Butylbenzene		52.3		ug/kg	50.0	105%	80 - 134	7	50	8030997		03/13/08 00:2
n-Butylbenzene		51.8		ug/kg	50.0	104%	71 - 141	· 9	50	8030997		03/13/08 00:2
tert-Butylbenzene		54.0		ug/kg	50.0	108%	79 - 132	5	50	8030997		03/13/08 00:2
Carbon disulfide		44.7		ug/kg	50.0	89%	70 - 134	6	47	8030997		03/13/08 00:2
Carbon Tetrachloride		51.5		ug/kg	50.0	103%	75 - 137	5	44	8030997		03/13/08 00:2
Chlorobenzene		49.8		ug/kg	50.0	100%	80 - 121	8	44	8030997		03/13/08 00:2
Chlorodibromomethane		52,5		ug/kg	50.0	105%	77 - 130	6	45	8030997		03/13/08 00:2
Chloroethane		39.5		ug/kg	50.0	79%	62 - 149	4	50	8030997		03/13/08 00:2
Chloroform		48.7		ug/kg	50.0	97%	75 - 130	4	36	8030997		03/13/08 00:2
Chloromethane		33.4		ug/kg	50.0	67%	35 - 130	4	50	8030997		03/13/08 00:2
2-Chlorotoluene		50.3		ug/kg	50.0	101%	80 - 131	9	50	8030997		03/13/08 00:2
4-Chiorotoluene		48.6		ug/kg	50.0	97%	80 - 129	11	50	8030997		03/13/08 00:2
1,2-Dibromo-3-chloropropane		53.3		ug/kg	50.0	107%	62 - 142	3	50	8030997		03/13/08 00:2
1,2-Dibromoethane (EDB)		53.0		ug/kg	50.0	106%	81 - 130	2	50	8030997		03/13/08 00:2
Dibromomethane		51.5		ug/kg	50.0	103%	77 - 133	4	45	8030997		03/13/08 00:2
1,4-Dichlorobenzene		47.9		ug/kg	50.0	96%	75 - 128	13	50	8030997		03/13/08 00:2
1,3-Dichlorobenzene		48.8		ug/kg	50.0	98%	79 - 128	13	50	8030997		03/13/08 00:2
1,2-Dichlorobenzene		51.0		ug/kg	50.0	102%	80 - 130	10	50	8030997		03/13/08 00:2
Dichlorodifluoromethane		24.8		ug/kg	50.0	50%	11 - 129	10	43	8030997		03/13/08 00:2
1,1-Dichloroethane		49.5		ug/kg	50.0	99%	68 - 150	3	37	8030997		03/13/08 00:2
1,2-Dichloroethane		51.6		ug/kg	50.0	103%	72 - 132	3	44	8030997		03/13/08 00:2
cis-1,2-Dichloroethene		49.5		ug/kg	50.0	99%	77 - 132	6	35	8030997		03/13/08 00:2
1,1-Dichloroethene		45.7		ug/kg	50.0	91%	75 - 133	6	41	8030997		03/13/08 00:2
trans-1,2-Dichloroethene		49,2		ug/kg	50.0	98%	79 - 133	6	37	8030997		03/13/08 00:2
1,3-Dichloropropane		51.0		ug/kg	50.0	102%	80 - 125	3	44	8030997		03/13/08 00:2
1,2-Dichloropropane		47.3		ug/kg	50.0	95%	75 - 124	5	35	8030997		03/13/08 00:2
2,2-Dichloropropane		46.6		ug/kg	50.0	93%	59 - 144	7	33	8030997		03/13/08 00:
cis-1,3-Dichloropropene		50.0		ug/kg	50.0	100%	80 - 137	4	43	8030997		03/13/08 00:2
trans-1,3-Dichloropropene		50.0		ug/kg	50.0	100%	75 - 133	4	50	8030997		03/13/08 00::
1,1-Dichloropropene		49.2		ug/kg	50.0	98%	76 - 133	9	41	8030997		03/13/08 00:
Ethylbenzene		50.4		ug/kg	50.0	101%	80 - 128	8	48	8030997		03/13/08 00:
Hexachlorobutadiene		50.6		ug/kg	50.0	101%	60 - 150	13	50	8030997		03/13/08 00:
2-Hexanone		262		ug/kg	250	105%		3	50	8030997		03/13/08 00:2

THE LEADER IN ENVI	RONMENTAL	TESTING
--------------------	-----------	---------

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Weaver Boos Consultants LLC (1407793) Client

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order:	NRC0462
Project Name:	Atlanta Ru
Project Number:	1782-308-
Received	03/06/08 (

ush Project 3-02 08:00

PROJECT QUALITY CONTROL DATA LCS Dup - Cont.

4	<u> </u>				Spike	1/ D	Target	0.00		D. J	Sample	Analyzed
Analyte	Orig. Val.	Duplicate	Q	Units	Conc	% Rec.	Range	КРD 	Limit	Batch	Duplicated	Date/Time
Volatile Organic Compounds by	EPA Method	8260B										
8030997-BSD1												
Isopropylbenzene		45.1		ug/kg	50.0	90%	74 - 131	8	50	8030997		03/13/08 00:24
p-Isopropyltoluene		49.8		ug/kg	50.0	100%	75 - 133	9	50	8030997		03/13/08 00:24
Methyl tert-Butyl Ether		46.9		ug/kg	50. 0	94%	67 - 130	4	45	8030997		03/13/08 00:24
Methylene Chloride		48.3		ug/kg	50.0	97%	65 - 144	5	39	8030997		03/13/08 00:24
4-Methyl-2-pentanone		258		ug/kg	250	103%	64 - 142	3	50	8030997		03/13/08 00:24
Naphthalene		47.5		ug/kg	50.0	95%	63 - 144	· 11	50	8030997		03/13/08 00:24
n-Propylbenzene		49.7		ug/kg	50.0	99%	80 - 131	9	50	8030997		03/13/08 00:24
Styrene		52.2		ug/kg	50.0	104%	80 - 144	9	50	8030997		03/13/08 00:24
1,1,1,2-Tetrachloroethane		53.4		ug/kg	50.0	107%	80 - 129	5	43	8030997		03/13/08 00:24
1,1,2,2-Tetrachloroethane		51.5		ug/kg	50.0	103%	73 - 139	3	50	8030997		03/13/08 00:24
Tetrachloroethene		50.2		ug/kg	50,0	100%	76 - 128	11	45	8030997		03/13/08 00:24
Toluene		48.9		ug/kg	50.0	98%	80 - 125	6	44	8030997		03/13/08 00:24
1,2,3-Trichlorobenzene		49.0		ug/kg	50.0	98%	64 - 136	16	50	8030997		03/13/08 00:24
1,2,4-Trichlorobenzene		49.6		ug/kg	50.0	99%	58 - 145	16	50	8030997		03/13/08 00:24
1,1,2-Trichloroethane		49.0		ug/kg	50.0	98%	80 - 127	4	41	8030997		03/13/08 00:24
1,1,1-Trichloroethane		49.9		ug/kg ·	50.0	100%	76 - 134	5	39	8030997		03/13/08 00:24
Trichloroethene		50.2		ug/kg	50.0	100%	75 - 131	8	40	8030997		03/13/08 00:24
Trichlorofluoromethane		40.6		ug/kg	50.0	81% ·	63 - 130	7	42	8030997		03/13/08 00:24
1,2,3-Trichloropropane		46.8		ug/kg	50.0	94%	66 - 129	0.7	50	8030997		03/13/08 00:24
1,3,5-Trimethylbenzene	·	50.5		ug/kg	50.0	101%	78 - 133	8	50	8030997		03/13/08 00:24
1,2,4-Trimethylbenzene		49.7		ug/kg	50.0	99%	76 - 135	10	50	8030997		03/13/08 00:24
Vinyl chloride		37.4		ug/kg	50.0	75%	58 - 134	4	41	8030997		03/13/08 00:24
Xylenes, total		149		ug/kg	150	99%	79 - 130	8	48	8030997		03/13/08 00:24
Diisopropyi Ether		47.2		ug/kg	50.0	94%	69 - 132	3	39	8030997		03/13/08 00:24
Surrogate: 1,2-Dichloroethane-d4		56.8		ug/kg	50.0	114%	41 - 150			8030997		03/13/08 00:24
Surrogate: Dibromofluoromethane		56.4		ug/kg	50.0	113%	55 - 139			8030997		03/13/08 00:24
Surrogate: Toluene-d8		56.8		ug/kg	50.0	114%	57 - 148			8030997		03/13/08 00:24
Surrogate: 4-Bromofluorobenzene		55.9		ug/kg	50.0	112%	58 - 150			8030997		03/13/08 00:24
						-						
8031987-BSD1		. 264						_				
Acetone Benzene		264	MNR1	ug/kg	250	106%	49 - 150	2	45	8031987		03/13/08 13:59
Bromobenzene		50.7	MNR1	ug/kg	50.0	101%	76 - 130	0.7	43	8031987	3	03/13/08 13:59
Bromochloromethane		49.5	MNRI	ug/kg	50.0	·99%	80 - 128	0.2	50	8031987		03/13/08 13:59
		52.8	MNR1	ug/kg	50.0	106%	70 - 135	0,3	32	8031987		03/13/08 13:59
Bromodichloromethane Bromoform		55.0	MNR1	ug/kg	50.0	110%	78 - 135	3	37	8031987		03/13/08 13:59
Bromoform Bromomethane		51.5	MNRI	ug/kg	50.0	103%	67 - 143	4	50	8031987		03/13/08 13:59
		45.8	MNR1	ug/kg	50.0	92%	58 - 150	0.2	50	8031987		03/13/08 13:59
2-Butanone		280	MNR1	ug/kg	250	112%	61 - 143	5	43	8031987		03/13/08 13:59
sec-Butylbenzene		53.2	MNR1	ug/kg	50.0	106%	80 - 134	3	50	8031987		03/13/08 13:59
n-Butylbenzene		52.6	MNR1	ug/kg	50.0	105%	71 - 141	3	50	8031987		03/13/08 13:59
tert-Butylbenzene		54.2	MNR1	ug/kg	50,0	108%	79 - 132	3	50	8031987		03/13/08 13:59

ļ

THE LEADER IN ENVIRONMENTAL TESTING

ν ,

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rcc.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method	8260B	• • • • • • • • • • • •	· · · · · · · · · · · · · · ·								• • • • • • • • • • • • • • • •
8031987-BSD1												
Carbon disulfide		47.9	MNRI	ug/kg	50.0	96%	70 - 134	0.6	47	8031987		03/13/08 13:59
Carbon Tetrachloride		54.8	MNRI	ug/kg	50.0	110%	75 - 137	3	44	8031987		03/13/08 13:59
Chlorobenzene		52.9	MNRt	ug/kg	50.0	106%	80 - 121	2	44	8031987		03/13/08 13:59
Chlorodibromomethane		55.5	MNR1	ug/kg	50.0	111%	77 - 130	4	45	8031987		03/13/08 13:59
Chloroethane		43.5	MNRI	ug/kg	50.0	87%	62 - 149	0.7	50	8031987		03/13/08 13:59
Chloroform		51.8	MNR1	ug/kg	50.0	104%	75 - 130	0.4	36	8031987		03/13/08 13:59
Chloromethane		34.0	MNR1	ug/kg	50.0	68%	35 - 130	3	50	8031987		03/13/08 13:59
2-Chlorotoluene		51.4	MNR1	ug/kg	50.0	103%	80 - 131	0.7	50	8031987		03/13/08 13:59
4-Chlorotoluene		51.0	MNR1	ug/kg	50.0	102%	80 - 129	0.04	50	8031987		03/13/08 13:59
1,2-Dibromo-3-chloropropane		54,1	MNR1	ug/kg	50.0	108%	62 - 142	4	50	8031987		03/13/08 13:59
1,2-Dibromoethane (EDB)		54.1	MNR1	ug/kg	50.0	108%	81 - 130	3	50	8031987		03/13/08 13:59
Dibromomethane		54.5	MNRI	ug/kg	50.0	109%	77 - 133	1	45	8031987		03/13/08 13:59
1,4-Dichlorobenzene		51.3	MNRI	ug/kg	50.0	103%	75 - 128	2	50	8031987		03/13/08 13:59
1,3-Dichlorobenzene		51.5	MNRI	ug/kg	50.0	103%	79 - 128	0.8	50	8031987		03/13/08 13:59
1,2-Dichlorobenzene		52.5	MNR1	ug/kg	50.0	105%	80 - 130	2	50	8031987		03/13/08 13:59
Dichlorodifluoromethane		24,0	MNR1	ug/kg	50.0	48%	11 - 129	0.3	43	8031987		03/13/08 13:59
1,1-Dichloroethane		53.2	MNR1	ug/kg	50.0	106%	68 - 150	0.6	37	8031987		03/13/08 13:59
1,2-Dichloroethane		55.3	MNRI	ug/kg	50.0	111%	72 - 132	1	44	8031987		03/13/08 13:59
cis-1,2-Dichloroethene		53.5	MNRI	ug/kg	50.0	107%	77 - 132	0.06	35	8031987		03/13/08 13:59
1,1-Dichloroethene		48.4	MNRI	ug/kg	50.0	97%	75 - 133	2	41	8031987		03/13/08 13:59
trans-1,2-Dichloroethene		53.6	MNR1	ug/kg	50.0	107%	79 - 133	0,5	37	8031987		03/13/08 13:59
1,3-Dichloropropane		53.8	MNR1	ug/kg	50.0	108%	80 - 125	3	44	8031987		03/13/08 13:59
1,2-Dichloropropane		50.4	MNR1	ug/kg	50.0	101%	75 - 124	0.7	35	8031987		03/13/08 13:59
2,2-Dichloropropane		51.8	MNR1	ug/kg	50.0	104%	59 - 144	0.1	33	8031987		03/13/08 13:59
cis-1,3-Dichloropropene		52.2	MNRI	ug/kg	50.0	104%	80 - 137	3	43	8031987		03/13/08 13:59
trans-1,3-Dichloropropene		52.2	MNRI	ug/kg	50.0	104%	75 - 133	3	50	8031987		03/13/08 13:59
1,1-Dichloropropene		51.7	MNR1	ug/kg	50.0	103%	76 - 133	0.5	41	8031987		03/13/08 13:59
Ethylbenzene		52.3	MNR1	ug/kg	50.0	105%	80 - 128	2	48	8031987		03/13/08 13:59
Hexachlorobutadiene		54.2	MNRI	ug/kg	50.0	108%	60 - 150	3	50	8031987		03/13/08 13:59
2-Hexanone		276	MNR1	ug/kg	250	110%	63 - 149	5	50	8031987		03/13/08 13:59
Isopropylbenzene		46.2	MNR1	ug/kg	50.0	92%	74 - 131	3	50	8031987		03/13/08 13:59
p-Isopropyltoluene		51.7	MNR1	ug/kg	50.0	103%	75 - 133	3	50	8031987		03/13/08 13:59
Methyl tert-Butyl Ether		48.8	MNR1	ug/kg	50.0	98%	67 - 130	2	45	8031987		03/13/08 13:59
Methylene Chloride		51.3	MNRI	ug/kg	50.0	103%	65 - 144	0.9	39	8031987		03/13/08 13:59
4-Methyl-2-pentanone		277	MNR1	ug/kg	250	111%	64 - 142	5	50	8031987		03/13/08 13:59
Naphthalene		47.5	MNR1	ug/kg	50.0	95%	63 - 144		50	8031987		03/13/08 13:59
n-Propylbenzene		50.6	MNR1	ug/kg	50.0	101%			50	8031987		03/13/08 13:5
Styrene		54.9	MNRI	ug/kg	50.0	110%			50	8031987		03/13/08 13:59
1,1,1,2-Tetrachloroethane		55.2	MNRI	ug/kg	50.0	110%			43	8031987		03/13/08 13:5
1,1,2,2-Tetrachloroethane		53.3	MNRI	ug/kg	50.0	107%			50	8031987		03/13/08 13:5
Tetrachloroethene		52.4	MNRI	ug/kg	50.0		76 - 128		45	8031987		03/13/08 13:5

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ł

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

NRC0462 Work Order: Project Name: Project Number: Received:

Atlanta Rush Project 1782-308-02 03/06/08 08:00

PROJECT QUALITY CONTROL DATA

LCS Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by EPA	Method 8	260B						•••••				
8031987-BSD1												
Toluene		50.9	MNR1	ug/kg	50.0	102%	80 - 125	0.4	44	8031987		03/13/08 13:59
1,2,3-Trichlorobenzene		51.4	MNRI	ug/kg	50.0	103%	64 - 136	0.9	50	8031987		03/13/08 13:59
1,2,4-Trichlorobenzene		50.1	MNRI	ug/kg	50.0	100%	58 - 145	0.06	50	8031987		03/13/08 13:59
1,1,2-Trichloroethane		51.8	MNR1	ug/kg	50.0	104%	80 - 127	4	41	8031987		03/13/08 13:59
1,1,1-Trichloroethane		52.7	MNRI	ug/kg	50.0	105%	76 - 134	2	39	8031987		03/13/08 13:59
Trichloroethene		52.0	MNRI	ug/kg	50.0	104%	75 - 131	0.8	40	8031987		03/13/08 13:59
Trichlorofluoromethane		43.3	MNR1	ug/kg	50.0	87%	63 - 130	ι	42	8031987		03/13/08 13:59
1,2,3-Trichloropropane		48.1	MNR1	ug/kg	50.0	96%	66 - 129	3	50	8031987		03/13/08 13:59
1,3,5-Trimethylbenzene		51.8	MNR1	ug/kg	50.0	104%	78 - 133	2	50	8031987		03/13/08 13:59
1,2,4-Trimethylbenzene		50.7	MNR1	ug/kg	50.0	101%	76 - 135	1	50	8031987		03/13/08 13:59
Vinyl chloride		39.0	MNR1	ug/kg	50.0	78%	58 - 134	0.4	41	8031987		03/13/08 13:59
Xylenes, total		158	MNR1	ug/kg	150	105%	79 - 130	2	48	8031987		03/13/08 13:59
Surrogate: 1,2-Dichloroethane-d4		56.1		ug/kg	50.0	112%	41 - 150			8031987		03/13/08 13:59
Surrogate: Dibromofluoromethane		58,0		ug/kg	50.0	116%	55 - 139			8031987		03/13/08 13:59
Surrogate: Toluene-d8		56.8		ug/kg	50.0	114%	57 - 148			8031987		03/13/08 13:59
Surrogate: 4-Bromofluorobenzene		53.5		ug/kg	50.0	107%	58 - 150			8031987		03/13/08 13:59

I.

THE LEADER IN ENVIRONMENTAL TESTING

•

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike

Analyte	Orig, Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by EPA	A Method 8260)B				•••••			• • • • • • • • • • • • • • • • • •
8030997-MS1									
Acetone	43.9	177	ug/kg	250	53%	32 - 163	8030997	NRC0393-07	03/13/08 08:12
Benzene	1.09	28.5	ug/kg	50.0	55%	33 - 146	8030997	NRC0393-07	03/13/08 08:12
Bromobenzene	ND	19.2	ug/kg	50.0	38%	10 - 156	8030997	NRC0393-07	03/13/08 08:12
Bromochloromethane	ND	27.3	ug/kg	50.0	55%	43 - 138	8030997	NRC0393-07	03/13/08 08:12
Bromodichloromethane	ND	25.6	ug/kg	50.0	51%	31 - 149	8030997	NRC0393-07	03/13/08 08:12
Bromoform	ND	19.6	ug/kg	50.0	39%	14 - 167	8030997	NRC0393-07	03/13/08 08:12
Bromomethane	ND	27.2	ug/kg	50.0	54%	16 - 172	8030997	NRC0393-07	03/13/08 08:12
2-Butanone	ND	133	ug/kg	250	53%	37 - 151	8030997	NRC0393-07	03/13/08 08:12
sec-Butylbenzene	ND	16.5	ug/kg	50.0	33%	18 - 165	8030997	NRC0393-07	03/13/08 08:12
n-Butylbenzene	ND	14.6	ug/kg	50.0	29%	10 - 168	8030997	NRC0393-07	03/13/08 08:12
tert-Butylbenzene	ND	17.5	ug/kg	50.0	35%	17 - 165	8030997	NRC0393-07	03/13/08 08:12
Carbon disulfide	3.72	32.6	ug/kg	50.0	58%	34 - 147	8030997	NRC0393-07	03/13/08 08:12
Carbon Tetrachloride	ND	29.1	ug/kg	50.0	58%	33 - 155	8030997	NRC0393-07	03/13/08 08:12
Chlorobenzenc	ND	23.9	ug/kg	50.0	48%	23 - 147	8030997	NRC0393-07	03/13/08 08:12
Chlorodibromomethane	ND	22.5	ug/kg	50.0	45%	21 - 155	8030997	NRC0393-07	03/13/08 08:12
Chloroethane	ND	28.8	ug/kg	50.0	58%	44 - 155	8030997	NRC0393-07	03/13/08 08:12
Chloroform	ND	28.6	ug/kg	50.0	57%	39 - 140	8030997	NRC0393-07	03/13/08 08:12
Chloromethane	ND	24.3	ug/kg	50.0	49%	14 - 143	8030997	NRC0393-07	03/13/08 08:12
2-Chlorotoluene	ND	19.8	ug/kg	50.0	40%	21 - 154	8030997	NRC0393-07	03/13/08 08:12
4-Chlorotoluene	ND	19.2	ug/kg	50.0	38%	10 - 156	8030997	NRC0393-07	03/13/08 08:12
1,2-Dibromo-3-chloropropane	ND	15.3	ug/kg	50.0	31%	10 - 159	8030997	NRC0393-07	03/13/08 08:12
1,2-Dibromoethane (EDB)	· ND	23.8	ug/kg	50.0	48%	19 - 151	8030997	NRC0393-07	03/13/08 08:12
Dibromomethane	ND	25.3	ug/kg	50.0	51%	32 - 147	8030997	NRC0393-07	03/13/08 08:12
1,4-Dichlorobenzene	ND	16.7	ug/kg	50.0	33%	10 - 152	8030997	NRC0393-07	03/13/08 08:12
1,3-Dichlorobenzene	ND	16.8	ug/kg	50.0	34%	10 - 153	8030997	NRC0393-07	03/13/08 08:12
1,2-Dichlorobenzene	ND	15.4	ug/kg	50,0	31%	10 - 155	8030997	NRC0393-07	03/13/08 08:12
Dichlorodifluoromethane	ND	21.1	ug/kg	50,0	42%	10 - 143	8030997	NRC0393-07	03/13/08 08:12
1,1-Dichloroethane	ND	31.0	ug/kg	50.0	62%	49 - 156	8030997	NRC0393-07	03/13/08 08:12
1,2-Dichloroethane	ND	27.5	ug/kg	50.0	55%	27 - 145	8030997	NRC0393-07	03/13/08 08:12
cis-1,2-Dichloroethene	ND	29.2	ug/kg	50.0	58%	39 - 143	8030997	NRC0393-07	03/13/08 08:12
1,1-Dichloroethene	ND	31.0	ug/kg	50.0	62%	42 - 145	8030997	NRC0393-07	03/13/08 08:12
trans-1,2-Dichloroethene	ND	32.1	ug/kg	50,0	64%	41 - 146	8030997	NRC0393-07	03/13/08 08:12
1,3-Dichloropropane	ND	24.7	ug/kg	50.0	49%	30 - 143	8030997	NRC0393-07	03/13/08 08:12
1,2-Dichloropropane	ND	26.3	ug/kg	50.0	53%	37 - 136	8030997	NRC0393-07	03/13/08 08:12
2,2-Dichloropropane	ND	28.8	ug/kg	50.0	58%	30 - 145	8030997	NRC0393-07	03/13/08 08:12
cis-1,3-Dichloropropene	ND	22.2	ug/kg	50.0	44%	29 - 149	8030997	NRC0393-07	03/13/08 08:12
trans-1,3-Dichloropropene	ND	22.2	ug/kg	50.0	44%	17 - 146	8030997	NRC0393-07	03/13/08 08:12

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602

Attn Carl Dawes

Work Order:	NRC0462
Project Name:	Atlanta Rush Project
Project Number:	1782-308-02
Received:	03/06/08 08:00

		PROJE	CT QUALITY CO Matrix Spike -		ATA				
	<u> </u>		indenia opine	<u></u>		Target		Sample	Analyzed
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Range	Batch	Spiked	Date/Time
Volatile Organic Compounds by	EPA Method 826	0 B							
8030997-MS1									
1,1-Dichloropropene	ND	29.3	ug/kg	50.0	59%	36 - 147	8030997	NRC0393-07	03/13/08 08:
Ethylbenzene	ND	23.3	ug/kg	50.0	47%	16 - 160	8030997	NRC0393-07	03/13/08 08
Hexachiorobutadiene	ND	12.0	ug/kg	50.0	24%	10 - 191	8030997	NRC0393-07	03/13/08 08
2-Hexanone	17.3	118	ug/kg	250	40%	19 - 154	8030997	NRC0393-07	03/13/08 08
Isopropylbenzene	ND	17.4	ug/kg	50.0	35%	16 - 156	8030997	NRC0393-07	03/13/08 08
p-Isopropyltoluene	ND	15.7	ug/kg	50.0	31%	13 - 160	8030997	NRC0393-07	03/13/08 08
Methyl tert-Butyl Ether	ND	24.1	ug/kg	50.0	48%	30 - 136	8030997	NRC0393-07 .	03/13/08 08
Methylene Chloride	4.08	36.4	ug/kg	50.0	65%	31 - 160	8030997	NRC0393-07	03/13/08 08:
4-Methyl-2-pentanone	ND	128	ug/kg	250	51%	25 - 149	8030997	NRC0393-07	03/13/08 08;
Naphthalene	ND	8.06	ug/kg	50.0	16%	10 - 151	8030997	NRC0393-07	03/13/08 08
n-Propylbenzene	ND	19.2	ug/kg	50.0	38%	17 - 158	8030997	NRC0393-07	03/13/08 08
Styrene	ND	16.8	ug/kg	50.0	34%.	11 - 168	8030997	NRC0393-07	03/13/08 08
1,1,1,2-Tetrachloroethane	ND	23.5	ug/kg	50,0	47%	30 - 147	8030997	NRC0393-07	03/13/08 08
1,1,2,2-Tetrachloroethane	ND	21.1	ug/kg	50.0	42%	20 - 155	8030997	NRC0393-07	03/13/08 08
Tetrachloroethene	ND	25,4	ug/kg	50.0	51%	27 - 151	8030997	NRC0393-07	03/13/08 08
Toluene	2.26	26.8	ug/kg	50.0	49%	30 - 145	8030997	NRC0393-07	03/13/08 08
1,2,3-Trichlorobenzene	ND	8.05	ug/kg	50.0	16%	10 - 158	8030997	NRC0393-07	03/13/08 08:
1,2,4-Trichlorobenzene	ND	9.32	ug/kg	50.0	19%	10 - 160	8030997	NRC0393-07	03/13/08 08:
1,1,2-Trichloroethane	ND	24.5	ug/kg	50.0	49%	34 - 140	8030997	NRC0393-07	03/13/08 08;
1,1,1-Trichloroethane	ND	30.0	ug/kg	50.0	60%	36 - 150	8030997	NRC0393-07	03/13/08 08:
Trichloroethene	ND	28.2	ug/kg	50.0	56%	33 - 145	8030997	NRC0393-07	03/13/08 08:
Trichlorofluoromethane	ND	29.8	ug/kg	50.0	60%	31 - 150	8030997	NRC0393-07	03/13/08 08:
1,2,3-Trichloropropane	ND	18.8	ug/kg	50.0	38%	14 - 143	8030997	NRC0393-07	03/13/08 08:
1,3,5-Trimethylbenzene	ND	18.3	ug/kg	50.0 ·	37%	20 - 158	8030997	NRC0393-07	03/13/08 08:
1,2,4-Trimethylbenzene	ND	17.4	ug/kg	50.0	35%	10 - 166	8030997	NRC0393-07	03/13/08 08:
Vinyl chloride	ND	28.2	ug/kg	50.0	56%	32 - 144	8030997	NRC0393-07	03/13/08 08:
Xylenes, total	ND	67.2	ug/kg	150	45%	16 - 159	8030997	NRC0393-07	03/13/08 08:
Diisopropyl Ether	ND	27.9	ug/kg	50.0	56%	39 - 138	8030997	NRC0393-07	03/13/08 08:
Surrogate: 1,2-Dichloroethane-d4		57.1	ug/kg	50.0	114%	41 - 150	8030997	NRC0393-07	
Surrogate: Dibromofluoromethane		57.8	ug/kg	50.0	116%	55 - 139	8030997	NRC0393-07	03/13/08 08:
Surrogate: Toluene-d8		56.6	ug/kg	50.0	113%	57 - 148	8030997	NRC0393-07	03/13/08 08:
Surrogate: 4-Bromofluorobenzene		54.6	ug/kg	50.0	109%	58 - 150	8030997	NRC0393-07	03/13/08 08: 03/13/08 08:
emivolatile Organic Compounds	by EPA Method	8270C							
030981-MS1									
Acenaphthene	0,183	1.52	mg/kg dry	1.81	74%	28 - 117	8030981	NRC0441-06	03/13/08 12:
Acenaphthylene	. 0.382	1,65	mg/kg dry	1.81	70%	33 - 113	8030981	NRC0441-06	03/13/08 12:

THE LEADER IN ENVIRONMENTAL TESTING

•

٢

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

Matrix Spike - Cont.												
Analyte	Orig. Val.	MS Vai	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time		
Semivolatile Organic Compoun	nds by EPA Method	8270C							•••••••••••••••••	•••••		
8030981-MS1												
Anthracene	0.605	2.08		mg/kg dry	1.81	81%	31 - 131	8030981	NRC0441-06	03/13/08 12:33		
Benzo (a) anthracene	1.72	3.01		mg/kg dry	1.81	72%	29 - 124	8030981	NRC0441-06	03/13/08 12:33		
Benzo (a) pyrene	1.57	3.00		mg/kg dry	1.81	79%	30 - 127	8030981	NRC0441-06	03/13/08 12:33		
Benzo (b) fluoranthene	1.73	3.58		mg/kg dry	1.81	102%	26 - 128	8030981	NRC0441-06	03/13/08 12:33		
Benzo (g,h,i) perylene	0.827	2.10		mg/kg dry	1.81	71%	21 - 122	8030981	NRC0441-06	03/13/08 12:33		
Benzo (k) fluoranthene	0.999	1.92		mg/kg dry	1.81	51%	20 - 130	8030981	NRC0441-06	03/13/08 12:33		
4-Bromophenyl phenyl ether	ND	1.22		mg/kg dry	1.81	68%	30 - 106	8030981	NRC0441-06	03/13/08 12:33		
Butyl benzyl phthalate	ND	1.49		mg/kg dry	1.81	82%	40 - 131	8030981	NRC0441-06	03/13/08 12:33		
Carbazole	ND	1.39		mg/kg dry	1.81	77%	37 - 116	8030981	NRC0441-06	03/13/08 12:33		
4-Chloro-3-methylphenol	ND	1.47		mg/kg dry	1.81	82%	19 - 128	8030981	NRC0441-06	03/13/08 12:33		
4-Chloroaniline	ND	1.04		mg/kg dry	1.81	58%	10 - 119	8030981	NRC0441-06	03/13/08 12:33		
Bis(2-chloroethoxy)methane	ND	1.27		mg/kg dry	1.81	70%	30 - 110	8030981	NRC0441-06	03/13/08 12:33		
Bis(2-chloroethyl)ether	ND	1.18		mg/kg dry	1.81	65%	36 - 106	8030981	NRC0441-06	03/13/08 12:33		
Bis(2-chloroisopropyl)ether	ND	1.26		mg/kg dry	1.81	69%	34 - 109	8030981	NRC0441-06	03/13/08 12:33		
2-Chloronaphthalene	ND	1.38		mg/kg dry	1.81	76%	31 - 107	8030981	NRC0441-06	03/13/08 12:33		
2-Chiorophenol	ND	1.36		mg/kg dry	1.81	75%	32 - 119	8030981	NRC0441-06	03/13/08 12:33		
4-Chlorophenyl phenyl ether	ND	1.31		mg/kg dry	1.81	72%	35 - 113	8030981	NRC0441-06	03/13/08 12:33		
Chrysene	1.48	2.72		mg/kg dry	1.81	69%	30 - 119	8030981	NRC0441-06	03/13/08 12:33		
Dibenz (a,h) anthracenc	0.396	1.70		mg/kg dry	1.81	72%	27 - 122	8030981	NRC0441-06	03/13/08 12:33		
Dibenzofuran	0.162	1.54		mg/kg dry	1.81	76%	33 - 121	8030981	NRC0441-06	03/13/08 12:33		
Di-n-butyl phthalate	ND	1.42		mg/kg dry	1.81	78%	38 - 123	8030981	NRC0441-06	03/13/08 12:33		
1,4-Dichlorobenzene	ND	1,26		mg/kg dry	1.81	69%	26 - 109	8030981	NRC0441-06	03/13/08 12:33		
1,2-Dichlorobenzene	ND	1.28		mg/kg dry	1.83	70%	26 - 112	8030981	NRC0441-06	03/13/08 12:33		
1,3-Dichlorobenzene	ND	1.27		mg/kg dry	1.81	70%	26 - 110	8030981	NRC0441-06	03/13/08 12:33		
3,3-Dichlorobenzidine	ND	1.26		mg/kg dry	1.81	69%	10 - 112	8030981	NRC0441-06	03/13/08 12:3		
2,4-Dichlorophenol	ND	1.44		mg/kg dry	1.81	80%	28 - 118	8030981	NRC0441-06	03/13/08 12:33		
Diethyl phthalate	ND	1.42		mg/kg dry	1.81	79%	29 - 122	8030981	NRC0441-06	03/13/08 12:3		
2,4-Dimethylphenol	ND	1,68		mg/kg dry	1.81	93%	10 - 128	8030981	NRC0441-06	03/13/08 12:3		
Dimethyl phthalate	ND	1.40		mg/kg dry	1.81	77%	31 - 118	8030981	NRC0441-06	03/13/08 12:3		
4,6-Dinitro-2-methylphenol	ND	1.31		mg/kg dry	1.81	72%	10 - 136	8030981	NRC0441-06	03/13/08 12:3		
2,4-Dinitrophenol	ND	1.07		mg/kg dry	1.81	59%	10 ~ 148	8030981	NRC0441-06	03/13/08 12:3		
2,6-Dinitrotoluene	ND	1.46		mg/kg dry	1.81	81%	28 - 125	8030981	NRC0441-06	03/13/08 12:3		
2,4-Dinitrotoluene	ND	1.43		mg/kg dry	1.81	79%	30 - 119	8030981	NRC0441-06	03/13/08 12:3		
Di-n-octyl phthalate	ND	1.57		mg/kg dry	1.81	87%	31 - 137	8030981	NRC0441-06	03/13/08 12:3		
Bis(2-ethylhexyl)phthalate	ND	1.41		mg/kg dry	1.81	78%	38 - 125	8030981	NRC0441-06	03/13/08 12:3		
Fluoranthene	3.52	4.87		mg/kg dry	1.81	75%	23 - 132	8030981	NRC0441-06	03/13/08 12:3		
Fluorene	0.327	1.85		mg/kg dry	1.81	84%	38 - 110	8030981	NRC0441-06	03/13/08 12:3		

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

NRC0462

1782-308-02

03/06/08 08:00

Atlanta Rush Project

Work Order:

Project Name:

Received:

Project Number:

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, IL 60602

Attn Carl Dawes

						-				
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compound	s by EPA Method	8270C								
3030981-MS1	-									
Hexachlorobenzene	ND	1.37		mg/kg dry	1.81	75%	35 - 120	8030981	NRC0441-06	03/13/08 12:3
Hexachlorobutadiene	ND	1.60		mg/kg dry	1.81	89%	28 - 113	8030981	NRC0441-06	03/13/08 12:
Hexachlorocyclopentadiene	ND	0.988		mg/kg dry	1.81	55%	10 - 123	8030981	NRC0441-06	03/13/08 12:
Hexachioroethane	ND	1:38		mg/kg dry	1.81	76%	20 - 120	8030981	NRC0441-06	03/13/08 12:
Indeno (1,2,3-cd) pyrene	0.818	2.15	•	mg/kg dry	1.81	74%	24 - 122	8030981	NRC0441-06	03/13/08 12:
Isophorone	ND	1.36		mg/kg dry	1.81	75%	23 - 108	8030981	NRC0441-06	03/13/08 12:
2-Methylnaphthalene	ND	1.42		mg/kg dry	1.81	78%	26 - 116	8030981	NRC0441-06	03/13/08 12:
2-Methylphenol	ND	1.40		mg/kg dry	1.81	77%	23 - 122	8030981	NRC0441-06	03/13/08 12:
3/4-Methylphenol	ND	1.48		mg/kg dry	1.81	82%	23 - 138	8030981	NRC0441-06	03/13/08 12:
Naphthalene	0.0482	1.37		mg/kg dry	1.81	73%	14 - 117	8030981	NRC0441-06	03/13/08 12:
3-Nitroaniline	ND	1.31		mg/kg dry	1.81	73%	27 - 124	8030981	NRC0441-06	03/13/08 12:
2-Nitroaniline	ND	1.35		mg/kg dry	1.81	74%	35 - 122	8030981	NRC0441-06	03/13/08 12:
4-Nitroaniline	ND ·	1.29		mg/kg dry	1.81	71%	25 - 124	8030981	NRC0441-06	03/13/08 12:
Nitrobenzene	ND	1.37		mg/kg dry	1.81	76%	19 - 105	8030981	NRC0441-06	03/13/08 12:
4-Nitrophenol	ND	1.33		mg/kg dry	1.81	73%	14 - 144	8030981	NRC0441-06	03/13/08 12:
2-Nitrophenol	ND	1.47		mg/kg dry	1.81	81%	23 - 119	8030981	NRC0441-06	03/13/08 12:
N-Nitrosodiphenylamine	ND	1.32		mg/kg dry	1.81	73%	37 - 144	8030981	NRC0441-06	03/13/08 12:
N-Nitrosodi-n-propylamine	ND	1.25		mg/kg dry	1.81	69%	28 - 121	8030981	NRC0441-06	03/13/08 12:
Pentachlorophenol	ND	1.45		mg/kg dry	1.81	80% [·]	13 - 149	8030981	NRC0441-06	03/13/08 12:
Phenanthrene	1.88	3.20		mg/kg dry	1.81	73%	21 - 130	8030981	NRC0441-06	03/13/08 12:
Phenol	ND	1.30		mg/kg dry	1.81	72%	31 - 116	8030981	NRC0441-06	03/13/08 12:
Pyrene	2.41	3.69		mg/kg dry	1.81	71%	24 - 133	8030981	NRC0441-06	03/13/08 12:
Pyridine	ND	1.02		mg/kg dry	1.81	56%	10 - 103	8030981	NRC0441-06	03/13/08 12:
1,2,4-Trichlorobenzene	ND	1.41		mg/kg dry	1.81	78%	27 - 102	8030981	NRC0441-06	03/13/08 12:
I-Methylnaphthalene	0.0736	1.45		mg/kg dry	1.81	76%	10 - 121	8030981	NRC0441-00	03/13/08 12:
2,4,6-Trichlorophenol	ND	1.52		mg/kg dry	1.81	84%	32 - 122	8030981	NRC0441-06	03/13/08 12:
2,4,5-Trichlorophenol	ND	1.52		mg/kg dry	1.81	84%	30 - 122	8030981	NRC0441-06	03/13/08 12:
Surrogate: Terphenyl-d14		1.01		mg/kg dry	1.81	56%	26 - 128	8030981	NRC0441-06	
Surrogate: 2,4,6-Tribromophenol		. 1.31		mg/kg dry	1.81	72%	20 - 128	8030981		03/13/08 12:
Surrogate: Phenol-dS		1.15		mg/kg dry	1.81	64%	23 - 113		NRC0441-06	
Surrogate: 2-Fluorobiphenyl		1.04		mg/kg dry	1.81	57%	23 - 113 19 - 109	8030981 8030981	NRC0441-06	03/13/08 12:
Surrogate: 2-Fluorophenol		1.10		mg/kg dry	1.81	51% 61%	19 - 109	8030981	NRC0441-06	03/13/08 12:
Surrogate: Nitrobenzene-d5		1.17		mg/kg dry	1.81	65%	19 - 103 22 - 104	8030981	NRC0441-06 NRC0441-06	03/13/08 12: 03/13/08 12:
032357-MS1										
Acenaphthene	ND	1.63		mg/kg dry	1.97	83%	28 - 117	8032357	NRC0462-01	03/16/08 17:
Acenaphthylene	ND	1.74		mg/kg dry	1.97	88%	33 - 113	8032357	NRC0462-01	03/16/08 17:

THE LEADER IN ENVIRONMENTAL TESTING

۰.

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

		PROJE	CT QUALITY CO Matrix Spike -		АТА				
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compoun	ds by EPA Method	18270C							
8032357-MS1	-								
Anthracene	ND	1,63	mg/kg dry	1.97	82%	31 - 131	8032357	NRC0462-01	03/16/08 17:04
Benzo (a) anthracene	ND	1.69	mg/kg dry	1.97	86%	29 - 124	8032357	NRC0462-01	03/16/08 17:04
Benzo (a) pyrene	ND	1.56	mg/kg dry	1.97	79%	30 - 127	8032357	NRC0462-01	03/16/08 17:04
Benzo (b) fluoranthene	ND	1.61	mg/kg dry	1.97	82%	26 - 128	8032357	NRC0462-01	03/16/08 17:04
Benzo (g,h,i) perylene	ND	1.69	mg/kg dry	1.97	86%	21 - 122	8032357	NRC0462-01	03/16/08 17:04
Benzo (k) fluoranthene	ND	1.52	mg/kg dry	1.97	77%	20 - 130	8032357	NRC0462-01	03/16/08 17:04
4-Bromophenyl phenyl ether	ND	1.38	mg/kg dry	1.97	70%	30 - 106	8032357	NRC0462-01	03/16/08 17:04
Butyl benzyl phthalate	ŃD	1.88	mg/kg dry	1.97	95%	40 - 131	8032357	NRC0462-01	03/16/08 17:04
Carbazole	ND	1.53	mg/kg dry	1,97	77%	37 - 116	8032357	NRC0462-01	03/16/08 17:04
4-Chloro-3-methylphenol	ND	1.56	mg/kg dry	1.97	79%	19 - 128	8032357	NRC0462-01	03/16/08 17:04
4-Chloroaniline	ND	1.32	mg/kg dry	1.97	67%	10 - 119	8032357	NRC0462-01	03/16/08 17:04
Bis(2-chloroethoxy)methane	ND	1.52	mg/kg dry	1.97	77%	30 - 110	8032357	NRC0462-01	03/16/08 17:04
Bis(2-chloroethyl)ether	ND	1.37	mg/kg dry	1.97	70%	36 - 106	8032357	NRC0462-01	03/16/08 17:04
Bis(2-chloroisopropyl)ether	ND	1.29	mg/kg dry	1.97	65%	34 - 109	8032357	NRC0462-01	03/16/08 17:04
2-Chloronaphthalene	ND	1.62	mg/kg dry	1.97	82%	31 - 107	8032357	NRC0462-01	03/16/08 17:04
2-Chlorophenol	ND	1.71	mg/kg dry	1,97	87%	32 - 119	8032357	NRC0462-01	03/16/08 17:04
4-Chlorophenyl phenyl ether	ND	1.46	mg/kg dry	1.97	74%	35 - 113	8032357	NRC0462-01	03/16/08 17:04
Chrysene	ND	1.75	mg/kg dry	1.97	89%	30 - 119	8032357	NRC0462-01	03/16/08 17:04
Dibenz (a,h) anthracene	ND	1.60	mg/kg dry	1.97	81%	27 - 122	8032357	NRC0462-01	03/16/08 17:04
Dibenzofuran	ND	1.65	mg/kg dry	1.97	84%	33 - 121	8032357	NRC0462-01	03/16/08 17:04
Di-n-butyl phthalate	ND	1.56	mg/kg dry	1.97	79%	38 - 123	8032357	NRC0462-01	03/16/08 17:04
1,4-Dichlorobenzene	ND	1.35	mg/kg dry	1.97	68%	26 - 109	8032357	NRC0462-01	03/16/08 17:04
1,2-Dichlorobenzene	ND	1.46	mg/kg dry	1.99	73%	26 - 112	8032357	NRC0462-01	03/16/08 17:04
1,3-Dichlorobenzene	ND	1.36	mg/kg dry	1,97	69%	26 - 110	8032357	NRC0462-01	03/16/08 17:04
3,3-Dichlorobenzidine	ND	1.30	mg/kg dry	1.97	66%	10 - 112	8032357	NRC0462-01	03/16/08 17:04
2,4-Dichlorophenol	ND	1.78	mg/kg dry	1.97	90%	28 - 118	8032357	NRC0462-01	03/16/08 17:04
Diethyl phthalate	ND	1.39	mg/kg dry	1.97	70%	29 - 122	8032357	NRC0462-01	03/16/08 17:04
2,4-Dimethylphenol	ND	1.83	mg/kg dry	1.97	93%	10 - 128	8032357	NRC0462-01	03/16/08 17:04
Dimethyl phthalate	ND	1.64	mg/kg dry	1.97	83%	31 - 118	8032357	NRC0462-01	03/16/08 17:04
4,6-Dinitro-2-methylphenol	ND	0.945	mg/kg dry	1,97	48%	10 - 136	8032357	NRC0462-01	03/16/08 17:04
2,4-Dinitrophenol	ND	0.756	mg/kg dry	1.97	38%	10 - 148	8032357	NRC0462-01	03/16/08 17:04
2,6-Dinitrotoluene	ND	1.80	mg/kg dry	1.97	91%	28 - 125	8032357	NRC0462-01	03/16/08 17:04
2,4-Dinitrotoluene	ND	1.73	mg/kg dry	1.97	88%	20 - 125 30 - 119	8032357	NRC0462-01	03/16/08 17:04
Di-n-octyl phthalate	ND	1.76	mg/kg dry	1.97	89%	31 - 137	8032357	NRC0462-01	
Bis(2-ethylhexyl)phthalate	0.414	1.83	mg/kg dry	1.97	72%	38 - 125	8032357	NRC0462-01	03/16/08 17:04
Fluoranthene	0.0740	1.65	mg/kg dry	1.97	80%				03/16/08 17:04
Fluorene	0.0740 ND					23 - 132	8032357	NRC0462-01	03/16/08 17:04
	ND	1.61	mg/kg dry	1.97	82%	38 - 110	8032357	NRC0462-01	03/16/08 17:04

THE LEADER IN ENVIRONMENTAL TESTING

 Client
 Weaver Boos Consultants LLC (1407793)
 Work Order:

 70 West Madison, Suite 4250
 Project Name:

 Chicago,, IL 60602
 Project Number:

Attn Carl Dawes

Work Order:	NRC0462
Project Name:	Atlanta Rush Project
Project Number:	1782-308-02
Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Semivolatile Organic Compounds by I	EPA Method	8270C		• • • • • • • • • • • • • • •		•••••		••••••	•••••
8032357-MS1									
Hexachlorobenzene	ND	1.57	mg/kg dry	1.97	80%	35 - 120	8032357	NRC0462-01	03/16/08 17:04
Hexachlorobutadiene	ND	1.53	mg/kg dry	1.97	77%	28 - 113	8032357	NRC0462-01	03/16/08 17:04
Hexachlorocyclopentadiene	ND	0.979	mg/kg dry	1.97	50%	10 - 123	8032357	NRC0462-01	03/16/08 17:04
Hexachloroethane	ND	1.44	mg/kg dry	1.97	73%	20 - 120	8032357	NRC0462-01	03/16/08 17:04
Indeno (1,2,3-cd) pyrene	ND	1.63	mg/kg dry	1.97	83%	24 - 122	8032357	NRC0462-01	03/16/08 17:04
lsophorone	ND	1.47	mg/kg dry	1.97	75%	23 - 108	8032357	NRC0462-01	03/16/08 17:04
2-Methylnaphthalene	ŅD	1.50	mg/kg dry	1.97	76%	26 - 116	8032357	NRC0462-01	03/16/08 17:04
2-Methylphenol	ND	1.68	mg/kg dry	1.97	85%	23 - 122	8032357	NRC0462-01	03/16/08 17:04
3/4-Methylphenol	ND	1.23	mg/kg dry	1.97	63%	23 - 138	8032357	NRC0462-01	03/16/08 17:04
Naphthalene	ND	1.44	mg/kg dry	1.97	73%	14 - 117	8032357	NRC0462-01	03/16/08 17:04
3-Nitroaniline	ND	1.50	mg/kg dry	1.97	76%	27 - 124	8032357	NRC0462-01	03/16/08 17:04
2-Nitroaniline	ND	1.76	mg/kg dry	1.97	89%	35 - 122	8032357	NRC0462-01	03/16/08 17:04
4-Nitroaniline	ND	1.68	mg/kg dry	1.97	85%	25 - 124	8032357	NRC0462-01	03/16/08 17:04
Nitrobenzene	ND	1.96	mg/kg dry	1.97	99%	19 - 105	8032357	NRC0462-01	03/16/08 17:04
4-Nitrophenol	ND	1.72	mg/kg dry	1,97	87%	14 - 144	8032357	NRC0462-01	03/16/08 17:04
2-Nitrophenol	ND	1.55	mg/kg dry	1.97	78%	23 - 119	8032357	NRC0462-01	03/16/08 17:04
N-Nitrosodiphenylamine	ND	1.66	mg/kg dry	1.97	84%	37 - 144	8032357 ·	NRC0462-01	03/16/08 17:04
N-Nitrosodi-n-propylamine	ND	1.28	mg/kg dry	1.97	65%	28 - 121	8032357	NRC0462-01	03/16/08 17:04
Pentachlorophenol	ND	-1.38	mg/kg dry	1.97	70%	13 - 149	8032357	NRC0462-01	03/16/08 17:04
Phenanthrene	0.0441	1.59	mg/kg dry	1.97	79%	21 - 130	8032357	NRC0462-01	03/16/08 17:04
Phenol	ND	1.64	mg/kg dry	1.97	83%	31 - 116	8032357	NRC0462-01	03/16/08 17:04
Ругепе	0.113	1.95	mg/kg dry	1.97	93%	24 - 133	8032357	NRC0462-01	03/16/08 17:04
Pyridine	ND	1.06	mg/kg dry	1.97	54%	10 - 103	8032357	NRC0462-01	03/16/08 17:04
1,2,4-Trichlorobenzene	ND	1.53	mg/kg dry	1.97	78%	27 - 102	8032357	NRC0462-01	03/16/08 17:04
1-Methylnaphthalene	ND .	1.42	mg/kg dry	1.97	72%	10 - 121	8032357	NRC0462-01	03/16/08 17:04
2,4,6-Trichlorophenol	ND	1.82	mg/kg dry	1.97	92%	32 - 122	8032357	NRC0462-01	03/16/08 17:04
2,4,5-Trichlorophenol	ND	1.91	mg/kg dry	1.97	97%	30 - 122	8032357	NRC0462-01	03/16/08 17:04
Surrogate: Terphenyl-d14		1.52	mg/kg dry	1.97	77%	26 - 128	8032357	NRC0462-01	03/16/08 17:04
Surrogate: 2,4,6-Tribromophenol		1.54	mg/kg dry	1.97	78%	20 - 132	8032357	NRC0462-01	03/16/08 17:04
Surrogate: Phenol-d5		1.70	mg/kg dry	1.97	86%	23 - 113	8032357	NRC0462-01	03/16/08 17:04
Surrogate: 2-Fluorobiphenyl		1.35	mg/kg dry	1.97	69%	19 - 109	8032357	NRC0462-01	03/16/08 17:04
Surrogate: 2-Fluorophenol		1.58	mg/kg dry	1.97	80%	19 - 105	8032357	NRC0462-01	03/16/08 17:04
Surrogate: Nitrobenzene-dS		1.39	mg/kg dry	1.97	71%	22 - 104	8032357	NRC0462-01	03/16/08 17:04

(

.

THE LEADER IN ENVIRONMENTAL TESTING

١,

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD Limi	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds b	v EPA Method a	8260B	••••		• • • • • • • •		• • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • •		• • • - • • • • • • • • •
8030997-MSD1	J										
Acetone	44.3	234		ug/kg	250	76%	32 - 163	28 45	8030997	NRC0393-07	03/13/08 08:42
Benzene	1.10	40.1		ug/kg	50.0	78%	33 - 146	34 43	8030997	NRC0393-07	03/13/08 08:42
Bromobenzene	ND	34.9	R2	ug/kg	50.0	70%	10 - 156	58 50	8030997	NRC0393-07	03/13/08 08:42
Bromochloromethane	ND	40,2	R2	ug/kg	50.0	80%	43 - 138	38 32	8030997	NRC0393-07	03/13/08 08:42
Bromodichloromethane	ND	38.9	R2	ug/kg	50.0	78%	31 - 149	41 37	8030997	NRC0393-07	03/13/08 08:42
Bromoform	ND	30.4		ug/kg	50.0	61%	14 - 167	43 50	8030997	NRC0393-07	03/13/08 08:42
Bromomethane	ND	33.6		ug/kg	50.0	67%	16 - 172	21 50	8030997	NRC0393-07	03/13/08 08:42
2-Butanone	ND	204		ug/kg	250	82%	37 - 151	42 43	8030997	NRC0393-07	03/13/08 08:42
sec-Butylbenzene	ND	39.0	R2	ug/kg	50.0	78%	18 - 165	81 50	8030997	NRC0393-07	03/13/08 08:42
n-Butylbenzene	ND	36.3	R2	ug/kg	50.0	73%	10 - 168	85 50	8030997	NRC0393-07	03/13/08 08:42
tert-Butylbenzene	ND	39.0	R2	ug/kg	50.0	78%	17 - 165	76 50	8030997	NRC0393-07	03/13/08 08:42
Carbon disulfide	3.76	40.4	10	ug/kg	50.0	73%	34 - 147	21 47	8030997	NRC0393-07	03/13/08 08:42
Carbon Tetrachloride	ND	39.8		ug/kg	50.0	80%	33 - 155	31 44	8030997	NRC0393-07	03/13/08 08:42
Chlorobenzene	ND	39.2	R2	ug/kg	50.0	78%	23 - 147	48 44	8030997	NRC0393-07	03/13/08 08:42
Chlorodibromomethane	ND	37.3	R2	ug/kg	50,0	75%	21 - 155	50 45	8030997	NRC0393-07	03/13/08 08:42
Chloroethane	ND	33.9	112	ug/kg	50.0	68%	44 - 155	16 50	8030997	NRC0393-07	03/13/08 08:42
Chloroform	ND	40.5		ug/kg	50.0	81%	39 - 140	34 36	8030997	NRC0393-07	03/13/08 08:42
Chloromethane	ND	27.4		ug/kg	50.0	55%	14 - 143	12 50	8030997	NRC0393-07	03/13/08 08:42
2-Chlorotoluene	ND	38.9	R2	ug/kg	50.0	78%	21 - 154	65 50	8030997	NRC0393-07	03/13/08 08:42
4-Chlorotoluene	ND	37.1	R2	ug/kg	50.0	74%	10 - 156	63 50	8030997	NRC0393-07	03/13/08 08:42
1,2-Dibromo-3-chloropropane	ND	27.0	R2	ug/kg	50.0	54%	10 - 159	55 50	8030997	NRC0393-07	03/13/08 08:42
1,2-Dibromoethane (EDB)	ND	38.4	104	ug/kg	50.0	77%	19 - 151	47 50	8030997	NRC0393-07	03/13/08 08:42
Dibromomethane	ND	39.3		ug/kg	50.0	79%	32 - 147	43 45	8030997	NRC0393-07	03/13/08 08:42
1,4-Dichlorobenzene	ND	31.9	R2	ug/kg	50,0	64%	10 - 152	62 50	8030997	NRC0393-07	03/13/08 08:42
1,3-Dichlorobenzene	ND	32.6	R2	ug/kg	50.0	65%	10 - 153	64 50	8030997	NRC0393-07	03/13/08 08:42
1,2-Dichlorobenzene	ND	28.8	R2	ug/kg	50.0	58%	10 - 155	61 50	8030997	NRC0393-07	03/13/08 08:42
Dichlorodifluoromethane	ND	21.8	112	ug/kg	50.0	44%	10 - 143	4 43	8030997	NRC0393-07	03/13/08 08:42
1,1-Dichloroethane	ND	41.5		ug/kg	50.0	83%	49 - 156	29 37	8030997	NRC0393-07	03/13/08 08:42
1,2-Dichloroethane	ND	40.8		ug/kg	50.0	82%	27 - 145	39 44	8030997	NRC0393-07	03/13/08 08:42
cis-1,2-Dichloroethene	ND	41.0		ug/kg	50,0	82%	39 - 143	34 35	8030997	NRC0393-07	03/13/08 08:42
1,1-Dichloroethene	ND	37.0		ug/kg	50.0	74%	42 - 145	18 41	8030997	NRC0393-07	03/13/08 08:42
trans-1,2-Dichloroethene	ND	40.5		ug/kg	50.0	81%	41 - 146	23 37	8030997	NRC0393-07	03/13/08 08:42
1,3-Dichloropropane	ND	39.2	R2	ug/kg	50.0	78%	30 - 143	45 44	8030997	NRC0393-07 NRC0393-07	03/13/08 08:42
1,2-Dichloropropane	ND	38,4		ug/kg	50.0	77%	37 - 136		8030997	NRC0393-07	03/13/08 08:42
2,2-Dichloropropane	ND	38.5	R2	ug/kg	50.0	77%	30 - 145	29 33	8030997	NRC0393-07	03/13/08 08:42
cis-1,3-Dichloropropene	ND	36.6	57	ug/kg	50.0	73%	29 - 149	49 43			
trans-1,3-Dichloropropene	ND	36.6	R2	-	50.0	73%			8030997	NRC0393-07	03/13/08 08:42
1,1-Dichloropropene	ND			ug/kg ug/kg	50.0		17 - 146	49 50	8030997 8030997	NRC0393-07	03/13/08 08:42
Ethylbenzene		39.8	D.C.	ug/kg	50.0	80%	36 - 147	30 41	8030997	NRC0393-07	03/13/08 08:42
Hexachlorobutadiene	ND	39.0	R2	ug/kg ug/kg		78%	16 - 160		8030997	NRC0393-07	03/13/08 08:42
2-Hexanone	ND	31.9	R2	ug/kg	50.0	64%	10 - 191	90 50	8030997	NRC0393-07	03/13/08 08:42
2-110X8110110	17.5	205	R2	ug/kg	250	75%	19 - 154	54 50	8030997	NRC0393-07	03/13/08 08:4

TestAmericu

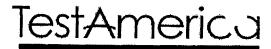
•

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

(

Client	Weaver Boos Consultants LLC (1407793)	
	70 West Madison, Suite 4250	
	Chicago,, IL 60602	

Attn Carl Dawes


Work Order:	NRC0462
Project Name:	Atlanta R
Project Number:	1782-308-
Received:	03/06/08 (

Atlanta Rush Project 1782-308-02 03/06/08 08:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont,

Analyse Ong, Val Duplease Q Uais Concer % Res Res Res Res Res Res Res Duplease Duplease Duplease Duplease VolatiOr Organic Compounds by EFA Method S260B ND 37.0 R.2 wg/kg 500 67/h 61-166 61 50 80.0997 NRC039.47 0/1308 064.2 pelooppointame ND 37.0 R.2 wg/kg 500 67/h 10-16 61 50 80.0997 NRC039.47 0/1308 064.2 Methylere-Enkelde ND 12.6 R2 wg/kg 50 80 80.0997 NRC039.47 0/1308 064.2 Naphtahate ND 14.2 R2 wg/kg 10.0 71/13 11.10 51 50 80.0997 NRC039.47 0/1308 064.2 1.1.1.2-Tetrachindenbane ND 13.7 R2 wg/kg 40 87.9 10.16 41 80.0997 NRC039.47 0/1308		·······			•	Spike		Target				Sample	Analyzed
Bosopsynkazone NB 32.6 R2 upkg 900 55% 15 51 50 80.0997 NRC0391.07 01/1308 68.4 Josopsynkousone ND 35.6 upkg 50.0 75% 10.15 10.2 10.2 50 80.0997 NRC0391.07 01/1308 68.4 Methyten Lupkine ND 14.6 R2 upkg 50.0 75% 10.15 50 60.0097 NRC0391.07 01/1308 68.4 Audurbase ND 14.2 R2 upkg 50.0 75% 11.8 75 60.0097 NRC0391.07 01/1308 68.4 Nuphahaten ND 35.7 R2 upkg 50.0 75% 11.8 75 60.0097 NRC0391.07 01/1308 68.4 11.2	Analyte	Orig. Val.	Duplicate	Q	Units		% Rec.	-	RPD	Limit	Batch	•	-
Independentional p-tagong/indumeND32.6R2upfix upfix upfix61-16615082.0007NRC0391.0760/1308.04:24Methylen-GheindeND37.6R2upfix upfix50.718031.683.0097NRC0391.0760/1308.04:24Methylen-CheindeND37.6R2upfix upfix50.71851.850800097NRC0391.0760/1308.04:24Methylen-CheindeND14.2R2upfix upfix50.757.851.950800097NRC0391.0760/1308.04:24NaphinteenND14.2R2upfix upfix50.077.817.1567.950800097NRC0391.0760/1308.04:24NaphinteenND35.7R2upfix upfix50.077.817.1567.950800097NRC0391.0760/1308.06:241.1.1.2-TerthehosehaneND35.7R2upfix upfix50.077.810.164446800097NRC0391.0760/1308.06:241.1.2.2-TerthehosehaneND13.0R2upfix upfix50.051.85050.0097NRC0391.0760/1308.06:241.1.2.2-TerthehosehaneND13.6R2upfix upfix50.077.851.85050.0097NRC0391.0760/1308.06:241.1.2.2-TerthehosehaneND13.0R2upfix50.078.010.1661.950.0097NRC0391.0760/1308.06:24	Volatile Organic Compounds by	EPA Method 8	8260B							•••••		•••••••••••••••••••••••••••••••••••••••	
p-isoprogrivalmene ND 37.0 R2 ug/kg 50.0 74.6 13.160 61.1 50.00097 NRC0393-07 00/1306 68.4 Methylenc-Cholds 4.12 3.5 ug/kg 50.0 677 52.160 53 8003097 NRC0393-07 00/1306 68.42 4-Methylenc-Cholds ND 2.16 R2 ug/kg 50.0 77.5 51.16 55 50 8003097 NRC0393-07 00/1306 64.42 n-Propylbazane ND 4.2 R2 ug/kg 50.0 77.5 51.15 50 8003097 NRC0393-07 00/1306 64.42 1.1,2.7-Trankhorothane ND 3.5.7 R2 ug/kg 50.0 77.5 51.4 63 800097 NRC0393-07 01/1306 64.4 1.1,2.7-Trankhorothane ND 3.5.8 R2 ug/kg 50.0 77.5 51.4 63 8003097 NRC0393-07 01/1306 64.4 43.4 8003097 NRC0393-07 <	8030997-MSD1												
pl-deproprise ND 37.6 R2 up/k 54.0 74% 13-66 1 50 802.0997 NRC039-10 601/1001 Methylner-Lhaugi fither ND 3.5 up/k 600 86.0 11.6 15.0 16 50 800.097 NRC039-00 01/1300 64.2 4-Methylner-Lhaugi fither ND 1.6 R2 up/k 200 286 1.51 5 80.0097 NRC039-07 01/1300 64.2 Applitules ND 3.67 R2 up/k 500 79.5 67 50 80.0997 NRC039-07 01/1300 64.2 1.1.2 - Testichlorothane ND 3.67 R2 up/k 500 77.5 01.168 45 0 80.0097 NRC039-07 01/1308 64.2 1.1.2 - Testichlorothane ND 3.6 R2 up/k 500 75.6 1.4 4 80.0997 NRC039-07 01/1308 64.2 1.2.3 - Testichorothane <td< td=""><td>Isopropylbenzene</td><td>ND</td><td>32.6</td><td>R2</td><td>ug/kg</td><td>50.0</td><td>65%</td><td>16 - 156</td><td>61</td><td>50</td><td>8030997</td><td>NRC0393-07</td><td>03/13/08 08:42</td></td<>	Isopropylbenzene	ND	32.6	R2	ug/kg	50.0	65%	16 - 156	61	50	8030997	NRC0393-07	03/13/08 08:42
Machy inter-Lange Mather ND 3.5. ug/k 5.0. 71% 30.7 50.7 <	p-Isopropyltoluene	ND	37.0	R2	ug/kg	50.0	74%	13 - 160	81	50	8030997		
Methylic-Chloridi 4.12 47.3 ug/kg 50.0 676 21.6 25 39 630.997 NRC033.07 631.108 68.42 4-Methyl-2pentanone ND 14.2 R2 ug/kg 50.0 787 15.15 50 600.997 NRC033.07 031.108 68.42 n.Propridmanne ND 15.5 R2 ug/kg 50.0 774 10.151 55 50 803.0977 NRC033.07 031.108 68.42 1.1,2.7-Tetrachlonenthane ND 35.7 R2 ug/kg 50.0 774 10.167 49 43 603.0977 NRC033.07 031.108 68.42 1.1,2.7-Tetrachlonenthane ND 35.4 R2 ug/kg 50.0 774 10.151 45 50 603.0977 NRC033.07 031.108 68.42 1.1,2.7-Tetrachlonenthane ND 15.0 R2 ug/kg 50.0 774 10.151 45 44 40 603.0977 NRC033.07 031.108 68.42 1.2.7-Tetrachlonenthane ND 15.0 R2 ug/kg 50.0 785 31.4 44 400.09977 NRC033.07 031.108 68.42 1.1,2.7-Tetrachlonenthane </td <td>Methyl tert-Butyl Ether</td> <td>ND</td> <td>35.6</td> <td></td> <td>ug/kg</td> <td>50.0</td> <td>71%</td> <td>30 - 136</td> <td>. 39</td> <td>45</td> <td>8030997</td> <td></td> <td></td>	Methyl tert-Butyl Ether	ND	35.6		ug/kg	50.0	71%	30 - 136	. 39	45	8030997		
4-Methyl-2pentanoneND142R2ug/kg25087%25 - 168515080.0097NR.C0390703/130804-24NaphthalaneND142R2ug/kg50077%17 - 158655080.0097NR.C0390703/130806-42SynseND35.7R2ug/kg50077%11 - 16875080.0097NR.C0390703/130806-421,1,2-TeinchloroethaneND35.7R2ug/kg50077%30 - 14749434380.0097NR.C0390703/130806-421,1,2-TeinchloroethaneND35.4R2ug/kg50077%30 - 145444580.0997NR.C0390703/130806-421,2,2-TeinchloroethaneND15.9R2ug/kg50077%30 - 145444580.0997NR.C0390703/130806-421,2,2-TeinchloroethaneND15.0R2ug/kg50077%15.15545080.0997NR.C0390703/130806-421,2,2-TeinchloroethaneND15.0R2ug/kg50077%15.15545080.0997NR.C0390703/130806-421,2,2-TeinchloroethaneND35.0R2ug/kg50077%15.15545080.0997NR.C0390703/130806-421,2,2-TeinchloroethaneND35.0R2ug/kg50077% <td>Methylene Chloride</td> <td>4.12</td> <td>47.3</td> <td></td> <td>ug/kg</td> <td>50.0</td> <td>86%</td> <td>31 - 160</td> <td>26</td> <td>39</td> <td></td> <td></td> <td></td>	Methylene Chloride	4.12	47.3		ug/kg	50.0	86%	31 - 160	26	39			
Naphtalamic ND 14.2 P.2 ug/kg 50.9 2.8% 10.151 55 50 90.09997 NR.C0393-07 00/1306 06:42 n-Propylhenzane ND 35.7 R2 ug/kg 50.0 77% 10.168 75 50 80.09997 NR.C0393-07 03/1306 06:42 1,1,2.2-Teinchloroesthane ND 35.7 R2 ug/kg 50.0 77% 20-155 50 80.0997 NR.C0393-07 03/1306 06:42 1,1.2-Teinchloroesthane ND 15.4 R2 ug/kg 50.0 77% 20-155 45 80.0997 NR.C0393-07 01/1306 06:42 1,2-Teinchloroesthane ND 15.0 R2 ug/kg 50.0 78% 36-150 45 50 80.0997 NR.C0393-07 01/1306 06:42 1,2-Teinchloroesthane ND 15.0 R2 ug/kg 50.0 78% 36-150 4 40 80.0997 NR.C0393-07 01/1306	4-Methyl-2-pentanone	ND	216	R2	ug/kg	250	87%	25 - 149	51	50	8030997		
n-Propylkarzene ND 39.5 R2 ug/kg 50.0 77. 17. 56 69 50 803097 NRC0393-07 03/1308 04-20 Stynne ND 35.7 R2 ug/kg 50.0 77.5 10.167 69 50 803097 NRC0393-07 03/1308 04-20 L1,2.2-Ternahlonochhane ND 35.4 R2 ug/kg 50.0 77.4 20.155 51 50 803097 NRC0393-07 03/1308 04-20 L1,2.2-Ternahlonochhane ND 41.5 R2 ug/kg 50.0 79.4 10.156 54 50 803097 NRC0393-07 03/1308 04-20 L3,4-Trichlonochenzme ND 13.9 R2 ug/kg 50.0 764 10.156 64 50.9 803097 NRC0393-07 03/1308 04-20 L3,4-Trichlonochenzme ND 13.0 R2 ug/kg 50.0 764 36.15 13 40 803097 NRC0393-07 03/1308 04-20 L3,4-Trichlonochenzme ND 30.1 R2 ug/kg 50.0 764 36.15 51 50 803097 NRC0393-07 03/1308 04-20 <td< td=""><td>Naphthalene</td><td>ND</td><td>14.2</td><td>R2</td><td>ug/kg</td><td>50.0</td><td>28%</td><td>10 - 151</td><td>55</td><td>50</td><td></td><td></td><td></td></td<>	Naphthalene	ND	14.2	R2	ug/kg	50.0	28%	10 - 151	55	50			
Siymen ND 5,7 R2 ug/kg 9.00 7.5% 11 1.6 7.5 50 80.3997 NRC0391-07 0.01/106 64.2 1.1.1.2-Tetrachlonoethane ND 3.5.7 R2 ug/kg 50.0 77% 30 14 49 30 800997 NRC0391-07 0.01/106 64.2 L1.2.2-Tetrachlonoethane ND 41.5 R2 ug/kg 50.0 77% 30 14 40 800997 NRC0391-07 0.01/106 64.2 1.2.3-Tetrichlonoethane ND 13.0 R2 ug/kg 50.0 36% 10-160 64 50 803097 NRC0391-07 0.01/106 64.2 1.2.4-Trichlonoethane ND 31.0 R2 ug/kg 50.0 76% 31-160 43 41 80.0997 NRC0391-07 0.01/106 64.2 1.1.4-Trichlonoethane ND 39.7 ug/kg 50.0 76% 31-165 35 40 80.0997 NRC0391-07	n-Propylbenzene	ND	39.5	R2	•	50.0	79%	17 - 158	69				
i,i,i,2-2rtarchhonsenhane ND 38.7 R2 ug/kg 50.0 77% 30-147 49 43 8030997 NRC0393-07 03/1308 08.42 1,1,2,2-2rtarchhonsenhane ND 4.5 R2 ug/kg 50.0 71% 20-155 51 50 630097 NRC0393-07 03/1308 08.42 Tohene 2.28 42.0 ug/kg 50.0 79% 30-145 44 44 8030997 NRC0393-07 03/1308 08.42 1,2,3-Trithohonbenzane ND 18.0 R2<	Styrene	ND	36.7	R2	ug/kg	50.0	73%	11 - 168	75	50			
1.1.2.2-Teriachloroethane ND 35.4 R2 ug/kg 50.0 71% 20-155 51 50 8030997 NRC0393.07 00/1308 6k-22 Testnachloroethane 28 42.0 ug/kg 50.0 87% 27.15 48 45 8030997 NRC0393.07 0/1308 6k-42 1.2.3-Trichlorobenzene ND 13.0 R2 ug/kg 50.0 26% 10-158 54 44 4030997 NRC0393.07 0/1308 6k-42 1.2.4-Trichlorobenzene ND 18.0 R2 ug/kg 50.0 36% 10-160 64 50 8030997 NRC0393.07 0/1308 6k-42 1.1.4-Trichlorobenzene ND 39.7 ug/kg 50.0 67% 31-155 13 40 8030997 NRC0393.07 0/1308 6k-42 1.1.4-Trichlorobenzene ND 39.7 ug/kg 50.0 67% 11-141 35 65 8030997 NRC0393.07 0/1308 6k-42 1.1.4-Trichlorobenzene ND 35.6 R2 ug/kg 50.0 <	1,1,1,2-Tetrachloroethane	ND	38.7	R2 '	ug/kg	50.0	77%	30 - 147	49	43			
Tethaloroethene ND 41.5 R2 ug/kg 50.0 83% 27-151 48 45 80.0997 NRC0393-07 60/1308 08-42 Tolnene 2.28 42.0 ug/kg 50.0 79% 30-145 44 44 8030997 NRC0393-07 60/1308 08-42 1.2.3-Trichlorobenzene ND 18.0 R2 ug/kg 50.0 78% 31-106 64 50 8030997 NRC0393-07 60/1308 08-42 1.1.3-Trichlorobenzene ND 18.0 R2 ug/kg 50.0 78% 31-165 54 40 8030997 NRC0393-07 60/1308 68-42 1.1.3-Trichlorobenzenehne ND 39.7 ug/kg 50.0 78% 31-165 13 42 8030997 NRC0393-07 60/1308 68-42 1.3.3-Trinstrightenzene ND 33.3 R2 ug/kg 50.0 67% 21-18 8 41 8030997 NRC0393-07 60/1308 68-42	1,1,2,2-Tetrachioroethane	ND	35.4	R2	ug/kg	50.0	71%	20 - 155	51	50	8030997		
Toluce 2.28 42.0 ug/kg 50.0 79% 30-145 44 44 80.0997 NRC0393-07 OM1308 08-42 1,2,3-Trichlorobenzene ND 13.9 R2 ug/kg 50.0 26% 10-158 54 50 8030997 NRC0393-07 0/1308 08-42 1,2,4-Trichlorobenzene ND 38.0 R2 ug/kg 50.0 76% 34-140 44 8030997 NRC0393-07 0/1308 08-42 1,1,1-Trichlorobenane ND 39.1 ug/kg 50.0 76% 34-140 40 8030997 NRC0393-07 0/1308 08-42 1,1,1-Trichlorobenane ND 39.7 ug/kg 50.0 76% 31-155 4 0830997 NRC0393-07 0/1308 08-42 1,2,3-Trichlorobenane ND 35.5 R2 ug/kg 50.0 67% 14-143 55 50 8030997 NRC0393-07 0/1308 06-42 1,2,3-Trichlorobenzene ND 35.5 R2 ug/kg 50.0 71% 10-16 69 50	Tetrachloroethene	ND	41.5	R2	ug/kg	50.0	83%	27 - 151	48	45			
1,2,3-Trichlorobenzene ND 13.9 R2 ug/kg 50.0 28% 10183 54 50 8030997 NRC0393-07 03/1308 68.42 1,2,4-Trichlorobenzene ND 18.0 R2 ug/kg 50.0 36% 10160 64 50 8030997 NRC0393-07 03/1308 68.42 1,1,1-Trichlorobenzene ND 38.0 R2 ug/kg 50.0 78% 36.150 25 39 8030997 NRC0393-07 03/1308 68.42 1,1,1-Trichlorobenzene ND 39.1 ug/kg 50.0 68% 31.150 13 42 8030997 NRC0393-07 03/1308 68.42 1,2,3-Trichlorobpane ND 33.3 R2 ug/kg 50.0 67% 20.158 70 50 8030997 NRC0393-07 03/1308 68.42 1,2,3-Trichetylbenzene ND 35.6 R2 ug/kg 50.0 71% 10.166 69 50 8030997 NRC0393-07 03/1308 68.42 1,2,4-Trinetylbenzene ND 30.4 ug/kg	Toluene	2.28	42.0			50.0	79%	30 - 145	44				
1.2.4. Trichlorochane ND 18.0 R2 ug/kg 50.0 36% 10 160 64 50 8030997 NRC0393-07 03/1308 68.42 1.1.2. Trichlorochane ND 38.0 R2 ug/kg 50.0 76% 34 - 140 43 8030997 NRC0393-07 03/1308 68.42 1.1.1. Trichlorochane ND 39.1 ug/kg 50.0 76% 33 - 150 13 42 8030997 NRC0393-07 03/1308 68.42 1.2.3. Trichlorochane ND 33.3 R2 ug/kg 50.0 67% 14 - 143 50 50 8030997 NRC0393-07 03/1308 68.42 1.2.3. Trichlorophone ND 33.6 R2 ug/kg 50.0 67% 10 - 166 50 8030997 NRC0393-07 03/1308 68.42 1.2.3. Trichlorophone ND 35.6 R2 ug/kg 50.0 71% 10 - 166 50 8030997 NRC0393-07 03/1308 68.42 1.2.3. Trichlorophane ND 116 ug/kg 50.0 71% 16	1,2,3-Trichlorobenzene	ND	13.9	R2		50.0	28%						
1.1.2-Trichlorosehane ND 38.0 R2 ug/kg 50.0 76% 34 - 140 43 41 803097 NRC0393-07 03/1308 06.42 1.1.1-Trichlorosehane ND 39.1 ug/kg 50.0 78% 36 - 150 26 39 803097 NRC0393-07 03/1308 06.42 Trichlorosehane ND 39.7 ug/kg 50.0 6% 31 - 150 13 40 803097 NRC0393-07 03/1308 08.42 1.2,3-Trichloropopane ND 33.3 R2 ug/kg 50.0 6% 12 - 158 70 50 803097 NRC0393-07 03/1308 08.42 1.2,4-Trimethylbenzene ND 37.5 R2 ug/kg 50.0 7% 16 - 155 50 803097 NRC0393-07 03/1308 08.42 1/2,4-Trimethylbenzene ND 116 R2 ug/kg 50.0 61% 32 - 148 41 8030997 NRC0393-07 03/1308 08.42 Vinyl chorida ND 116 R2 ug/kg 50.0 113% 41 -	1,2,4-Trichlorobenzene	ND	18.0	R2		50.0	36%						
I.I.I-Trichloroethane ND 39.1 ug/kg 50.0 78's 36 - 15's 26 39 8030997 NRC0393-07 03/13/08 08-42 Trichloroethene ND 39.7 ug/kg 50.0 78's 31 - 15's 14 40 8030997 NRC0393-07 03/13/08 08-42 Trichlorofuloromethane ND 34.0 ug/kg 50.0 67% 11 - 15's 13 42 8030997 NRC0393-07 03/13/08 08-42 L,3-Trichloropepane ND 37.9 R2 ug/kg 50.0 76's 20 - 15's 70 50 8030997 NRC0393-07 03/13/08 08-42 L,3-Trimethylbenzene ND 35.6 R2 ug/kg 50.0 71's 10 - 166 69 50 8030997 NRC0393-07 03/13/08 08-42 Vinyl chloride ND 116 R2 ug/kg 50.0 71's 10 - 16's 53 8030997 NRC0393-07 03/13/08 08-42 Surrogate: L3-Dichloroethane-d4 55.3 ug/kg 50.0 113's 51 - 15'	1,1,2-Trichloroethane	ND	38.0	R2		50.0	76%	34 - 140					
Trichloroethene ND 39.7 ug/kg 50.0 79% 33.145 34 40 8030997 NRC0393-07 03/13/08 08.42 Trichlorofluoromethane ND 34.0 ug/kg 50.0 68% 31-150 13 42 8030997 NRC0393-07 03/13/08 08.42 1,2,3-Trichlorogropane ND 33.3 R2 ug/kg 50.0 67% 14-143 56 50 8030997 NRC0393-07 03/13/08 08.42 1,2,3-Trichlorogropane ND 35.6 R2 ug/kg 50.0 61% 32-144 8 41 8030997 NRC0393-07 03/13/08 08.42 1,2,4-Trimethylbenzene ND 30.4 ug/kg 50.0 61% 32-144 8 41 8030997 NRC0393-07 03/13/08 08.42 Viryl chloride ND 40.0 ug/kg 50.0 113% 41-150 50 8030997 NRC0393-07 03/13/08 08.42 Surrogate: L2bichloroethane-d4 S5.3 ug/kg 50.0 113% 51-150 50 8030	1,1,1-Trichloroethane	ND	39.1			50.0		36 - 150					
Trichlorofluoromethane ND 34.0 ug/kg 50.0 68% 31 - 150 13 42 8030997 NRC0393-07 03/13/08 08:42 1,3.5-Trichloropropane ND 33.3 R2 ug/kg 50.0 67% 14 - 143 56 50 8030997 NRC0393-07 03/13/08 08:42 1,3.5-Trimethylbenzene ND 35.6 R2 ug/kg 50.0 67% 20 - 158 70 50 8030997 NRC0393-07 03/13/08 08:42 1,2.4-Trimethylbenzene ND 30.4 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 08:42 Vinyl chloride ND 116 R2 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 08:42 Surrogate: ND 41.6 R2 ug/kg 50.0 113% 41 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: Dibromofluoromethame 56.7 ug/kg 50.0 113% 45 -	Trichloroethene	ND	39.7			50.0	79%						
I.2.3-Trichloroprane ND 33.3 R2 ug/kg 50.0 67% 14 - 143 56 50 8030997 NRC0393-07 03/13/08 08:42 I.3.5-Trimethylbenzene ND 37.9 R2 ug/kg 50.0 7% 20 - 158 70 50 8030997 NRC0393-07 03/13/08 08:42 I.2.4-Trimethylbenzene ND 35.6 R2 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 08:42 Vinyl chloride ND 116 R2 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 08:42 Diisopropyl Ether ND 40.0 ug/kg 50.0 80% 39 - 138 36 39 8030997 NRC0393-07 03/13/08 08:42 Surrogate: l/z-Dichloroethane-d4 56.3 ug/kg 50.0 113% 41 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: l/z-Dichloroethane-d8 57.8 ug/kg 50.0 113% 55 - 139 <t< td=""><td>Trichlorofluoromethane</td><td>ND</td><td>34.0</td><td></td><td></td><td>50.0</td><td>68%</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Trichlorofluoromethane	ND	34.0			50.0	68%						
1,3,5-Trimethylbenzene ND 37.9 R2 ug/kg 50.0 76% 20 - 158 70 50 8030977 NRC0393-07 03/13/08 08:42 1,2,4-Trimethylbenzene ND 35.6 R2 ug/kg 50.0 71% 10 - 166 69 50 8030977 NRC0393-07 03/13/08 08:42 Vinyl chloride ND 30.4 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 08:42 Xylenes, total ND 116 R2 ug/kg 50.0 61% 39 - 138 36 39 8030997 NRC0393-07 03/13/08 08:42 Diisopropyl Ether ND 40.0 ug/kg 50.0 113% 41 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 1,2,Dichloroethane-d4 56.3 ug/kg 50.0 113% 51 - 13 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 1,2,Dichloroethane-d8 57.8 ug/kg 50.0 113% 51 - 18 8030997 NRC0393-07 03/13/08	1,2,3-Trichloropropane	ND	33.3	R2		50.0							
1,2,4-Trimethylbeuzene ND 35.6 R2 ug/kg 50.0 71% 10 - 166 69 50 8030997 NRC0393-07 03/13/08 08:42 Vinyl chloride ND 30.4 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 08:42 Xylenes, total ND 116 R2 ug/kg 150 77% 16 - 159 53 48 8030997 NRC0393-07 03/13/08 08:42 Diisopropyl Ether ND 40.0 ug/kg 50.0 80% 39 - 138 36 39 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 12-Dichloroethane-d4 56.3 ug/kg 50.0 113% 51 - 138 8030997 NRC0393-07 03/13/08 08:42 Surrogate: Toluene-d8 57.8 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: ABromofluorobetzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 03/13/08 <td< td=""><td>1,3,5-Trimethylbenzene</td><td>ND</td><td>37.9</td><td></td><td></td><td>50.0</td><td>76%</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,3,5-Trimethylbenzene	ND	37.9			50.0	76%						
Vinyl chłoride ND 30.4 ug/kg 50.0 61% 32 - 144 8 41 8030997 NRC0393-07 03/13/08 03/4 Xyłenes, total ND 116 R2 ug/kg 150 77% 16 - 159 53 48 8030997 NRC0393-07 03/13/08 08:42 Diisopropyl Ether ND 40.0 ug/kg 50.0 80% 39 - 138 36 39 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 1,2-Dichloroethane-d4 56.3 ug/kg 50.0 113% 41 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 7.01uen-d8 57.8 ug/kg 50.0 113% 57 - 148 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 03/13/08 08:42 Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150	1,2,4-Trimethylbenzene	ND	35.6										
Xylenes, total ND 116 R2 ug/kg 150 77% 16 150 53 48 8030997 NRC0393-07 03/13/08 08:42 Diisopropyl Ether ND 40.0 ug/kg 50.0 80% 39-138 36 39 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 1,2-Dichloroethane-d4 56.3 ug/kg 50.0 113% 41-150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: Dibromofluoromethane 56.7 ug/kg 50.0 113% 55-139 8030997 NRC0393-07 03/13/08 08:42 Surrogate: Toluene-d8 57.8 ug/kg 50.0 115% 57-148 8030997 NRC0393-07 03/13/08 08:42 Surrogate:	Vinyl chloride	ND	30.4			50.0							
Diisopropyl Ether ND 40.0 ug/kg 50.0 80% 39 - 10 10 100 - 10	Xylenes, total	ND	116	R2									
Surrogate: 1,2-Dichloroethane-d4 56.3 ug/kg 50.0 113% 41 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: Dibromofluoromethane 56.7 ug/kg 50.0 113% 55 - 139 8030997 NRC0393-07 03/13/08 08:42 Surrogate: Toluene-d8 57.8 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0441-06 03/13/08 08:42 Surrogate:	Diisopropyl Ether	ND		10									
Surrogate: Dibromofluoromethane 56.7 ug/kg 50.0 113% 55 - 139 8030997 NRC0393.07 03/13/08 08:42 Surrogate: Toluene-d8 57.8 ug/kg 50.0 115% 57 - 148 8030997 NRC0393.07 03/13/08 08:42 Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0393.07 03/13/08 08:42 Semivolatile Organic Compounds by EPA Method 8270C 8030981 NRC041-06 03/13/08 08:42 Sagopstimus 0.183 1.73 mg/kg dry 1.84 84% 28 - 117 13 33 8030981 NRC0441-06 03/13/08 12:55 Acenaphthene 0.183 1.73 mg/kg dry 1.84 131% 33 - 113 51 38 8030981 NRC0441-06 03/13/08 12:55 Acenaphthene 0.605 3.25 MHA, R mg/kg dry 1.84 131% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry <td>Surrogate: 1,2-Dichloroethane-d4</td> <td></td> <td>56.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•••</td> <td></td> <td></td> <td></td> <td></td>	Surrogate: 1,2-Dichloroethane-d4		56.3						•••				
Surrogate: Toluene-d8 57.8 ug/kg 50.0 116% 57 - 148 8030997 NRC0393-07 03/13/08 08:42 Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 08:42 Semivolatile Organic Compounds by EPA Method 8270C 8030981 NRC0393-07 03/13/08 08:42 Bogoge 1-MSD1 Acenaphthene 0.183 1.73 mg/kg dry 1.84 84% 28 - 117 13 33 8030981 NRC0441-06 03/13/08 12:55 Acenaphthene 0.382 2.78 MHA, R mg/kg dry 1.84 131% 33 - 113 51 38 8030981 NRC0441-06 03/13/08 12:55 Anthracene 0.605 3.25 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.57 6.20 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55	Surrogate: Dibromofluoromethane												
Surrogate: 4-Bromofluorobenzene 57.3 ug/kg 50.0 115% 58 - 150 8030997 NRC0393-07 03/13/08 08:42 Semivolatile Organic Compounds by EPA Method 8270C Base of the semivolatile Organic Compounds by EPA Method 8270C Surrogate: 4-Bromofluorobenzene NRC0393-07 03/13/08 08:42 Semivolatile Organic Compounds by EPA Method 8270C Base of the semivolation of the semiplicity of the	Surrogate: Toluene-d8		57.8			50.0							
8030981-MSD1 Acenaphthene 0.183 1.73 mg/kg dry 1.84 84% 28 - 117 13 33 8030981 NRC0441-06 03/13/08 12:55 Acenaphthylene 0.382 2.78 MHA, R mg/kg dry 1.84 131% 33 - 113 51 38 8030981 NRC0441-06 03/13/08 12:55 Anthracene 0.605 3.25 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 <tr< td=""><td>Surrogate: 4-Bromofluorobenzene</td><td></td><td>57.3</td><td></td><td></td><td>50.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Surrogate: 4-Bromofluorobenzene		57.3			50.0							
8030981-MSD1 Acenaphthene 0.183 1.73 mg/kg dry 1.84 84% 28 - 117 13 33 8030981 NRC0441-06 03/13/08 12:55 Acenaphthylene 0.382 2.78 MHA, R mg/kg dry 1.84 131% 33 - 113 51 38 8030981 NRC0441-06 03/13/08 12:55 Anthracene 0.605 3.25 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 <tr< td=""><td>Semivolatile Organic Compound</td><td>ls by EPA Meth</td><td>od 8270C</td><td>1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Semivolatile Organic Compound	ls by EPA Meth	od 8270C	1 -									
Accenaphthene 0.183 1.73 mg/kg dry 1.84 84% 28 - 117 13 33 8030981 NRC0441-06 03/13/08 12:55 Accenaphthylene 0.382 2.78 MHA, R mg/kg dry 1.84 131% 33 - 113 51 38 8030981 NRC0441-06 03/13/08 12:55 Anthracene 0.605 3.25 MHA, R mg/kg dry 1.84 144% 31-131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 252% 30 - 127 69 31 8030981 NRC0441-06 03/13/08 12:55 Benzo (b) fluoranthene 1.73		2											
Accenaphthylene 0.382 2.78 MHA, R mg/kg dry 1.84 131% 33 - 113 51 38 8030981 NRC0441-06 03/13/08 12:55 Anthracene 0.605 3.25 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 21% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 25% 30 - 127 69 31 8030981 NRC0441-06 03/13/08 12:55 Benzo (b) fluoranthene 1.73 8.18 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 Benzo (k) fluoranthene <		0.183	1.73		mg/kg dry	1.84	84%	28 - 117	13	33	8030981	NRC0441-06	03/13/08 12:55
Anthracene 0.605 3.25 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 144% 31 - 131 44 32 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 252% 30 - 127 69 31 8030981 NRC0441-06 03/13/08 12:55 Benzo (b) fluoranthene 1.73 8.18 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 Benzo (g,h,i) perylene 0.827 3.98 MHA, R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (Acenaphthylene	0.382	2.78	MHA. R		1.84	131%	33 - 113					
Benzo (a) anthracene 1.72 5.97 MHA, R mg/kg dry 1.84 231% 29 - 124 66 26 8030981 NRC0441-06 03/13/08 12:55 Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 252% 30 - 127 69 31 8030981 NRC0441-06 03/13/08 12:55 Benzo (b) fluoranthene 1.73 8.18 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 Benzo (g,h,i) perylene 0.827 3.98 MHA, R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (k) fluoranthene 0.999 2.82 R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (k) fluoranthene 0.999 2.82 R mg/kg dry 1.84 99% 20 - 130 38 35 8030981 NRC0441-06 03/13/08 12:55 4-B	Anthracene	0.605	3.25	-		1.84							
Benzo (a) pyrene 1.57 6.20 MHA, R mg/kg dry 1.84 252% 30 - 127 69 31 8030981 NRC0441-06 03/13/08 12:55 Benzo (b) fluoranthene 1.73 8.18 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 Benzo (g,h,i) perylene 0.827 3.98 MHA, R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (k) fluoranthene 0.999 2.82 R mg/kg dry 1.84 99% 20 - 130 38 35 8030981 NRC0441-06 03/13/08 12:55 4-Bromophenyl phenyl ether ND 1.32 mg/kg dry 1.84 72% 30 - 106 7 38 8030981 NRC0441-06 03/13/08 12:55	Benzo (a) anthracene	1.72	5.97			1.84							
Benzo (b) fluoranthene 1.73 8.18 MHA, R mg/kg dry 1.84 350% 26 - 128 78 37 8030981 NRC0441-06 03/13/08 12:55 Benzo (g,h,i) perylene 0.827 3.98 MHA, R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (g,h,i) perylene 0.827 3.98 MHA, R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (k) fluoranthene 0.999 2.82 R mg/kg dry 1.84 99% 20 - 130 38 35 8030981 NRC0441-06 03/13/08 12:55 4-Bromophenyl phenyl ether ND 1.32 mg/kg dry 1.84 72% 30 - 106 7 38 8030981 NRC0441-06 03/13/08 12:55	Benzo (a) pyrene												
Benzo (g,h,i) perylene 0.827 3.98 MHA, R mg/kg dry 1.84 172% 21 - 122 62 28 8030981 NRC0441-06 03/13/08 12:55 Benzo (k) fluoranthene 0.999 2.82 R mg/kg dry 1.84 97% 20 - 130 38 35 8030981 NRC0441-06 03/13/08 12:55 4-Bromophenyl phenyl ether ND 1.32 mg/kg dry 1.84 72% 30 - 106 7 38 8030981 NRC0441-06 03/13/08 12:55	Benzo (b) fluoranthene	1.73											
Benzo (k) fluoranthene 0.999 2.82 R mg/kg dry 1.84 99% 20 - 130 38 35 8030981 NRC0441-06 03/13/08 12:55 4-Bromophenyl phenyl ether ND 1.32 mg/kg dry 1.84 72% 30 - 106 7 38 8030981 NRC0441-06 03/13/08 12:55													
4-Bromophenyl phenyl ether ND 1.32 mg/kg dry 1.84 72% 30 - 106 7 38 8030981 NRC0441-06 03/13/08 12:55	Benzo (k) fluoranthene				-								
					·								
	Butyl benzyl phthalate									_			

۱.

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont

Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compour	ids by EPA Meth	nod 8270C	3			• • • • • • •		••••		• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
8030981-MSD1	-											
Carbazole	ND	1.81		mg/kg dry	1.84	99%	37 - 116	27	31	8030981	NRC0441-06	03/13/08 12:55
4-Chloro-3-methylphenol	ND	1.64		mg/kg đry	1.84	89%	19 - 128	11	38	8030981	NRC0441-06	03/13/08 12:55
4-Chloroaniline	ND	1.28		mg/kg đry	1.84	69%	10 - 119	20	44	8030981	NRC0441-06	03/13/08 12:55
Bis(2-chloroethoxy)methane	ND	1.24		mg/kg dry	1.84	67%	30 - 110	2	34	8030981	NRC0441-06	03/13/08 12:55
Bis(2-chloroethyl)ether	ND	1.13		mg/kg đry	1.84	61%	36 - 106	4	38	8030981	NRC0441-06	03/13/08 12:55
Bis(2-chloroisopropyl)ether	ND	1.27		mg/kg dry	1.84	69%	34 - 109	0.7	40	8030981	NRC0441-06	03/13/08 12:55
2-Chloronaphthalene	ND	1.41		mg/kg dry	1.84	77%	31 - 107	2	38	8030981	NRC0441-06	03/13/08 12:55
2-Chlorophenol	ND	1.32		mg/kg dry	1.84	72%	32 - 119	3	40	8030981	NRC0441-06	03/13/08 12:55
4-Chlorophenyl phenyl ether	ND	1.48		mg/kg dry	1.84	80%	35 - 113	12	37	8030981	NRC0441-06	03/13/08 12:55
Chrysene	1.48	5.20	MHA, R	mg/kg dry	1.84	202%	30 - 119	63	31	8030981	NRC0441-06	03/13/08 12:55
Dibenz (a,h) anthracene	0.396	2.84	MHA, R	mg/kg dry	1.84	133%	27 - 122	50	32	8030981	NRC0441-06	03/13/08 12:55
Dibenzofuran	0.162	1.82	· ··· , ·	mg/kg dry	1.84	90%	33 - 121	16	35	8030981	NRC0441-06	03/13/08 12:55
Di-n-butyl phthalate	NĎ	1.69		mg/kg dry	1.84	92%	38 - 123	17	31	8030981	NRC0441-06	03/13/08 12:55
1,4-Dichlorobenzene	ND	1.21		mg/kg dry	1.84	66%	26 - 109	4	41	8030981	NRC0441-06	03/13/08 12:55
1,2-Dichlorobenzene	ND	1.28		mg/kg dry	1.86	69%	26 - 112	0.4	40	8030981	NRC0441-06	03/13/08 12:55
1,3-Dichlorobenzene	ND	1.23		mg/kg dry	1.84	67%	26 - 110	3	41	8030981	NRC0441-06	03/13/08 12:55
3,3-Dichlorobenzidine	ND	1.60		mg/kg dry	1.84	87%	10 - 112	24	48	8030981	NRC0441-06	03/13/08 12:55
2,4-Dichlorophenol	ND	1.48		mg/kg dry	1.84	80%	28 - 118	2	32	8030981	NRC0441-06	03/13/08 12:55
Diethyl phthalate	ND	1.66		mg/kg dry	1.84	90%	29 - 122	16	37	8030981	NRC0441-06	03/13/08 12:55
2,4-Dimethylphenol	ND	1.72		mg/kg dry	1.84	93%	10 - 128	· 2	50	8030981	NRC0441-06	03/13/08 12:55
Dimethyl phthalate	ND	1.56		mg/kg dry	1.84	85%	31 - 118	11	39	8030981	NRC0441-06	03/13/08 12:55
4,6-Dinitro-2-methylphenol	ND	1.42		mg/kg dry	1.84	77%	10 - 136	8	45	8030981	NRC0441-06	03/13/08 12:55
2,4-Dinitrophenol	ND	1.22		mg/kg dry	1.84	67%	10 - 148	14	50	8030981	NRC0441-06	03/13/08 12:55
2,6-Dinitrotoluene	ND	1.63		mg/kg dry	1.84	88%	28 - 125	[]	37	8030981	NRC0441-06	03/13/08 12:55
2,4-Dinitrotoluene	ND	1.68		mg/kg dry	1.84	91%	30 - 119	16	41	8030981	NRC0441-06	03/13/08 12:55
Di-n-octyl phthalate	ND	1.82		mg/kg dry	1.84	99%	31 - 137	14	34	8030981	NRC0441-06	03/13/08 12:55
Bis(2-ethylhexyl)phthalate	ND	1.60		mg/kg dry	1.84	87%	38 - 125	12	38	8030981	NRC0441-06	03/13/08 12:55
Fluoranthene	3.52	9.55	MHA, R	mg/kg dry	1.84	328%	23 - 132	65	36	8030981	NRC0441-06	03/13/08 12:55
Fluorene	0.327	2.53	MHA	mg/kg dry	1.84	120%	38 - 110	31	35	8030981	NRC0441-06	03/13/08 12:55
Hexachlorobenzene	ND	1.57		mg/kg dry	1.84	85%	35 - 120	14	37	8030981	NRC0441-06	03/13/08 12:55
Hexachlorobutadiene	ND	1.62		mg/kg dry	L.84	88%	28 - 113	0.9	35	8030981	NRC0441-06	03/13/08 12:55
Hexachlorocyclopentadiene	ND	0.769		mg/kg dry	1.84	42%	10 - 123	25	36	8030981	NRC0441-06	03/13/08 12:55
Hexachloroethane	ND	1.36		mg/kg dry	1.84	74%	20 - 120	2	42	8030981	NRC0441-06	03/13/08 12:55
Indeno (I,2,3-cd) pyrene	0.818	4.13	MHA, R	mg/kg dry	1.84	180%	24 - 122	63	28	8030981	NRC0441-06	03/13/08 12:55
Isophorone	ND	1.38		mg/kg dry	1.84	75%	23 - 108	1	33	8030981	NRC0441-06	03/13/08 12:55
2-Methylnaphthalene	ND	1.50		mg/kg dry	1.84	82%	26 - 116	6	33	8030981	NRC0441-06	03/13/08 12:55
2-Methylphenol	ND	1,39		mg/kg dry	1.84	76%	23 - 122	0.09	43	8030981	NRC0441-06	03/13/08 12:55
3/4-Methylphenol	ND	1.54		mg/kg dry	1.84	84%	23 - 138	4	47	8030981	NRC0441-06	03/13/08 12:55
Naphthalene	0.0482	1.45		mg/kg dry	1.84	76%	14 - 117	6	34	8030981	NRC0441-06	03/13/08 12:55
3-Nitroaniline	ND	1.67		mg/kg dry	1.84	91%	27 - 124	24	41	8030981	NRC0441-06	03/13/08 12:55
2-Nitroaniline	ND	1.53		mg/kg dry	1.84	83%	35 - 122	13	33	8030981	NRC0441-06	03/13/08 12:55

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793)

70 West Madison, Suite 4250

Chicago,, IL 60602

Carl Dawes Attn

Work Order: NRC0462 Project Name: 1782-308-02 Project Number: Received:

Atlanta Rush Project 03/06/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD L	imit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compound	ds by EPA Metl	10d 8270C	 !	•••••		• • • • • • • •	• • • • • • • • • •	· · · · · · · ·			••••••	
8030981-MSD1	,											
4-Nitroaniline	ND	1.58		mg/kg dry	1.84	86%	25 - 124	21	35	8030981	NRC0441-06	03/13/08 12:55
Nitrobenzene	ND	1.32		mg/kg dry	1.84	72%	19 - 105		36	8030981	NRC0441-06	03/13/08 12:55
4-Nitrophenol	ND	1.63		mg/kg dry	1.84	89%	14 - 144		39	8030981	NRC0441-06	03/13/08 12:55
2-Nitrophenol	ND	1.49		mg/kg dry	1.84	81%	23 - 119		37	8030981	NRC0441-06	03/13/08 12:55
N-Nitrosodiphenylamine	ND	1.49		mg/kg dry	1.84	81%	37 - 144		32	8030981	NRC0441-06	03/13/08 12:55
N-Nitrosodi-n-propylamine	ND	1.29		nig/kg dry	1.84	70%	28 - 121		41	8030981	NRC0441-06	03/13/08 12:55
Pentachlorophenol	ND	1,74		mg/kg dry	1.84	94%	13 - 149		41	8030981	NRC0441-06	03/13/08 12:55
Phenanthrene	1.88	5.73	MHA, R	mg/kg dry	1.84	209%	21 - 130		33	8030981	NRC0441-06	03/13/08 12:55
Phenol	ND	1.28		mg/kg dry	1.84	70%	31 - 116		40	8030981	NRC0441-06	03/13/08 12:55
Pyrene	2.41	6.75	R, MHA	mg/kg dry	1.84	236%	24 - 133		36	8030981	NRC0441-06	03/13/08 12:55
Pyridine	ND	0.858		mg/kg dry	1.84	47%	10 - 103		50	8030981	NRC0441-06	03/13/08 12:55
1,2,4-Trichlorobenzene	ND	1.35		mg/kg dry	1.84	74%	27 - 102	4	34	8030981	NRC0441-06	03/13/08 12:55
1-Methylnaphthalene	0.0736	1.55		mg/kg dry	1.84	80%	10 - 121	7	34	8030981	NRC0441-06	03/13/08 12:55
2,4,6-Trichlorophenol	ND	1.69		mg/kg dry	1.84	92%	32 - 122		41	8030981	NRC0441-06	03/13/08 12:55
2,4,5-Trichlorophenol	ND	1.69		mg/kg dry	1.84	92%	30 - 122	11	39	8030981	NRC0441-06	03/13/08 12:55
Surrogate: Terphenyl-d14	•	1.15		mg/kg dry	1.84	63%	26 - 128			8030981	NRC0441-06	03/13/08 12:55
Surrogate: 2,4,6-Tribromophenol		1.56		mg/kg dry	. 1.84	85%	20 - 132			8030981	NRC0441-06	03/13/08 12:55
Surrogate: Phenol-d5		1.13		mg/kg dry	1.84	61%	23 - 113			8030981	NRC0441-06	03/13/08 12:55
Surrogate: 2-Fluorobiphenyl		1.02		mg/kg dry	1,84	56%	19 - 109			8030981	NRC0441-06	03/13/08 12:55
Surrogate: 2-Fluorophenol		1.07		mg/kg dry	1.84	58%	19 - 105			8030981	NRC0441-06	03/13/08 12:55
Surrogate: Nitrobenzene-d5		1.15		mg/kg dry	1.84	62%	22 - 104			8030981	NRC0441-06	03/13/08 12:55
8032357-MSD1												
Acenaphthene	NĎ	1.15	R	mg/kg dry	2.00	58%	28 - 117	34	33 ·	8032357	NRC0462-01	03/16/08 17:29
Acenaphthylene	ND	· 1.20		mg/kg dry	2.00	60%	33 - 113		38	8032357	NRC0462-01	03/16/08 17:29
Anthracene	ND	1.15	R	mg/kg dry	2.00	58%	31 - 131		32	8032357	NRC0462-01	03/16/08 17:29
Benzo (a) anthracene	ND	1.18	R	mg/kg dry	2.00	59%	29 - 124		26 .	8032357	NRC0462-01	03/16/08 17:29
Benzo (a) pyrene	ND	1.12	R	mg/kg dry	2.00	56%	30 - 127		31	8032357	NRC0462-01	03/16/08 17:29
Benzo (b) fluoranthene	ND	1.10	R	mg/kg dry	2.00	55%	26 - 128		37	8032357	NRC0462-01	03/16/08 17:29
Benzo (g,h,i) perylene	ND	1,24	R	mg/kg dry	2.00	62%	21 - 122		28	8032357	NRC0462-01	03/16/08 17:29
Benzo (k) fluoranthene	ND	1.13		mg/kg dry	2.00	56%	20 - 130		35	8032357	NRC0462-01	03/16/08 17:29
4-Bromophenyl phenyl ether	ND	0.974		mg/kg dry	2.00	49%	30 - 106		38	8032357	NRC0462-01	03/16/08 17:29
Butyl benzyl phthalate	ND	1,29		mg/kg dry	2.00	64%	40 - 131		37	8032357	NRC0462-01	03/16/08 17:29
Carbazole	ND	1.03	R	mg/kg dry	2.00	51%	37 - 116		31	8032357	NRC0462-01	03/16/08 17:29
4-Chloro-3-methylphenol	ND	1.06		mg/kg dry	2.00	53%	19 - 128		38	8032357	NRC0462-01	03/16/08 17:29
4-Chloroaniline	ŇD	0.862		mg/kg dry	2.00	43%	10 - 119		44 ·	8032357	NRC0462-01	03/16/08 17:29
Bis(2-chloroethoxy)methane	ND	1.03	R	mg/kg dry	2.00	51%	30 - 110		34	8032357	NRC0462-01	03/16/08 17:29
Bis(2-chloroethyl)ether	ND	0.954		mg/kg dry	2.00	48%	36 - 106		 38	8032357	NRC0462-01	03/16/08 17:29
Bis(2-chloroisopropyl)ether	ND	0.941		mg/kg dry	2.00	47%	34 - 109		40	8032357	NRC0462-01	03/16/08 17:29
2-Chloronaphthalene	ND	1.11		mg/kg dry	2.00	55%	31 - 107		38	8032357	NRC0462-01	03/16/08 17:29
2-Chlorophenol	ND	1.14		mg/kg dry	2.00	57%	32 - 119		40	8032357	NRC0462-01	03/16/08 17:29

١

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont. Spike Target Sample Analyzed **RPD** Limit Batch Duplicated Date/Time Conc % Rec. Range Analyte Orig. Val. Duplicate Q Units Semivolatile Organic Compounds by EPA Method 8270C 8032357-MSD1 2.00 39 37 8032357 NRC0462-01 03/16/08 17:29 4-Chlorophenyl phenyl ether ND 0.989 mg/kg dry 49% 35 - 113 R 2.00 64% 30 31 8032357 NRC0462-01 03/16/08 17:29 Chrysene ND 1.29 30 - 119 mg/kg dry Dibenz (a,h) anthracene ND 1.06 mg/kg dry 2.00 53% 27 - 122 40 32 8032357 NRC0462-01 03/16/08 17:29 R Dibenzofuran ND 1.11 2.00 55% 33 - 121 40 35 8032357 NRC0462-01 03/16/08 17:29 mg/kg dry R Di-n-butyl phthalate ND 1.11 2.00 55% 38 - 123 34 31 8032357 NRC0462-01 03/16/08 17:29 R mg/kg dry 1,4-Dichlorobenzene ND 0.947 mg/kg dry 2.00 47% 26 - 109 35 41 8032357 NRC0462-01 03/16/08 17:29 2.02 36 40 1.2-Dichlorobenzene ND 1.02 mg/kg dry 50% 26 - 112 8032357 NRC0462-01 03/16/08 17:29 1,3-Dichlorobenzene 0.999 2.00 50% 31 41 8032357 ND mg/kg dry 26 - 110 NRC0462-01 03/16/08 17:29 48 3,3-Dichlorobenzidine ND 0.654 mg/kg dry 2.00 33% 10 - 112 66 8032357 NRC0462-01 03/16/08 17:29 R 2.00 28 - 118 39 32 8032357 2,4-Dichlorophenol ND 1.20 mg/kg dry 60% NRC0462-01 03/16/08 17:29 R Diethyl phthalate ND 0.953 2.00 48% 29 - 122 37 37 8032357 NRC0462-01 03/16/08 17:29 mg/kg dry 2.00 61% 41 50 8032357 2,4-Dimethylphenol ND 1.21 mg/kg dry 10 - 128 NRC0462-01 03/16/08 17:29 Dimethyl phthalate 2.00 55% 31 - 118 40 39 8032357 NRC0462-01 03/16/08 17:29 ND 1.10 mg/kg dry R 4,6-Dinitro-2-methylphenol 0.113 2,00 6% 10 - 136 157 45 8032357 NRC0462-01 03/16/08 17:29 ND mg/kg dry R 2.00 13% 10 - 148100 50 8032357 NRC0462-01 03/16/08 17:29 2,4-Dinitrophenol ND 0.252 R mg/kg dry 2,6-Dinitrotoluene 2,00 58% 28 - 125 43 37 8032357 NRC0462-01 03/16/08 17:29 ND 1.16 R mg/kg dry 03/16/08 17:29 2,4-Dinitrotoluene ND 1.06 2.00 53% 30 - 119 48 41 8032357 NRC0462-01 R mg/kg dry 2.00 41 8032357 03/16/08 17:29 Di-n-octvl phthalate ND 58% 31 - 137 34 NRC0462-01 1.16 R mg/kg dry 2.00 Bis(2-ethylhexyl)phthalate 0.414 1.35 47% 38 - 125 30 38 8032357 NRC0462-01 03/16/08 17:29 mg/kg dry 2.00 40 36 8032357 03/16/08 17:29 Fluoranthene 0.0740 1.10 mg/kg dry 51% 23 - 132 NRC0462-01 R 2.00 55% 38 35 8032357 NRC0462-01 03/16/08 17:29 Fluorenc ND 38 - 110 1.10 R mg/kg dry Hexachlorobenzene ND 1.09 mg/kg dry 2.00 54% 35 - 120 36 37 8032357 NRC0462-01 03/16/08 17:29 Hexachlorobutadiene ND 1.16 mg/kg dry 2.00 58% 28 - 113 27 35 8032357 NRC0462-01 03/16/08 17:29 Hexachlorocyclopentadiene ND 0.433 2.00 22% 10 - 123 77 36 8032357 NRC0462-01 03/16/08 17:29 R mg/kg dry 2.00 8032357 Hexachloroethane ND 0.974 mg/kg dry 49% 20 - 12039 42 NRC0462-01 03/16/08 17:29 41 28 8032357 Indeno (1,2,3-cd) pyrene ND 1.08 R mg/kg dry 2.00 54% 24 - 122 NRC0462-01 03/16/08 17:29 2.00 33 8032357 Isophorone ND 1.04 52% 23 - 10834 NRC0462-01 03/16/08 17:29 R mg/kg dry 2-Methylnaphthalene ND 1.13 mg/kg dry 2.00 56% 26 - 116 28 33 8032357 NRC0462-01 03/16/08 17:29 2-Methylphenol ND 1.13 mg/kg dry 2.00 57% 23 - 122 39 43 8032357 NRC0462-01 03/16/08 17:29 3/4-Methylphenol NÐ 0.846 2.00 42% 23 - 138 37 47 8032357 NRC0462-01 03/16/08 17:29 mg/kg dry Naphthalene ND 1.04 mg/kg dry 2.00 52% 14 - 117 32 34 8032357 NRC0462-01 03/16/08 17:29 3-Nitroaniline 44 ND 0.959 mg/kg dry 2.00 48% 27 - 124 41 8032357 NRC0462-01 03/16/08 17:29 R 2-Nitroaniline 2.00 ND 1.17 59% 35 - 122 40 33 8032357 03/16/08 17:29 R mg/kg dry NRC0462-01 4-Nitroaniline ND 1.03 R mg/kg dry 2.00 51% 25 - 124 48 35 8032357 NRC0462-01 03/16/08 17:29 Nitrobenzene ND 1.40 mg/kg dry 2.00 70% 19 - 105 33 36 8032357 NRC0462-01 03/16/08 17:29 4-Nitrophenol ND 1.11 2.00 56% 14 - 144 43 39 8032357 NRC0462-01 03/16/08 17:29 R mg/kg dry 2-Nitrophenol ND 1.07 mg/kg dry 2.00 54% 23 - 119 36 37 8032357 NRC0462-01 03/16/08 17:29 N-Nitrosodiphenylamine ND 1.14 mg/kg dry 2.00 57% 37 - 144 37 32 8032357 NRC0462-01 03/16/08 17:29 R N-Nitrosodi-n-propylamine ND 0.903 2.00 8032357 45% 28 - 121 35 41 NRC0462-01 03/16/08 17:29 mg/kg dry Pentachlorophenol ND 0.965 2.00 48% 13 - 149 35 41 8032357 NRC0462-01 03/16/08 17:29 mg/kg dry Phenanthrene 0.0441 1.10 2.00 53% 21 - 130 37 33 8032357 NRC0462-01 03/16/08 17:29 R mg/kg dry

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Weaver Boos Consultants LLC (1407793) 70 West Madison, Suite 4250

Chicago,, IL 60602

Attn

Carl Dawes

Work Order: NRC0462 Project Name: 1782-308-02 Project Number: Received:

Atlanta Rush Project 03/06/08 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spíke Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Semivolatile Organic Compounds	by EPA Meth	nod 8270C	•••••	•••••	•••••	- .	• • • • • • • • •			· · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
8032357-MSD1												
Phenol	ND	1.09	R	mg/kg dry	2.00	54%	31 - 116	41	40	8032357	NRC0462-01	03/16/08 17:29
Pyrene	0.113	1.33	R	mg/kg dry	2.00	61%	24 - 133	38	36	8032357	NRC0462-01	03/16/08 17:29
Pyridine	ND	0.468	R	mg/kg dry	2.00	23%	10 - 103	78	50	8032357	NRC0462-01	03/16/08 17:29
1,2,4-Trichlorobenzene	ND	1.14		mg/kg dry	2.00	57%	27 - 102	29	34	8032357	NRC0462-01	03/16/08 17:29
I-Methylnaphthalene	ND	1.05		mg/kg dry	2.00	52%	10 - 121	30	34	8032357	NRC0462-01	03/16/08 17:29
2,4,6-Trichlorophenol	ND	1.20		mg/kg dry	2.00	60%	32 - 122	41	41	8032357	NRC0462-01	03/16/08 17:29
2,4,5-Trichlorophenol	ND	1.21	R	mg/kg dry	2.00	61%	30 - 122	44	39	8032357	NRC0462-01	03/16/08 17:29
Surrogate: Terphenyl-d14		1.04		mg/kg dry	2.00	52%	26 - 128			8032357	NRC0462-01	03/16/08 17:29
Surrogate: 2,4,6-Tribromophenol		1.05		mg/kg dry	2.00	52%	20 - 132			8032357	NRC0462-01	03/16/08 17:29
Surrogate: Phenol-d5		1.15		mg/kg dry	2.00	57%	23 - 113			8032357	NRC0462-01	03/16/08 17:29
Surrogate: 2-Fluorobiphenyl		0.994		mg/kg dry	2.00	50%	19 - 109			8032357	NRC0462-01	03/16/08 17:29
Surrogate: 2-Fluorophenol		1.05		mg/kg dry	2.00	52%	19 - 105			8032357	NRC0462-01	03/16/08 17:29
Surrogate: Nitrobenzene-d5		1.02		mg/kg dry	2.00	51%	22 - 104			8032357	NRC0462-01	03/16/08 17:29

TestAmerica Nashville

Client	Weaver Boos Consultants LLC (1407793)	Work Order:	NRC0462
	70 West Madison, Suite 4250	Project Name:	Atlanta Rush Project
	Chicago,, IL 60602	Project Number:	1782-308-02
Attn	Carl Dawes	Received:	03/06/08 08:00

CERTIFICATION SUMMARY

Method	Matrix	AIHA	Nelac	Georgia
SW846 8260B	Soil	N/A	X	
SW846 8270C	Soil	N/A	х	
SW-846	Soil			

•

Page 52 of 53

<u>TestAmericu</u>

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

ŧ

Attn	Carl Dawes
	Chicago,, IL 60602
	70 West Madison, Suite 4250
Client	Weaver Boos Consultants LLC (1407793)

....

Work Order:NRC0462Project Name:Atlanta Rush ProjectProject Number:1782-308-02Received:03/06/08 08:00

DATA QUALIFIERS AND DEFINITIONS

	•
MHA	Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See
	Blank Spike (LCS).
MNR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike.
R	The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.
R2	The RPD exceeded the acceptance limit.
ND	Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

IestAmerica	
Mashville, TN COOLER RECT	
Cooler Received/Opened On_03:06/03 @ 08:00	NRC0462
1. Tracking #(last 4 digits, FedEx)	
Courier:FED-EX IR Gun IDA01124	
2. Temperature of rep. sample or temp blank when opened \mathcal{Q}_{3} Degrees Cels	
3. If item #2 temperature is 0°C or less was the compared vi	ilus
 If item #2 temperature is 0°C or less, was the representative sample or temp blar Were custody seals on outside of cooler? 	A
If yes, how many and where:	YÉSNONA
5. Were the seals intact, signed, and dated correctly?	FLUNI/
6. Were custody papers inside cooler?	ESNONA
I certify that I opened the cooler and answered questions 1-6 (initial)	ALL MONA
7. Were custody seals on containers	09 37.08
Were these signed and dated correctly?	Man M
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Inse	YESNON
9. Cooling process: (C) Ice-pack Ice (direct contact)	
10. Did all containers arrive in good condition (unbroken)?	
11. Were all container labels complete (#, date, signed, pres., etc)?	(BNoNA Sample (ENoNA IDS ON
12. Did all container labels and tags agree with custody papers?	
13a. Were VOA vials received?	(ES)NONA bags.
b. Was there any observable headspace present in any VOA vial?	YES. NONA
14. Was there a Trip Blank in this cooler? YES., NO. (NA) If multiple coolers,	
certify that unloaded the cooler and answered questions 7-14 (initial)	P
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct ph	I level? YES. NO. NA
b. Did the bottle labels indicate that the correct preservatives were used	RESNONA
If preservation in-house was needed, record standard ID of preservative use	d here
16. Was residual chlorine present?	YES NO NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (
17. Were custody papers properly filled out (ink, signed, etc)?	E.MONA
18. Did you sign the custody papers in the appropriate place?	NONA
19. Were correct containers used for the analysis requested?	NONA
20. Was sufficient amount of sample sent in each container?	(ES).NO. NA
certify that I entered this project into LIMS and answered questions 17-20 (initial)	
certify that I attached a label with the unique LIMS number to each container (intial)	- D
21. Were there Non-Conformance issues at login? (ES).NO Was a PIPE generated?	E3NO # 47367

1318 - Broken in shipment Cooler Receipt Form.doc

1

i i

fg (4 ads.			782-308-02	State:				QC Deliverables	None Level 2 (Batch QC)	Level 3 Level 4	1 <u>Ş</u>	REMARKS	10	25		<i>1</i> 07	$\langle \rangle$	90	20	<i>PCI</i>	01	ÿ	0.3		NA NA		
ytical meth		64	120			ð					710	X	$\overline{\langle}$		$\overline{\mathbf{A}}$			×	×	< ×		OMMENT	idu	:dw	×		nent
To sessist us in using the proper analytical methods.	is this work being conducted for regulatory purposes to compliance Monitoring		Project # 1 2 2 2092 22										5462									LABORATORY COMMENTS:	Initiato Tamp:	Rec Lab Temp:	Custody Seals: Y N N/A	Anddbe samoa	Method of Shipment
To sesist us in us	is this work bein Compliar	priver Name: A H on to	roject #: 42 R	ation ID:	Report To:	Invoice To: Criste #		Analyze For					NRC				NDCARO	13/17/08 23 50							TIME: KIY	Time:	Date: 3. 6. 08 Time: 08 dt
		Druier	, ¢	Site/Location ID:	Re	<u>v</u>								-											Date 5/5/08	Date:	Date: 7.6.
						,				>0<	<u>)</u> 	2015		ХX		X X			XX			XIX			Level	0	Shafe
111	1404	Client #:						Containers	hØ	<u>مہ</u> '	(Alioe	ether (Spi one	N .~)	221	221	111	1 2 2	121	121	<u> </u>		121		l	したる	2	Hand
Phone: 615-726-0177	615-726-3	G	i l'	2 - [Fax			Preservation & # of Containers		·	<u>-</u>	tos ² HO	H N							+					Received By:	Received By:	Received By:
			73	(0)(0)	·	5	Ŋ	Matrix Prese	Jetho Vite bilosvitos sing Water	eds .	iotewó Iotewó	łò٬	14													/6.20) Re	Re
Division	2960 Foster Creighton Neshville, TN 37204	5004	5		717.4848	On 15en	El Cr	Ň			pə	= Grab, add Filter = Grab,	<u>ا</u> دا		+										58 1535	$1 \rightarrow$	7 U Time:
Nashville [2960 Foster Creight Neshville, TN 37204	ŀ	5.	- 1 (20, 71	12	7°					kures au	12. C	_	-	100 00 1 C	1/200000	26600			g 1135	8 1150	1		2/5/08	Date?	Date
		Wea	4191:	The feel	200						perc	gmis 2 et	ea (),7	20/5/			2/1/2	2727	ASiat	35/08	12/2/2	3/2/08					<u>.</u>
		Client Name WEGWER	Address	City/StataZip Code: 2/2 20/2	Project Manager. Taiochone Number	Sempler Name: (Print Name)	Commer Sinnature.		Standard Rush (surcharges may apply)			z >-		ΓĮ `			127-91-		(d-6)		12	10	Ĩ.			and the second second	hed By:
	Test					Samp			TAT Standard Rush (su		Data Needed	Fax Results:	- <u>4</u>	112-	1-9-1	1-12-1	1424				11		Special Im			Reinquished By.	Reinquished by:

To assist us in using the proper analytical methods. Is this work being conducted for regulationy purposes? Compliance Monitoring	POM: State:	None Batch QC; Batch QC; Level 3 Level 4 Other.		LABORATORY COMMENTS: Initiab Temp: Accimab Temp: Cuerco's Seale: Y N NVA V N Borlie: Supplied by Test America: Y N Wethout at Shipment:
To assist us in usil is this work being Compliant	Project # 44-04 07 Site/Location ID: Report To: Invoice To: Quote # Analyze For	2015	NRC0462 03/17/08 23:59	Date3/57/8 Time: 15:40 Date: Time: Ime: 10000
Neshville Division Phone: 615-726-0177 2960 Foster Creighton Fax: 615-726-3404 Nashville, TN 37204 1 Le f 12 26 5	Fax Matrix Preservation & # of Containers	C Other (Specify) 小で くの い つ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ		Dete: 08 1535 Received By Lerny Dete: 154 Time: 62 Received By Dete: Time: Received By Lerny
Test/Merica 2960 Fosts ANALITICAL TESTING COPORATION Client Name // Collect 25	City/StatiaZip Code: Project Manager: C G V] DE LES Telephone Number: Sampler Name: (Print Name) Sampler Signature:	TAT Standard Rush (surcharges may apply) Data Needed: Fax Results: Y N SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID		Special instructions: Special instructions: Reinquished By Lung Dote 15/6 8 Reinquished By Lung Date: 15/6 Reinquished By:

APPENDIX D

(.

REGULATORY RECORDS DOCUMENTATION

Appendix D

Telephone Memoranda Regarding Underground Utilities and Neighboring Basements

Two Midtown Plaza 1349 West Peachtree Street, Suite 2000, Atlanta, GA 30309

T: 404.347.9050 F: 404.347.9080

MEMORANDUM

DATE: April 7, 2015 TO: Lindsay Wallace, Kathi Wurzel FROM: Marjorie Snook SUBJECT: Utility depth, 90 Forsyth Street, Atlanta

Gas

I called and left a message for Thomas Parker with Atlanta Gas Light. He returned the call and left a message. He stated that typically, utilities are 3 feet below final grade, and will go as deep as 4 feet under railroads. Typically, he said, AGL does not know the exact depth of their gas lines.

Water

I spoke to Barry Amos with City of Atlanta Site Development Office. The development office, which maintains the records of the locations of water facilities, does not have depths for their water or sewer lines. There is an 18" sewer down the middle of Forsyth, and a 15" sewer down the middle of Luckie, but no facilities on the property itself. There is a 3" and 6" water line on the property.

Two Midtown Plaza 1349 West Peachtree Street, Suite 2000, Atlanta, GA 30309

T: 404.347.9050 F: 404.347.9080

MEMORANDUM

DATE: April 14 TO: Lindsay Wallace FROM: Marjorie Snook SUBJECT: Basement

At 9:30 on April 14th, 2015 I spoke to Greta at the Quality Inn downtown. She confirmed that the Quality Inn at 89 Luckie Street does have a basement.