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Ground-water use in the Dougherty Plain physio-
graphic district of southwest Georgia (fig. 1) has received
considerable attention in recent years. A mild climate, an
abundant supply of good-quality ground water, a flat to
gently rolling terrain, and the introduction of center pivot
irrigation systems have spurred a remarkable increase in
agriculturalirrigation. Irrigated acreage in southwest Geor-
gia increased 60 percent between 1970 and 1971, and by
approximately 100 percent from 1976 through the fall of
1977. Ground-water use for irrigation between 1977 and
1980 increased from about 47 to 76 billion gallons per year
(H.E. Gill, U.S. Geological Survey, written commun., 1981),
an increase of 62 percent.

The availability of large quantities of ground water is
partly a function of the same physical processes which

By

Thomas W. Watson

INTRODUCTION

produced the topographic features of the Dougherty Plain.
Gradual dissolution of the Ocala Limestone, which lies at or
near the land surface, has produced a cavernous limestone
aquifer that serves as a reservoir for 4 to 8 inches of the 52
inches of rainfall that can be expected in an average year.

The purpose of this report is to define the hydrogeology of
the principal artesian aquifer in the Dougherty Plain. Since
ground water will be a significant aspect in the future
development of the area, itis important to know how much
water production the aquifer is capable of sustaining, and
how to manage this important resource. The aquifer bound-
aries, thickness, and other physical characteristics are
illustrated as an important first step to more advanced
hydrologic modeling techniques, which will be used as aids
in determining water management alternatives.

GEOLOGY

Residuum. — The surficial geology of the Dougherty
Plain consists of a residual layer of sand and clay, derived
from solution weathering of the Ocala Limestone. The ratio
of sand and clay in the residuum varies throughout the
study area. Test drilling data indicate that the residuum
usually is clayey sand to slightly sandy clay. Clay content
ranges from approximately 10 to 70 percent, and samples
from 45 of 50 test wells consisted of more than 25 percent
clay.

The thickness of the residual layer varies from just a few
feet to slightly more than 100 feet, and has an average
thickness of approximately 50 feet (fig. 2).
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Cartography by Jeane S. Barrett and Willis G. Hester
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FIGURE 3. APPROXIMATE THICKNESS OF THE OCALA LIMESTONE

Ocala Limestone. — The Ocala is a light-colored, fos-
siliferous limestone of late Eocene age. The top of the
limestone is a transitional zone where the sandy clay of the
residuum grades into limestone. This transitional zone can
be abrupt, or it may include several tens of feet of alternating
weathered limestone and sandy clay. The parent limestone
is exposed along sections of major streams such as the
Chattahoochee River, Flint River, and Spring Creek, where
erosion has removed the residuum. The Ocala is a wedge-
shaped limestone formation trending from northeast to
southwest across Georgia, thickening to the southeast. The
Ocalavaries inthickness from a few feet at the updip limit to
350feetinthe southeastern part of the Dougherty Plain (fig.
S,

The upper surface of the Ocala Limestone is highly
irregular because of differential weathering (fig. 4). However,
the approximate depth from land surface to the top of the
Ocala Limestone in a given area can be estimated by
subtracting the altitude of the limestone surface from the
land surface altitude.

EXPLANATION

— 300 — STRUCTURE CONTOUR - Shows altitude of the top of
the Ocala Limestone. Dashed where approxi-
mately located. Contour interval 25 feet. National
Geodetic Vertical Datum of 1929
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EXPLANATION
!
—— 300 ——  STRUCTURE CONTOUR - Shows approximate altitude
of the top of the Lisbon Formation. Contour
interval 50 feet. National Geodetic Vertical Datum '
of 1929
A4 A’ Line of geologic section (see figure 6)
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Lisbon Formation. — The Ocala is underlain by the
Lisbon Formation of middle Eocene age. The Lisbon occurs
at altitudes ranging from 300 feet above sea level in the
northwestern part of the report area to 300 below in the
southeastern part of the report area (fig. 5). In the report
area, the top of the Lisbon is considered the lower boundary
of the principal artesian aquifer because the Lisbon consists
of hard, sandy, clayey limestone and has distinctly lower
water-yielding characteristics than the Ocala Limestone.

FIGURE 6. GENERALIZED STRUCTURE OF THE TOP OF THE LISBON FORMATION |

A detailed description of the lithostratigraphy throughout
the study area is given by Herrick (1961), Herrick and Vorhis
(1963), and Stringfield (1966). An extensive listing of
hydrogeologic data for the Dougherty Plain is presented by
Mitchell (1981).
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@ DIRECTION OF WATER MOVEMENT

HYDROGEOLOGIC SECTION A-A’

HYDROGEOLOGY

The principal artesian aquifer beneath the Dougherty
Plain consists primarily of the Ocala Limestone, which is the
chief source of ground water for domestic and agricultural
use. Municipal and industrial use of the principal artesian
aquifer depends on geographic location, the amount of
water desired, and the thickness of the Ocala at that
location.

Hydraulic connection of the Ocala with any of the under-
lying aquifers is not well understood at present. Current
data, however, indicate that the Ocala responds as a
separate hydrologic unit.

Rainfall not lost as surface runoff or through evapotrans-
piration is the primary source of recharge to the principal
artesian aquifer. Recharge of the aquifer depends upon the
following: (1)the amount, distribution, and timing of rain-
fall, (2) the vertical permeability, or ease with which water
can percolate downward through the residuum, and (3) the
thickness of the residuum. Vertical hydraulic conductivity
ranges between 0.001 and 0.005 feet per day throughout
most of the study area and is the primary factor controlling
recharge to the Ocala aquifer.

An idealized hydrogeologic cross section of the Dougherty
Plainalong the line from Ato A’ (trace shown in fig. 5) shows
the relative positions and thicknesses of the geologic units
(fig. 6). Direction of water movement is shown by arrows
representing ground-water flow.

The capacity of the principal artesian aquifer to store and
transmit large quantities of water is due largely to the
cavernous nature of the Ocala Limestone. Water moving
through small fractures or cracks in the limestone has
slowly enlarged these features, through solution, forming a
cavernous, highly porous labyrinth of subterranean chan-
nels. In many areas, ground water moves through the
aquifer almost as if in a conduit or culvert.

Aquifer transmissivity is the rate at which water is
transmitted through a unit width of the aquifer under a
hydraulic gradient and is determined by measuring water-
level declines in wells adjacent to pumping wells. Transmis-
sivity of the principal artesian aquifer ranges from less than
25,000 ft2/day to more than 75,000 ft2/day (fig. 7).
Transmissivity is lowest in the northwestern part of the
report area where the aquifer is relatively thin, and increases
tothe southeast where the aquifer is thicker. Transmissiviity
also increases near the Chattahoochee River, Flint River,
and Spring Creek because water moving between the
surface-water system and the ground-water system adjacent
to these major drainages has accelerated the erosion of
ground-water conduits. In general, well yield is directly
proportional to transmissivity. Other factors being equal
(such as well diameter and pumping level), wells constructed
within high transmissivity zones can be expected to yield
more water than wells constructed within low transmissivity
zones (fig. 7).

" Values in milligrams per liter except pH

WATER QUALITY

Dissolved minerals in ground water can affect its useful
ness for various purposes. Table 1 shows the levels ¢ )
of the more common constituents dissolved in water from
wells open only to the principal artesian aqui Ve
quality is generally suitable for domestic and agricult
use.

32718"

EXPLANATION i

TRANSMISSIVITY LESS THAN 25,000 fi</d
EXPECTED WELL YIELD LESS THAN 500 gal/min

TRANSMISSIVITY 25,000 to 75,000 ft2/d
EXPECTED WELL YIELD 500 to 1000 gal/min

TRANSMISSIVITY GREATER THAN 75,000 fi2/d .
EXPECTED WELL YIELD GREATER THAN 1000
gal/min

& € C 15 20 25 30 MILES
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Cartography by Jeane S. Barrett and Willis G. Hester
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FIGURE 10b. WATER-LEVEL FLUCTUATIONS IN THE
BOLTON OBSERVATION WELL, 1971-1980

20 T T T T T T T T T T T

WATER LEVEL,IN FEET BELOW LAND SURFACE

45 I | | 1 1 | 1 | | | | )
JAN, FEB. MAR. APR, MAY JUNE  JULY AUG, SEPT. OCT. NOV. DEC.
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WELL, JANUARY 1979 - MAY 1981
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ALBANY-DOUGHERTY COUNTY OBSERVATION

Potentiometric surface maps indicate the level to which
water will rise in wells cased into a confined or artesian
aquifer. Potentiometric maps of the principal artesian aquifer
for May 1980 and November 1979 show a smoothly
undulating surface having no apparent areas of man-made
stress, such as a cone of depression or “"dent” in the
potentiometric surface (figs. 8 and 9). The absence of any
significant cones of depression on the potentiometric surface
indicates that, at the times these measurements were
made, recharge of the principal artesian aquifer was ade-
quate to replenish the water being withdrawn from wells.
The configuration of the potentiometric surface does,
however, indicate that large quantities of ground water
discharge into surface streams. Evidence of this naturally
occurring phenomenon is shown by the potentiometric

WATER LEVELS

contour lines bending upstream at surface streams, demon-
strating a hydraulic gradient toward the streams. Depth to
water at a proposed well site can be estimated by subtracting
the altitude of the potentiometric surface from the ground
surface altitude of the site.

Continuous monitoring of water levels in a network of
observation wells has shown a cyclic fluctuation of water
levels in the principal artesian aquifer in response to
seasonal variations in rainfall. This fluctuation can be seen
on a regional basis by comparing the May 1980 potentio-
metric surface after spring rains with the November 1979
potentiometric surface after a dry summer. Water-level
fluctuations in wells in Decatur and Dougherty Counties
over 1-year and 10-year periods demonstrate recharge

WELL, 1971 - 1980

through late winter and early spring followed by a gradual
depletion through summer and fall months, which are
normally dry (fig. 10). The 1-year hydrographs also clearly
show the effects of man-induced stresses of pumping and
natural stresses of unusually dry seasons, such as the
hydrologic droughts of 1972 and 1977-78.
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