
by

Michael F. Peck¹, John S. Clarke¹, Camille Ransom, III², and Christopher J. Richards³

¹U.S. Geological Survey ²South Carolina Department of Health and Environmental Control ³Northwest Florida Water Management District

Prepared in cooperation with the
U.S. DEPARTMENT OF THE INTERIOR
U.S. Geological Survey

GEORGIA DEPARTMENT OF NATURAL RESOURCES
Lonice C. Barrett, Commissioner

ENVIRONMENTAL PROTECTION DIVISION
Harold F. Reheis, Director

GEORGIA GEOLOGIC SURVEY
William H. McLemore, State Geologist

ATLANTA
1999

HYDROLOGIC ATLAS 22

The Department of Natural Resources is an equal-opportunity employer and offers all persons the opportunity to compete and participate in each area of DNR employment regardless of race, color, religion, sex, national origin, age, handicap, or other non-merit factors.

INTRODUCTION

The Floridan aquifer is a part of the Florida aquifer system that underlies most of the state and ranges across much of the southeastern United States. It includes a network of interconnected aquifers, primarily in the Coastal Plain aquifer. The Floridan aquifer system is one of the largest and most important aquifers in the world, with a surface area of approximately 200,000 square miles and a thickness ranging from a few feet to several thousand feet. The aquifer is composed of a variety of sediments, including sand, silt, clay, and organic material, and is divided into two main parts: the Upper Floridan aquifer and the Lower Floridan aquifer.

The Upper Floridan aquifer is part of the Floridan aquifer system that underlies most of Georgia and ranges across much of the southeastern United States. It includes a network of interconnected aquifers, primarily in the Coastal Plain aquifer. The Floridan aquifer system is one of the largest and most important aquifers in the world, with a surface area of approximately 200,000 square miles and a thickness ranging from a few feet to several thousand feet. The aquifer is composed of a variety of sediments, including sand, silt, clay, and organic material, and is divided into two main parts: the Upper Floridan aquifer and the Lower Floridan aquifer.

The Upper Floridan aquifer is the uppermost part of the Floridan aquifer system and is characterized by a high permeability and a high transmissivity. It is the most important aquifer for water supply in Georgia, providing water for drinking, irrigation, and industrial purposes. The Upper Floridan aquifer is divided into two main zones: the Coastal Plain aquifer and the Gulf Coastal Plain aquifer. The Coastal Plain aquifer is characterized by a high permeability and a high transmissivity, while the Gulf Coastal Plain aquifer is characterized by a low permeability and a low transmissivity.

The Upper Floridan aquifer is an important source of water for the state of Georgia, and it is utilized for a variety of purposes, including drinking water supply, irrigation, and industrial water supply. The aquifer is also an important source of groundwater recharge, and it plays a significant role in the water balance of the state.

The Upper Floridan aquifer is an important source of water for the state of Georgia, and it is utilized for a variety of purposes, including drinking water supply, irrigation, and industrial water supply. The aquifer is also an important source of groundwater recharge, and it plays a significant role in the water balance of the state.

The Upper Floridan aquifer is an important source of water for the state of Georgia, and it is utilized for a variety of purposes, including drinking water supply, irrigation, and industrial water supply. The aquifer is also an important source of groundwater recharge, and it plays a significant role in the water balance of the state.

The Upper Floridan aquifer is an important source of water for the state of Georgia, and it is utilized for a variety of purposes, including drinking water supply, irrigation, and industrial water supply. The aquifer is also an important source of groundwater recharge, and it plays a significant role in the water balance of the state.